Adsorptive Bubble Separation and Dispersed Air Flotation

  • Lawrence K. Wang
Part of the Handbook of Environmental Engineering book series (HEE, volume 4)

Abstract

Adsorptive bubble separation process is a very effective technology for solid-liquid separation that has been in use outside the environmental engineering field for more than 60 years. Originally applied in the field of mining engineering, the process now provides the means for separation and/or concentration of 95% of the world’s base metals and other mineral compounds(1,2). Recently,the adsorptive bubble separation process has become increasingly important in such diverse applications as (a)the separation of algae,seeds,or bacteria from biological reactors,(b)removal of ink from re-pulped.

Keywords

Sequencing Batch Reactor Foam Fractionation Froth Flotation Froth Flow Foam Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. K. Wang, Theory and Applications of Flotation Process. Lenox Institute of Water Technology (formerly Lenox Institute for Research), Lenox, MA. Technical Report No. LIR/l1-85/l58, 1985. U.S. Department of Commerce, National Information Service, Springfield, VA. NTIS-PB86-194198/AS. 1985.Google Scholar
  2. 2.
    L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.). Physicochemical Treatment Processes. The Humana Press, Totowa, NJ, 2005.Google Scholar
  3. 3.
    L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.). Biosolids Treatment Processes. The Humana Press, Totowa, NJ, 2006.Google Scholar
  4. 4.
    L. K. Wang, N. K. Shammas, and Y. T. Hung (eds.). Advanced Biological Treatment Processes. The Humana Press, Totowa, NJ, 2006.Google Scholar
  5. 5.
    M. Krofta and L. K. Wang, Potable Water treatment by dissolved air flotation and filtration, J. Am. Water Works Assc. 74, 304–310 (1982).Google Scholar
  6. 6.
    M. Krofta and L. K. Wang, Application of dissolved air flotation to the Lenox Massachusetts Water Supply: water purification by flotation, J. N. Engl. Water Works Assc. 249–264 (1985).Google Scholar
  7. 7.
    M. Krofta and L. K. Wang, Application of dissolved air flotation to the Lenox Massachusetts Water Supply: sludge thickening by flotation or lagoon, J. N. Engl. Water Works Assc. 265–284 (1985).Google Scholar
  8. 8.
    M. Krofta, L. K. Wang, L. L. Spencer, and J. Weber, Separation of algae from lake water by dissolved air flotation and sand filtration, Proceedings of the Water Quality and Public Health Conference, Worcester Polytechnic Institute, Worcester, MA, USA, pp. 103–110, 1983 (NTIS-PB83-219550).Google Scholar
  9. 9.
    L.K. Wang and P. J. Koldziej, Removal of trihalomethane precursors and coliform bacteria by Lenox Flotation-Filtration Plant, Proceedings of the Water Quality and Public Health Conference, Worcester Polytechnic Institute, Worcester, MA, USA, pp. 17–29, 1983 (NTIS-PB83-244053).Google Scholar
  10. 10.
    L. K. Wang, Investigation and design of a denitrification filter, Civil Engineering for Practicing and Design Engineers, Vol.3, pp. 347–362, 1984 (NTIS-PB82-199803).Google Scholar
  11. 11.
    M. Krofta and L. K. Wang, Development of innovative Sandfloat systems for water purification and pollution control, ASPE J. Eng. Plumbing, 1–16, (1984) (Recipient of 1982 Pollution Engineering Five Star Award) (NTIS-PB83-107961).Google Scholar
  12. 12.
    M. Krofta and L. K. Wang, Tertiary treatment of secondary effluent by dissolved air flotation and filtration, Civil Engineering for Practicing and Design Engineers, Vol. 3, pp. 253–272, 1984 (NTIS-PB83-17l165).Google Scholar
  13. 13.
    M. Krofta and L. K. Wang, Wastewater treatment by biological-physicochemical two-stage process system, Proceedings of the 41st Industrial Waste Conference, Lewis Publishers Inc., Chelsea, MI, 1986, pp. 67–72.Google Scholar
  14. 14.
    M. Krofta and L. K. Wang, Flotation technology and secondary clarification, Technical Association of the Pulp and Paper Industry Journal (TAPPI J.), 70, 92–96 (1987).Google Scholar
  15. 15.
