Skip to main content

Regulation of the Cellular Pharmacology and Cytotoxicity of Cisplatin by Copper Transporters

  • Chapter
Cancer Drug Resistance

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

There is now a large body of evidence to indicate that the copper (Cu) transporters copper transporter receptor (CTR) 1, ATP7 A, and ATP7B regulate the cellular pharmacology and cytotoxicity of cisplatin (DDP), and that these proteins can mediate acquired DDP resistance. Cells that have acquired resistance to cisplatin demonstrate crossresistance to Cu and vice versa. The crossresistance between DDP and Cu is characterized by parallel changes in Cu and DDP accumulation and altered expression of the Cu efflux transporters ATP7A and ATP7B. Yeast, mouse, and human cells engineered to alter the expression of CTR1, ATP7A or ATP7B exhibit altered sensitivity to both Cu and DDP. Detailed studies of uptake and efflux indicate that each protein can alter the cellular pharmacology of DDP and in some cases, DDP analogs. Immunohistochemical studies of human tumors have identified associations between increased expression of either ATP7A or ATP7B and poor response to treatment with one or another of the platinum drugs. Whereas other transporters may also participate in the influx and efflux of the platinum drugs, available evidence supports the concept that DDP enters the cell, is distributed within the cell, and is exported by mechanisms that have evolved to manage Cu homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Inoue K, Mukaiyama T, Mitsui I, Ogawa M. In vitro evaluation of anticancer drugs in relation to development of drug resistance in the human tumor clonogenic assay. Cancer Chemoth Pharm 1985; 15:208–213.

    Article  CAS  Google Scholar 

  2. Wilson AP, Ford CH, Newman CE, Howell A. Cisplatin and ovarian carcinoma. In vitro chemosensitivity of cultured tumor cells from patients receiving high dose cisplatin as first line treatment. Brit J Cancer 1987; 56:763–773.

    PubMed  CAS  Google Scholar 

  3. Andrews PA, Jones JA, Varki NM, Howell SB. Rapid emergence of acquired cis-diammine-dichloroplatinumII resistance in an in vivo model of human ovarian carcinoma. Cancer Commun 1990; 2:93–100.

    PubMed  CAS  Google Scholar 

  4. Kelland LR. New platinum antitumor complexes. Crit Rev Oncol Hematol 1993; 15:191–219.

    Article  PubMed  CAS  Google Scholar 

  5. Jekunen AP, Hom DK, Alcaraz JE, Eastman A, Howell SB. Cellularpharmacology of dichloro(ethylene-diamine) platinum(II) in cisplatin-sensitive and resistant human ovarian carcinoma cells. Cancer Res 1994; 54:2680–2687.

    PubMed  CAS  Google Scholar 

  6. Loh S Y, Mistry P, Kelland LR, Abel G, Harrap KR. Reduced drug accumulation as a major mechanism of acquired resistance to cisplatin in a human ovarian carcinoma cell line: circumvention studies using novel platinum (II) and (IV) ammine/amine complexes. Br J Cancer 1992; 66:1109–1115.

    PubMed  CAS  Google Scholar 

  7. Gately DP, Howell SB. Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 1993; 67:1171–1176.

    PubMed  CAS  Google Scholar 

  8. Okuda M, Tsuda K, Masaki K, Hashimoto Y, Inui K. Cisplatin-induced toxicity in LLC-PK1 kidney epithelial cells: role of basolateral membrane transport. Toxicol Lett 1999; 106:229–235.

    Article  PubMed  CAS  Google Scholar 

  9. Amtmann E, Zoller M, Wesch H, Schilling G. Antitumoral activity of a sulphur-containing platinum complex with an acidic pH optimum. Cancer Chemother Pharmacol 2001; 47:461–66.

    Article  PubMed  CAS  Google Scholar 

  10. Atema A, Buurman KJ, Noteboom E, Smets LA. Potentiation of DNA-adduct formation and cytotoxicity of platinum-containing drugs by low pH. Int J Cancer 1993; 54:166–172.

    Article  PubMed  CAS  Google Scholar 

  11. Endo T, Kimura O, Sakata M. Carrier-mediated uptake of cisplatin by the OK renal epithelial cell line. Toxicology 2000; 146:187–195.