    M. Krofta, D. Guss, and L. K. Wang, Development of Low Cost Flotation Technology and Systems for Wastewater Treatment. Proceedings of the 42nd Industrial Waste Conference, Purdue University, W. Lafayette, IN, USA, May, 1987.Google Scholar
  16. 16.
    M. Krofta and L. K. Wang, Development of a total closed water system for a deinking plant, Proceedings of the American Water Works Association Water Reuse Symposium III, San Diego, CA, Vol. 2, pp. 881–898, August, 1984.Google Scholar
  17. 17.
    M. Krofta and L. K. Wang, Total Closing of Paper Mills with Reclamation and Deinking Installations. Proceedings of the 43rd Annual Purdue Industrial Waste Conference, Purdue University, IN.Google Scholar
  18. 18.
    M. Krofta and L. K. Wang, Potable Water Pretreatment for Turbidity and Color Removal by Dissolved Air Flotation and Filtration for the Town of Lenox, Massachusetts, U.S. Dept. of Commerce, National Technical Information Service, Springfield, VA., Report No. PB82-182064, 48 p., Oct. 1981.Google Scholar
  19. 20.
    K. Ng, L Gutierroz, and C. Walden, Detoxification of kraft pulp mill effluents by foam separation, Pulp & Paper Canada, 80, 87–92 (1979).Google Scholar
  20. 21.
    J. H. Voith, The injector cell-a low energy flotation machine, TAPPI J. 73–76 (1982).Google Scholar
  21. 22.
    L.R. Van Vuuren, Dispersed air flocculation flotation for stripping of organic pollutants from effluents, Water Res. 2, 177–183 (1968).CrossRefGoogle Scholar
  22. 23.
    L. K. Wang, M. H. S. Wang, S. Yaksich, and M. L. Granstrom, Water treatment with multiphase flow reactor and cationic surfactants, J. Am. Water Works Assc. 70, 522–528 (1978).Google Scholar
  23. 24.
    V. Kondratazicius, Removal of synthetic surface-active agents from waste waters of tanneries, Kozk. Obur. Prom. (USSR) 11, 18–18 (1969).Google Scholar
  24. 25.
    M. Krofta and L. K. Wang, Wastewater treatment by biological-physicochemical two-stage process system: recent developments, Proceedings of the 41st Annual Purdue Industrial Waste Conference, Purdue University, W. Lafayette, Indiana USA, May 13–16, 1986.Google Scholar
  25. 26.
    M. Krofta and L. K. Wang, Development of innovative flotation-filtration systems for water treatment, part C: an electroflotation plant for single families and institutions, Proceedings of the American Water Works Association Water Reuse Symposium III, San Diego, CA, Vol. 3, pp. 1251–1264, August, 1984.Google Scholar
  26. 27.
    F. Barrett, The electroflotation of organic wastes, Chemistry and Industry, 880–882 (1976).Google Scholar
  27. 28.
    D. Rogers, Deep tank aeration/flotation clarification adds a new treatment dimension, Industrial Wastes 10–17 (1983).Google Scholar
  28. 29.
    P.E. Wace, Foam Separation Process Design, Chemical Engineering Progress Symposium Series, 65(91), 18–19 (1969).Google Scholar
  29. 30.
    R.B. Greives, Foam separations for industrial wastes: process selection, Proceedings of the 25th Industrial Waste Conference, Purdue University, IN, pp. 398–405 (1970).Google Scholar
  30. 31.
    N. London, et al, Fractionation of an enzyme by foaming, Notes, Vol. 75, p. 1746 (April 5, 1953).Google Scholar
  31. 32.
    S.E. Charm, The separation and purification of enzymes through foaming, Anal. Biochem. 15, 498–508 (1966).CrossRefGoogle Scholar
  32. 33.
    R.W. Schnepf and E.L. Gaden Jr., Foam fractionation of proteins: concentration of aqueous solutions of bovine serum albumin, J. Biochem. Microbiol. Tech. Enginr. 1(1), 1–8 (1959).CrossRefGoogle Scholar
  33. 34.
    C.T. Wallace and D.F. Wilson, Foam Separation as a Tool in Chemical Oceanography, Naval Research Laboratory Report 6958, 20 pages (Nov. 1969).Google Scholar
  34. 35.
    V. Kevorkian and E.L. Gaden Jr., Froth-frothate concentration relations in foam fractionation, J. Am. Inst.for Chem. Engineers 3, 180 (1957).Google Scholar
  35. 36.
    L. C. Hargis and L. B. Rogers, Enrichment and fractionation by foaming, Separation Science, 4(2), 119–127 (1969).CrossRefGoogle Scholar
  36. 37.
    R. K. Wood and T. Tran, Surface adsorption and the effect of column diameter in the continuous foam separation process, The Canad. J. Chem. Engineer. 322–326 (1966).Google Scholar
  37. 38.
    I. Sheiham and T. A. Pinfold, Some parameters affecting the flotation of cationic surfactants, Separation Science 7(1), 25–41 (1972).CrossRefGoogle Scholar
  38. 39.
    C. I. Harding, Foam Fractionation in Kraft Black Liquor Oxidation, Ph.D. Thesis, University of Florida, Gainesville, FL (1963).Google Scholar
  39. 40.
    Georgia Kraft Company, Foam Separation of Kraft Pulping Wastes, Water Pollution Control Research Series, DAST-3, U.S. Department of the Interior, Federal Water Pollution Control Administration (1969).Google Scholar
  40. 41.
    D. T. Michelsen, Treatment of Dyeing Bath Waste Streams by Foaming and Flotation Techniques, Project Report of Water Resources Research Center, Virginia Polytechnic Institute and State University, Virginia, December, 1970.Google Scholar
  41. 42.
    B. Karger, II, R. B. Grieves, R. Lemlich, A. J. Rubin, and F. Sebba, Nomenclature recommendations for adsorptive bubble separation methods, Separation Science 2, 401 (1967).CrossRefGoogle Scholar
  42. 43.
    M. H. S. Wang, Separation of Lignin from Aqueous Solution by Adsorptive Bubble Separation Processes, Ph.D. Thesis, Rutgers University, New Brunswick, NJ, 1972.Google Scholar
  43. 44.
    M. H. S. Wang, M. L. Granstrom, T. E. Wilson, and L. K. Wang, Removal of lignin from water by precipitate flotation, Proceedings of American Society of Civil Engineers, Journal of Environmental Engineering Division, 100(EE3), 629–640, June 1974.Google Scholar
  44. 45.
    L. J. King, Pilot Plant Studies of the Decontamination of Low Level Process Waste by a Scavenging Precipitation Foam Separation Process, U.S. Atomic Energy Commission, ORNL-3808, 57 pages, 1968.Google Scholar
  45. 46.
    B. H. Davis, and F. Sebba, The removal of radioactive caesium contaminants from simple aqueous solutions, J. Appl. Chem. 17, 40–43 (1967).Google Scholar
  46. 47.
    E. J. Hahne and T. A. Pinfold, Precipitate flotation: flotation of silver, uranium and gold, J. Appl.Chem. 19, 57–59 (1969).Google Scholar
  47. 48.
    J. A. Lusher and F. Sebba, Separation of aluminum from beryllium in aqueous solutions by precipitate flotation, J. Appl. Chem. 16, 129–132 (1966).Google Scholar
  48. 49.
    A. J. Rubin and J. D. Johnson, Effect of pH on ion and precipitate flotation systems, Anal. Chem. 39, 298–302 (1967).CrossRefGoogle Scholar
  49. 50.
    E. J. Mahne and P. A. Pinfold, Precipitate flotation: separation of palladium from platinum, gold, silver, iron, cobalt and nickel, J. Appl. Chem. 18, 140–142 (1968).CrossRefGoogle Scholar
  50. 51.
    R. B. Grieves and D. Bhattacharyya, Foam separation of cyanide complexed by iron, Separation Science, 3(2), 185–202 (1968).CrossRefGoogle Scholar
  51. 52.
    D. Bhattacharyya, Foam Separation Processes, Ph.D.Thesis, Illinois Institute of Technology, IL, 1966.Google Scholar
  52. 53.
    R. E. Wilson and M. H. S. Wang, Removal of lignin by foam separation processes, Proceedings of the 25th Industrial Waste Conference, Purdue University, IN, pp.731–738 1970.Google Scholar
  53. 54.
    M. H. S. Wang, M. L. Granstrom, T. E. Wilson, and L. K. Wang, Lignin separation by continuous ion flotation: investigation of physical operational parameters, Water Resources Bulletin, 10(2), 283–294 (1974).Google Scholar
  54. 55.