    Article  PubMed  CAS  Google Scholar 

  12. Andrews PA, Mann SC, Huynh HH, Albright KD. Role of the Na+-, K+-ATPase in the accumulation of cis-diammine-dichloroplatinumII in human ovarian carcinoma cells. Cancer Res 1991; 51:3677–3681.

    PubMed  CAS  Google Scholar 

  13. Sarna S, Bhola RK. Chemo-immunotherapeutical studies on Dalton’ s lymphoma in mice using cisplatin and ascorbic acid: synergistic antitumor effect in vivo and in vitro. Arch Immunol Ther Exp 1993; 41:327–333.

    CAS  Google Scholar 

  14. Zhang JG, Zhong LF, Zhang M, et al. Amelioration of cisplatin toxicity in rat renal cortical slices by dithiothreitol in vitro. Hum Exp Toxicol 1994; 13:89–93.

    Article  PubMed  CAS  Google Scholar 

  15. Aggarwal SK, Niroomand-Rad I. Effect of cisplatin on the plasma membrane phosphatase activities in ascites sarcoma-180 cells: a cytochemical study. J Histochem Cytochem 1983;31:307–317.

    PubMed  CAS  Google Scholar 

  16. Torigoe T, Izumi H, Ishiguchi H, et al. Enhanced expression of the human vacuolarH+-ATPase c subunit gene (ATP6L) in response to anticancer agents. J Biol Chem 2002; 277:36, 534–36,543.

    Google Scholar 

  17. Mann SC, Andrews PA, Howell SB. Short-term cis-diamminedichloroplatinum (II) accumulation in sensitive and resistant human ovarian carcinoma cells. Cancer Chemoth Pharm 1990; 25:236–240.

    Article  CAS  Google Scholar 

  18. Schadendorf D, Herfordt R, Czarnetzki BM. P-glycoprotein expression in primary and metastatic malignant melanoma. Br J Dermatol 1995; 132:551–555.

    Article  PubMed  CAS  Google Scholar 

  19. Wada H, Saikawa Y, Niida Y, et al. Selectively induced high MRP gene expression in multidrugresistant human HL60 leukemia cells. Exp Hematol 1999; 27:99–109.

    Article  PubMed  CAS  Google Scholar 

  20. Hiss D, Gabriels G, Jacobs P, Folb P. Tunicamycin potentiates drug cytotoxicity and vincristine retention in multidrug resistant cell lines. Eur J Cancer 1996; 32:2164–2172.

    Article  Google Scholar 

  21. Saito T, Zhang ZJ, Ohtsubo T, et al. Homozygous disruption of the mdrla P-glycoprotein gene affects blood-nerve barrier function in mice administered with neurotoxic drugs. Acta Otolaryngol 2001; 121:735–742.

    Article  PubMed  CAS  Google Scholar 

  22. Chen ZS, Kawabe T, Ono M, et al. Effect of multidrug resistance-reversing agents on transporting activity of human canalicular multispecific organic anion transporter. Mol Pharmacol 1999; 56:1219–1228.

    PubMed  CAS  Google Scholar 

  23. Shen DW, Goldenberg S, Pastan I, Gottesman MM. Decreased accumulation of [14C] carboplatin in human cisplatin-resistant cells results from reduced energy-dependent uptake. J Cell Physiol 2000; 183:108–116.

    Article  PubMed  CAS  Google Scholar 

  24. Borst P, Evers R, Kool M, Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000; 92:1295–1302.

    Article  PubMed  CAS  Google Scholar 

  25. Pu YS, Tsai TC, Cheng AL, et al. Expression of MDR-1 gene in transitional cell carcinoma and its correlation with chemotherapy response. J Urol 1996; 156:271–275.

    Article  PubMed  CAS  Google Scholar 

  26. Schrenk D, Baus PR, Ermel N, Klein C, Vorderstemann B, Kauffmann HM. Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett 2001; 120:51–57.

    Article  PubMed  CAS  Google Scholar 

  27. Naredi P, Heath DD, Enns RE, Howell SB. Cross-resistance between cisplatin, antimony potassium tartrate, and arsenite in human tumor cells. J Clin Invest 1995; 95:1193–1198.

    PubMed  CAS  Google Scholar 

  28. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 1999; 284:805–808.

    Article  PubMed  CAS  Google Scholar 

  29. Solioz M, Vulpe C. CPx-type ATPases: a class of p-type ATPases that pump heavy metals. Trends Biochem Sci 1996; 21:237–241.

    Article  PubMed  CAS  Google Scholar 

  30. Steele RA, Opella SJ. Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry 1997; 36:6885–6895.

    Article  PubMed  CAS  Google Scholar 

  31. Lutsenko S, Petrukhin K, Cooper MJ, Gilliam CT, Kaplan JH. N-terminal domains of human coppertransporting adenosine triphosphatases (the Wilson’s and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal-binding repeat. J Biol Chem 1997; 272:18, 939–18,944.

    Google Scholar 

  32. DiDonato M, Narindrasorasak S, Forbes JR, Cox DW, Sarkar B. Expression, purification, and metal binding properties of the N-terminal domain from the wilson disease putative copper-transporting ATPase (ATP7B). J Biol Chem 1997; 272:33, 279–33,282.

    Google Scholar 

  33. Zhou B, Gitschier J. hCTR1: A human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A 1997; 94:7481–7486.

    Article  PubMed  CAS  Google Scholar 

  34. Kuo YM, Zhou B, Cosco D, Gitschier J. The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci U S A 2001; 98:6836–6841.

    Article  PubMed  CAS  Google Scholar 

  35. Lee J, Prohaska JR, Thiele DJ. Essential role for mammalian copper transporter Ctr1 in copper homeo-stasis and embryonic development. Proc Natl Acad Sci U S A 2001; 98:6842–6847.

    Google Scholar 

  36. Klomp AE, Tops BB, Van Denberg IE, Berger R, Klomp LW. Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem J 2002; 364:497–505.

    Article  PubMed  CAS  Google Scholar 

  37. Eisses JF, Kaplan JH. Molecular characterization of hCTR1, the human copper uptake protein. J Biol Chem 2002; 277:29, 162–29,1671.

    Google Scholar 

  38. Xiao Z, Loughlin F, George GN, Howlett GJ, Wedd AG. C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking. J Am Chem Soc 2004; 126:3081–3090.

    Article  PubMed  CAS  Google Scholar 

  39. Ralle M, Lutsenko S, Blackburn NJ. X-ray absorption spectroscopy of the copper chaperone HAH1 reveals a linear two-coordinate Cu(I) center capable of adduct formation with exogenous thiols and phosphines. J Biol Chem 2003; 278:23, 163–23,170.

    Google Scholar 

  40. Puig S, Thiele DJ. Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 2002; 6:171–180.

    Article  PubMed  CAS  Google Scholar 

  41. Coyle P, Philcox JC, Carey LC, Rofe AM. Metallothionein: the multipurpose protein. Cell Mol Life Sci 2002; 59:627–647.

    Article  PubMed  CAS  Google Scholar 

  42. Suzuki KT, Someya A, Komada Y, Ogra Y. Roles of metallothionein in copper homeostasis: responses to Cu-deficient diets in mice. J Inorg Biochem 2002; 88:173–182.

    Article  PubMed  CAS  Google Scholar 

  43. Kachur AV, Koch CJ, Biaglow JE. Mechanism of copper-catalyzed oxidation of glutathione. Free Radic Res 1998;28:259–269.

    PubMed  CAS  Google Scholar 

  44. Mergeay M. Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol 1991; 9:17–24.

    Article  PubMed  CAS  Google Scholar 

  45. Harada M, Kumemura H, Sakisaka S, et al. Wilson disease protein ATP7B is localized in the late endosomes in a polarized human hepatocyte cell line. Int J Mol Med 2003; 11:293–298.

    PubMed  CAS  Google Scholar 

  46. Petris MJ, Mercer JF, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 1996; 15:6084–6095.

    PubMed  CAS  Google Scholar 

  47. Amaravadi R, Glerum DM, Tzagolof f A. Isolation of a cDN A encoding the human homolog of COX 17, a yeast gene essential for mitochondrial copper recruitment. Hum Genet 1997; 99:329–333.