    B. Karger and B. Rogers, Foam fractionation of organic compounds Separation Science 33(9), 1165–1169(1961).Google Scholar
  55. 56.
    B. L. Karger, Foam fractionation under total reflux. Separation Science 38(6), 764–767 (1966).Google Scholar
  56. 57.
    R. B. Grieves, Optimization of the ion flotation of dichromate, Journal of the Sanitary Engineering Division, Proceedings of the American Society of Civil Engineers, p. 515, June 1969.Google Scholar
  57. 58.
    R. B. Grieves, Continuous dissolved air ion flotation of hexavalent chromium, J. Am. Insti. Chem. Engineers 13(6), 1167–1170 (1967).Google Scholar
  58. 59.
    B. L. Karger and D. G. DeVivo, General survey of adsorptive bubble separation processes, Separation Science, 3(5), 393–424 (1968).CrossRefGoogle Scholar
  59. 60.
    A. J. Rubin, Microflotation of bacteria, Proceedings Southern Water Resources and Pollution Control Conference, 14, 222 (1965).Google Scholar
  60. 61.
    A. A. Rubin, Microflotation: new low gas flow-rate foam separation technique for bacteria and algae, Biotechnol.Bioeng. 8, 135 (1966).CrossRefGoogle Scholar
  61. 62.
    A. J. Rubin, Microflotation: coagulation and foam of separation of aerobatic aerogenes, Biotechnol. Bioeng. 10, 89 (1968).CrossRefGoogle Scholar
  62. 63.
    O. Henderson, The Effect of pH on Algae Flotation, Ph.D. Thesis, Univeristy of North Carolina, Chapel Hill, NC, 1967.Google Scholar
  63. 64.
    B. Dobias and V. Vinter, Flotation of microorganisms, Folia. Microbiology 11, 314 (1966).CrossRefGoogle Scholar
  64. 65.
    E. Cassell and A. J. A. Rubin, Removal of organic colloids by microflotation, Proceedings of the 23rd Industrial Waste Conference, Purdue University, IN, pp. 966–977, 1968.Google Scholar
  65. 66.
    A. N. Dolzhenkova, (USSR), Improved apparatus for microflotation, Obogashch. Rud. 13(3), 52–53 (Russ) (1968).Google Scholar
  66. 67.
    A. P. Pikkat-Ordynskaya, Flotation separation of monomineral fractions of galena, pyrite, chalcopyrite, Sphalerite, quartz and feldspar, Aktsessornye Miner. Izrerzhennykh Porod. 75–77 (Russ) (1968).Google Scholar
  67. 68.
    A. N. Kozhukhovskaya, (USSR), Selective flotation of microlite and rutile, Nauch. No 19, 105–111 (Russ) (1968).Google Scholar
  68. 69.
    L. V. Katashin, Flotation ofPyrochlorefrom Slimes Left After Gravitational Concentration of Rare Metal Carbonatite Ores, Nauch. Tr., Irktsk, Gos. Nauch Is sled. Inst. Redk. Isvet. Metal., No. 19 (1968).Google Scholar
  69. 70.
    N. Onoprienko, Flotation of iron oxides, Izr. Vyssh. Ucheb. laved, Corn. Zh. 12(1), 157 (1969).Google Scholar
  70. 71.
    L. K. Wang, P. Leonard, M. H. S. Wang, and D. W. Goupil. Adsorption of disssolved organics from industrial effluents on to activated carbon, J. Appl.Chem. Biotechnol. 25, 491–502 (1975).CrossRefGoogle Scholar
  71. 72.
    L. K. Wang, Treatment of tannery effluents by surface adsorption, J. Appl. Chem. Biotechnol. 25, 475–490 (1975).Google Scholar
  72. 73.
    L. K. Wang, Evaluation and Development of Physical-Chemical Techniques for the Separation of Emulsified Oil from Water, Report No. 189, Calspan Corporation, Buffalo, NY, 31 pages, May 1973; Selected Water Resources Abstract 6(21), W73-l3642, p. 90, November 1973.Google Scholar
  73. 74.
    Y. S. Kim and H. Zeitlin, The separation of zinc and copper from seawater by adsorption colloid flotation, Separation Science 7(1), 1–12 (1972).Google Scholar
  74. 75.
    L. K. Wang, Environmental Engineering Glossary, Calspan Corporation, Buffalo, New York, 439 pages, 1974.Google Scholar
  75. 76.
    D.O. Harper, Bubble and Foam Fractionation, PhD Thesis, University of Cincinnati, Cincinnati, OH 1967.Google Scholar
  76. 77.
    L. K. Wang, Continuous Bubble Fractionation Process, PhD Thesis, Rutgers University, New Brunswick, NJ, 1972.Google Scholar
  77. 78.
    B. T. Kwon and L. K. Wang, Solute separation by continuous bubble fractionation, Separation Science 6(4), 537-552, 1971. Selected Water Resources Abstracts, 6(21), W73-l3638, p. 89, November 1973.Google Scholar
  78. 79.
    L. K. Wang, Continuous bubble fractionation, Environmental Lett. 3(4), 251–265 (1972), 4(3), 233-252 (1973); 5(2), 71-89 (1973).CrossRefGoogle Scholar
  79. 80.
    B. L. Karger, A. B. Caragay, and S. B. Lee, Studies in solvent sublation: extraction of methyl orange and rhodamine B, Separation Science 2(1), 39–64 (1967).CrossRefGoogle Scholar
  80. 81.
    I. Sheiham and T. A. Pinfold, The solvent sublation of hexadecyl-trimethyl-ammonium chloride, Separation Science 7(1), 43–50 (1972).CrossRefGoogle Scholar
  81. 82.
    APHA, AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington DC, 2005.Google Scholar
  82. 83.
    M. Krofta, L. K. Wang, and H. Boutroy, Development of a New Treatment System Consisting of Adsorption Flotation and Filtration, U.S. Dept. of Commerce, National Technical Information Service, Springfield, VA, Report No.PB85-209401/AS, 28 pages, October, 1984.Google Scholar
  83. 84.
    R. Lemlich, The Adsorptive Bubble Separation Technology, Conference on Traces of Heavy Metals in Water, Princeton University, NJ, Nov. 15–16, 1973.Google Scholar
  84. 85.
    S. Ata and G. J. Jameson, The formation of bubble clusters in flotation cells, Internat. J. Mineral Processing 76(1–2) (2005).CrossRefGoogle Scholar
  85. 86.
    G. L. Chen, D. Tao, H. Ren, F. F. Ji, and J. K. Qiao, An investigation of niobite flotation with octyl diphosphonic acid as collector, Internat. J. Mineral Processing 76(1–2) (2005).CrossRefGoogle Scholar
  86. 87.
    D. Fornasiero and J. Ralston, Cu(II) and Ni(II) activation in the flotation of quartz, lizardite and chlorite, Internat. J. Mineral Processing 76(1–2) (2005).CrossRefGoogle Scholar
  87. 88.
    T. N. Khmeleva, W. Skinner, and D. A. Beattie, Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite, Internat. J. Mineral Processing 76(1–2) (2005).CrossRefGoogle Scholar
  88. 89.
    J. Y. Zhu, F. Tan, K. L. Scallon, Y. L. Zhao, and Y. Deng, Deinking selectivity (Z-factor): a new parameter to evaluate the performance of flotation de-inking process, Separation and Purification Technology, 43(1) (2005).CrossRefGoogle Scholar
  89. 90.
    O. D. Chuk, V. Ciribeni, and L. V. Gutierrez, Froth collapse in column flotation: a prevention method using froth density estimation and fuzzy expert systems, Minerals Engineering 18(5) (2005).CrossRefGoogle Scholar
  90. 91.
    J. B. Yianatos, L. G. Bergh, F. Diaz, and J. Rodriguez, Mixing characteristics of industrial flotation equipment,Chem. Engir. Sci. 60(8–9) (2005).Google Scholar
  91. 92.
    S. V. C. Bravo, M. L. Torem, M. B. M. Monte, A. J. B. Dutra, and L. A. Tondo, The influence of particle size and collector on the flotation of a very low grade auriferous ore, Minerals Engineering, 18(4) (2005).CrossRefGoogle Scholar
  92. 93.
    U. Ulusoy and M. Yekeler,Correlation of the surface roughness of some industrial minerals with their wettability parameters, Chemical Engineering &Processing 44(5) (2005).Google Scholar
  93. 94.
    G. Onal, G. Bulut, A Gul, O. Kangal, K. T. Perek, and F. Arslan, Flotation of Aladag oxide lead-zinc ores, Minerals Engineering, 18(2) (2005).CrossRefGoogle Scholar
  94. 95.
    C. A. Pereira and A. E. C. Peres, Reagents in calamine zinc ores flotation, Minerals Engineering 18(2) (2005).CrossRefGoogle Scholar
  95. 96.
    D. Lascelles and J. A. Finch, A technique for quantification of adsorbed collectors: xanthate, Minerals Engineering, 18(2) (2005)CrossRefGoogle Scholar
  96. 97.
    S. Gelinas and J. A. Finch, Colorimetric determination of common industrial frothers, Minerals Engineering 18(2) (2005).CrossRefGoogle Scholar
  97. 98.
    R. D. Pascoe, The use of selective depressants for the separation of ABS and HIPS by froth flotation, Minerals Engineering 18(2) (2005).CrossRefGoogle Scholar
  98. 99.
    D. J. Bradshaw, B. Oostendorp, and P. J. Harris, Development of methodologies to improve the assessment of reagent behaviour in flotation with particular reference to collectors and depressants, Minerals Engineering 18(2) (2005)CrossRefGoogle Scholar
  99. 100.
    B. Y. Medina, M. L. Torem, and L. M. S. de Mesquita, On the kinetics of precipitate flotation of Cr III using sodium dodecylsulfate and ethanol, Minerals Engineering 18(2) (2005).CrossRefGoogle Scholar
  100. 101.
    A. C. Araujo, P. R. M. Viana, and A. E. C. Peres, Reagents in iron ores flotation, Minerals Engineering 18(2) (2005).CrossRefGoogle Scholar
  101. 102.
    R. M. F. Lima, P. R. G. Brandao, and A. E. C. Peres, The infrared spectra of amine collectors used in the flotation of iron ores, Minerals Engineering 18(2) (2005).CrossRefGoogle Scholar
  102. 103.
    F. Rashchi, A. Dashti, M. Arabpour-Yazdi, and H. Abdizadeh, Anglesite flotation: a study for lead recovery from zinc leach residue, Minerals Engineering 18(2) (2005).CrossRefGoogle Scholar
  103. 104.
    R. C. Guimaraes, A. C. Araujo, and A. E. C. Peres, Reagents in igneous phosphate ores flotation, Minerals Engineering 18(2) (2005).CrossRefGoogle Scholar
  104. 105.
    J. Wiese, P. Harris, and D. Bradshaw, The influence of the reagent suite on the flotation of ores from the Merensky reef, Minerals Engineering 18(2) (2005).Google Scholar
  105. 106.
    K. Hadler, Z. Aktas, and J. J. Cilliers, The effects of frother and collector distribution on flotation performance, Minerals Engineering 18(2) (2005).CrossRefGoogle Scholar
  106. 107.
    S. N. Tan, R. J. Pugh, D. Fornasiero, R. Sedev, and J. Ralston, Foaming of polypropylene glycols and glycol/MIBC mixtures, Minerals Engineering 18(2) (2005).Google Scholar
  107. 108.
    P. K. Naik, Flotation of carbon values from blast furnace flue dust using statistical design, CIM Bulletin, 98 (1085) (2005).Google Scholar
  108. 109.
    K. E. Bremmell, D. Fornasiero, and J. Ralston, Pentlandite-lizardite interactions and implications for their separation by flotation, Colloids and Surfaces-Physicochemical and Engineering Aspects, 252(2–3) (2005).Google Scholar
  109. 110.
    C. Hicyilmaz, U. Ulusoy, S. Bilgen, and M. Yekeler, Flotation responses to the morphological properties of particles measured with three-dimensional approach, Internat. J. Mineral Processing 75(3–4) (2005).Google Scholar
  110. 111.
    T. Guler, C. Hicyilmaz, G. Gokagac, and Z. Ekmekci, Electrochemical behaviour of chalcopyrite in the absence and presence of dithiophosphate., Internat. J. Mineral Processing 75(3–4) (2005).Google Scholar
  111. 112.
    M. N. Chandraprabha, K. A. Natarajan, and P. Somasundaran, Selective separation of pyrite from chalcopyrite and arsenopyrite by biomodulation using Acidithiobacillus fer-rooxidans, Internat. J. Mineral Processing 75(1–2) (2005).Google Scholar
  112. 113.
    W. Wang, Z. Zhou, K. Nandakumar, J. H. Masliyah, and Z. Xu, An induction time model for the attachment of an air bubble to a hydrophobic sphere in aqueous solutions, Internat. J. Mineral Processing 75(1–2) (2005).CrossRefGoogle Scholar
  113. 114.
    P. K. Naik, P. S. R. Reddy, and V. N. Misra, Interpretation of interaction effects and optimiza-tion of reagent dosages for fine coal flotation, Internat. J. Mineral Processing 75(1–2) (2005).CrossRefGoogle Scholar
  114. 115.
    O. Kangal, A. A. Sirkeci, and A. Guney, Flotation behaviour of huntite (Mg3Ca(CO3)4) with anionic collectors, Internat. J. Mineral Processing 75(1–2) (2005).CrossRefGoogle Scholar
  115. 116.
    H. Alter, The recovery of plastics from waste with reference to froth flotation, Resources, Conservation and Recycling, 43(2) (2005).Google Scholar
  116. 117.
    M. Krofta and L. K. Wang, Sludge thickening and dewatering by dissolved air flotation: FloatpressTM, Drying, Vol. 2, pp. 765–771, Hemisphere Publishing Corp., Harper & Row Publishers, NY, 1986.Google Scholar
  117. 118.
    M. Krofta and L. K. Wang, Sludge thickening and dewatering by dissolved air flotation: process design, Drying, Vol. 2, pp. 772–780, Hemisphere Publishing Corp., Harper & Row Publishers, NY, 1986.Google Scholar
  118. 119.
    M. Krofta and L. K. Wang, Winter Operation of the First United States Flotation Installation-Water Treatment Plants City of Pittsfield, Massachusetts, Lenox Institute of Water Technology, Lenox, MA. Technical Report No. LIR/06-87/257, 20 pages, June 15,1987.Google Scholar
  119. 120.
    B. J. Hernlem, L. S. Tsai, C. Huxsoll, and G. Robertson, Combined electroflotation and disinfection in food processing. Process Chemistry and Engineering. U. S. Department of Agricluture, ARS, WRRC, Albany, CA, 1988.Google Scholar
  120. 121.
    G. Chen and P. L. Yue, Electrocoagulation and electroflotation of restaurant wastewater. J. Environ. Enginr. 126(9) 858–863 (2000).CrossRefGoogle Scholar
  121. 122.
    M. Y. Ibrahim, R. R. Mostafa, M. F. M. Fahmy, and A. I. Hafez, Utilization of electroflotation in remediation of oily wastewater. Separation Science and Technology, 36(16) (2001).CrossRefGoogle Scholar
  122. 123.
    L. K. Wang, J. V. Krouzek, and U. Kounitson, Case Studies of Cleaner Production and Site Remediation. Manual No. DTT-5-4-95. United Nations Industrial Development Organization (UNIDO), Vienna, Austra. 134 pages. April 1995.Google Scholar
  123. 124.
    H. A. Dawson, Flotation process used for calcium carbonate recovery from water treatment sludges. Water Treatment Plant Design. Ann Arbor Science, MI, 1979, pp. 105–124.Google Scholar
  124. 125.
    L. K. Wang, L. Kurylko, and M. H. S. Wang, Sequencing Batch Liquid Treatment. US Patent No. 5354458. U.S. Patent and Trademark Office, Washington, DC, 1994.Google Scholar
  125. 126.
    L. K. Wang, P. Wang, and N. Clesceri, Groundwater decontamination using sequencing batch process. Water Treatment 10(2), 121–134 (1995).Google Scholar
  126. 127.
    L. K. Wang, Neutralization effect of anionic and cationic surfactants. J. New Engl. Water Works Assoc. 90(4), 354–359 (1976).Google Scholar
  127. 128.
    L. K. Wang, Cationic Surfactant Determination Using Alternate Organic Solvent, PB86-194164/AS. US Department of Commerce, National Technical Information Service, Springfield, VA, 1986.Google Scholar
  128. 129.
    L. K. Wang, The Effects of Cationic Surfactant Concentration on Bubble Dynamics in a Bubble Franctionation Column. PB86-197845/AS. US Department of Commerce, National Technical Information Service, Springfield, VA, 1986.Google Scholar
  129. 130.
    L. K. Wang, A proposed method for the analysis of anionic surfactants. J. New Engl. Water Works Assoc. 67(1), 6–8 (1975).Google Scholar
  130. 131.
    L. K. Wang, Modified methylene blue method for estimating the MBAS concentration. J. Am. Water Works Assoc. 67(1), 19–21 (1975).Google Scholar
  131. 132.
    L. K. Wang, Analysis of LAS, ABS and commercial detergents by two phase titration. Water Research Bulletin 11(2), 267–277 (1975).Google Scholar
  132. 133.
    L. K. Wang, Evaluation of two methylene blue methods for analyzing MBAS concentrations in aqueous solutions. J. Am. Water Works Assoc. 67(4), 182–184 (1975).Google Scholar
  133. 134.
    L. K. Wang, Determination of anionic surfactants with Azure A and quaternary ammonium salt. Anal. Chem. 47(8), 1472–1475 (1975).CrossRefGoogle Scholar
  134. 135.
    L. K. Wang, Determining cationic surfactant concentration. Indust. Engng. Chem. Prod. Res. Devel. 13(3), 210–212 (1975).CrossRefGoogle Scholar
  135. 136.
    L. K. Wang, A test method for analyzing either anionic or cationic surfactants in industrial water. J. Am. Oil Chemists Soc. 52(9), 340–346 (1975).Google Scholar
  136. 137.
    L. K. Wang, Rapid colorimetric analysis of cationic and anionic surfactants. J. New Engl. Water Works Assoc. 89(4), 301–314 (1975).Google Scholar
  137. 138.
    L. K. Wang, Direct two-phase titration method for analyzing anionic nonsoap surfactants in fresh and saline waters. J. Environ. Health 38, 159–163 (1975).Google Scholar
  138. 139.
    L. K. Wang, Analyzing cetyldimethylbenzylammonium chloride by using ultraviolet absorbance. Indus. Engng Chem. Prod. Res. Devel. 15(1), 68–70 (1976).CrossRefGoogle Scholar
  139. 140.
    L. K. Wang, Role of polyelectrolytes in the filtration of colloidal particles from water and wastewater. Separ. Purif. Meth. 6(1), 153–187 (1977).CrossRefGoogle Scholar
  140. 141.
    L. K. Wang, Application and determination of organic polymers. Water, Air Soil Poll. 9, 337–348 (1978).Google Scholar
  141. 142.
    L. K. Wang, Application and determination of anionic surfactants. Indus. Engng Chem. 17(3), 186–195 (1978).CrossRefGoogle Scholar
  142. 143.
    L. K. Wang, Selected Topics on Water Quality Analysis, PB87-174066. US Department of Commerce, National Technical Information Service, Springfield, VA, 1982; 189 p.Google Scholar
  143. 144.
    L. K. Wang, Rapid and Accurate Determination of Oil and Grease by Spectrophotometric Methods, PB83-180760. US Department of Commerce, National Technical Information Service, Springfield, VA, 1983; 31 p.Google Scholar
  144. 145.
    L. K. Wang, A New Spectrophotometric Method for Determination of Dissolved Proteins in Low Concentration Range, PB84-204692. US Department of Commerce, National Technical Information Service, Springfield, VA, 1983; 12 p.Google Scholar
  145. 146.
    L. K. Wang, E. DeMichele, and M. H. S. Wang, Simplified Laboratory Procedures for DO Determination, PB88-168067/AS. US Department of Commerce, National Technical Information Service, Springfield, VA, 1985; 13 p.Google Scholar
  146. 147.
    L. K. Wang, E. DeMichele, and M. H. S. Wang, Simplified Laboratory Procedures for COD Determination Using Dichromate Reflux Method, PB86-193885/AS. US Department of Commerce, National Technical Information Service, Springfield, VA, 1986; 8 p.Google Scholar
  147. 148.
    L. K. Wang, Recent Advances in Water Quality Analysis, PB88-168406/AS. US Department of Commerce, National Technical Information Service, Springfield, VA, 1986; 100 p.Google Scholar
  148. 149.
    C. Yapijakis and L. K. Wang, Treatment of soap and detergent industry wastes. In: Handbook of Industrial and Hazardous Wastes Treatment (L. K. Wang, Y. T. Hung, H. H. Lo, and C. Yapijakis, eds.) CRC Press/Marcel Dekker, New York, NY, pp. 323–378, 2004.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Lawrence K. Wang
    • 1
  1. 1.Lenox Institute of Water TechnologyLenox

Personalised recommendations