    Article  PubMed  CAS  Google Scholar 

  48. Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD. The copper chaperone for superoxide dismutase. J Biol Chem 1997; 272:23, 469–23,472.

    Google Scholar 

  49. Hamza I, Faisst A, Prohaska J, Chen J, Gruss P, Gitlin JD. The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proc Natl Acad Sci U S A 2001; 98:6848–6852.

    Article  PubMed  CAS  Google Scholar 

  50. Hamza I, Prohaska J, Gitlin JD. Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci U S A 2003; 100:1215–1220.

    Article  PubMed  CAS  Google Scholar 

  51. Takahashi Y, Kako K, Kashiwabara S, et al. Mammalian copper chaperone Cox17p has an essential role in activation of cytochrome C oxidase and embryonic development. Mol Cell Biol 2002; 22:7614–7621.

    Article  PubMed  CAS  Google Scholar 

  52. Lutsenko S, Petris MJ. Function and regulation of the mammalian copper-transporting ATPases: insights from biochemical and cell biological approaches. J Membr Biol 2003; 191:1–12.

    Article  PubMed  CAS  Google Scholar 

  53. Dijkstra M, In’t Veld G, van den Berg GJ, Muller M, Kuipers F, Vonk RJ. Adenosine triphosphate-dependent copper transport in isolated rat liver plasma membranes. J Clin Invest 1995; 95:412–16.

    Article  PubMed  CAS  Google Scholar 

  54. Bissig KD, Wunderli-Ye H, Duda PW, Solioz M. Structure-function analysis of purified Enterococcus hirae CopB copper ATPase: effect of Menkes/Wilson disease mutation homologues. Biochem J 2001; 357:217–223.

    Article  PubMed  CAS  Google Scholar 

  55. Mercer JF, Llanos RM. Molecular and cellular aspects of copper transport in developing mammals. J Nutr 2003; 133:1481S–1484S.

    PubMed  CAS  Google Scholar 

  56. Brewer GJ. Wilson disease and canine copper toxicosis. Am J Clin Nutr 1998; 67:1087S–1090S.

    PubMed  CAS  Google Scholar 

  57. Shim H, Harris ZL. Genetic defects in copper metabolism. J Nutr 2003; 133:1527S–1531S.

    PubMed  CAS  Google Scholar 

  58. Camakaris J, Petris MJ, Bailey L, et al. Gene amplification of the Menkes (MNK; ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper efflux. Hum Mol Genet 1995; 4:2117–2123.

    Article  PubMed  CAS  Google Scholar 

  59. Schilsky ML, Stockert RJ, Kesner A, et al. Copper resistant human hepatoblastoma mutant cell lines without metallothionein induction overexpress ATP7B. Hepatology 1998; 28:1347–1356.

    Article  PubMed  CAS  Google Scholar 

  60. Cousins RJ. Metallothionein—aspects related to copper and zinc metabolism. J Inherit Metab Dis 1983; 6(Suppl 1):S15–S21.

    Article  Google Scholar 

  61. Tao TY, Liu F, Klomp LW, Wijmenga C, Gitlin JD. The copper toxicosis gene product Murr1 directly interacts with the Wilson Disease protein. 2003; 278:41,593–11,596.

    CAS  Google Scholar 

  62. White AR, Reyes R, Mercer JF, et al. Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res 1999; 842:439–144.

    Article  PubMed  CAS  Google Scholar 

  63. Bayer TA, Schafer S, Simons A, et al. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Aβ production in APP23 transgenic mice. Proc Natl Acad Sci U S A 2003; 100:14, 187–14,192.

    Google Scholar 

  64. Katano K, Kondo A, Safaei R, et al. Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper. Cancer Res 2002; 62:6559–6565.

    PubMed  CAS  Google Scholar 

  65. Safaei R, Katano K, Samimi G, et al. Cross-resistance to cisplatin in cells with acquired resistance to copper. Cancer Chemother Pharmacol 2004; 53:239–246.

    Article  PubMed  CAS  Google Scholar 

  66. Komatsu M, Sumizawa T, Mutoh M, et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res 2000; 60:1312–1316.

    PubMed  CAS  Google Scholar 

  67. Ishida S, Lee J, Thiele DJ, Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 2002; 99:14, 298–14,302.

    Article  CAS  Google Scholar 

  68. Lin X, Okuda T, Holzer A, Howell SB. The copper transporter CTR1 regulates cisplatin uptake in saccharomyces cerevisiae. Mol Pharmacol 2002; 62:1154–1159.

    Article  PubMed  CAS  Google Scholar 

  69. Holzer AK, Katano K, Klomp LW, Howell SB. Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells. Clin Cancer Res 2004; 10:6744–6749.

    Article  PubMed  CAS  Google Scholar 

  70. Holzer AK, Samimi G, Katano K, et al. The copper influx transporter human copper transport protein 1 regulates the uptake of cisplatin in human ovarian carcinoma cells. Mol Pharmacol 2004; 66:817–823.

    Article  PubMed  CAS  Google Scholar 

  71. Samimi G, Katano K, Holzer AK, Safaei R, Howell SB. Modulation of the cellular pharmacology of cisplatin and its analogs by the copper exporters ATP7A and ATP7B. Mol Pharmacol 2004; 66:25–32.

    Article  PubMed  CAS  Google Scholar 

  72. Samimi G, Safaei R, Katano K, et al. Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin and oxaliplatin in ovarian cancer cells. Clin Cancer Res 2004; 10:4661–1669.

    Article  PubMed  CAS  Google Scholar 

  73. Safaei R, Samimi G, Holzer AK, et al. Intracellular localization and trafficking of fluorescein-labeled cisplatin in human ovarian carcinoma cells. Clin Cancer Res 2005; 11(Pt 1):756–767.

    PubMed  CAS  Google Scholar 

  74. Samimi G, Varki NM, Wilczynski S, Safaei R, Alberts DS, Howell SB. Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clin Cancer Res 2003; 9:5853–5859.

    PubMed  CAS  Google Scholar 

  75. Katano K, Safaei R, Samimi G, Holzer A, Rochdi M, Howell SB. The copper export pump ATP7B modulates the cellular pharmacology of carboplatin in ovarian carcinoma cells. Mol Pharmacol 2003; 64:466–173.

    Article  PubMed  CAS  Google Scholar 

  76. Kanzaki A, Toi M, Neamati N, et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) is expressed in human breast carcinoma. Jpn J Cancer Res 2002; 93:70–77.

    PubMed  CAS  Google Scholar 

  77. Nakayama K, Kanzaki A, Ogawa K, Miyazaki K, Neamati N, Takebayashi Y. Copper-transporting P-type adenosine triphophatase (ATP7B) as a cisplatin-based chemoresistance marker in ovarian carcinoma: comparative analysis with expression of MDR1, MRP, LRP and BCRP. Int J Cancer 2002; 101:488–195.

    Article  PubMed  CAS  Google Scholar 

  78. Solioz M, Odermatt A, Krapf R. Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett 1994; 346:44–47.

    Article  PubMed  CAS  Google Scholar 

  79. Nechay BR, Neldon SL. Characteristics of inhibition of human renal adenosine triphosphatases by cisplatin and chloroplatinic acid. Cancer Treat Rep 1984; 68:1135–1141.

    PubMed  CAS  Google Scholar 

  80. Schilder RJ, Hall L, Monks A, et al. Metallothionein gene expression and resistance to cisplatin in human ovarian cancer. Int J Cancer 1990; 45:416–122.

    Article  PubMed  CAS  Google Scholar 

  81. Naredi P, Heath DD, Enns RE, Howell SB. Cross-resistance between cisplatin and antimony in a human ovarian carcinoma cell line. Cancer Res 1994; 54:6464–6468.

    PubMed  CAS  Google Scholar 

  82. Mellish KJ, Kelland LR. Mechanisms of acquired resistance to the orally active platinum-based anticancer drug bis-acetato-ammine-dichloro-cyclohexylamine platinum (i.v.) (JM216) in two human ovarian carcinoma cell lines. Cancer Res 1994; 54:6194–6200.

    PubMed  CAS  Google Scholar 

  83. Lee KB, Parker RJ, Reed E. Effect of cadmium on human ovarian cancer cells with acquired cisplatin resistance. Cancer Lett 1995; 88:57–66.

    Article  PubMed  CAS  Google Scholar 

  84. Singh S V, Xu BH, Jani JP, et al. Mechanism of cross-resistance to cisplatin in a mitomycin C-resistant human bladder cancer cell line. Int J Cancer 1995; 61:431–36.

    Article  PubMed  CAS  Google Scholar 

  85. Nicholson DL, Purser SM, Maier RH. Differential cytotoxicity of trace metals in cisplatin-sensitive and-resistant human ovarian cancer cells. Biometals 1998; 11:259–263.

    Article  PubMed  CAS  Google Scholar 

  86. Chen ZS, Mutoh M, Sumizawa T, et al. An active efflux system for heavy metals in cisplatin-resistant human KB carcinoma cells. Exp Cell Res 1998; 240:312–320.

    Article  PubMed  CAS  Google Scholar 

  87. Shen D-W, Pastan I, Gottesman MM. Cross-resistance to methotrexate and metals in human cisplatinresistant cell lines results from a pleiotropic defect in accumulation of these compounds associated with reduced plasma membrane binding proteins. Cancer Res 1998; 58:268–275.

    PubMed  CAS  Google Scholar 

  88. Yanagiya T, Imura N, Kondo Y, Himeno S. Reduced uptake and enhanced release of cadmium in cadmium-resistant metallothionein null fibroblasts. Life Sci 1999; 65:PL177–PL182.

    Article  PubMed  CAS  Google Scholar 

  89. Coronnello M, Marcon G, Carotti S, et al. Cytotoxicity, DNA damage, and cell cycle perturbations induced by two representative gold(III) complexes in human leukemic cells with different cisplatin sensitivity. Oncol Res 2000; 12:361–370.

    PubMed  CAS  Google Scholar 

  90. Romach EH, Zhao CQ, Del Razo LM, Cebrian ME, Waalkes MP. Studies on the mechanisms of arsenicinduced self tolerance developed in liver epithelial cells through continuous low-level arsenite exposure. Toxicol Sci 2000; 54:500–508.

    Article  PubMed  CAS  Google Scholar 

  91. Higashimoto M, Kanzaki A, Shimakawa T, et al. Expression of copper-transporting P-type adenosine triphosphatase in human esophageal carcinoma. Int J Mol Med 2003; 11:337–341.

    PubMed  CAS  Google Scholar 

  92. Miyashita H, Nitta Y, Mori S, et al. Expression of copper-transporting P-type adenosine triphosphatase (ATP7B) as a chemoresistance marker in human oral squamous cell carcinoma treated with cisplatin. Oral Oncol 2003; 39:157–162.

    Article  PubMed  CAS  Google Scholar 

  93. Ohbu M, Ogawa K, Konno S, et al. Copper-transporting P-type adenosine triphosphatase (ATP7B) is expressed in human gastric carcinoma. Cancer Lett 2003; 189:33–38.

    Article  PubMed  CAS  Google Scholar 

  94. Sugeno H, Takebayashi Y, Higashimoto M, et al. Expression of copper-transporting P-type adenosine triphosphatase (ATP7B) in human hepatocellular carcinoma. Anticancer Res 2004; 24:1045–1048.

    PubMed  CAS  Google Scholar 

  95. Nakayama K, Kanzaki A, Terada K, et al. Prognostic value of the Cu-transporting ATPase in ovarian carcinoma patients receiving cisplatin-based chemotherapy. Clin Cancer Res 2004; 10:2804–2811.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Safaei, R., Howell, S.B. (2006). Regulation of the Cellular Pharmacology and Cytotoxicity of Cisplatin by Copper Transporters. In: Teicher, B.A. (eds) Cancer Drug Resistance. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-59745-035-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-035-5_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-530-9

  • Online ISBN: 978-1-59745-035-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics