Evaporation Processes

  • Lawrence K. Wang
  • Nazih K. Shammas
  • Clint Williford
  • Wei-Yin Chen
  • Georgios P. Sakellaropoulos
Part of the Handbook of Environmental Engineering book series (HEE, volume 4)

Abstract

Water removal from municipal and industrial effluent streams constitutes an important step in wastewater and sludge treatment. The purpose is to concentrate, separate, dispose, or utilize wastes and pollutants and to regenerate and return clean water to the environment. In this context, the discussion here will be limited only to industrial and municipal sludge dewatering, evaporation, and drying (1, 2, 3, 4, 5).

Keywords

Sludge Dewatering National Technical Information Slow Sand Filter Potable Water Treatment Lagoon Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. P. Sakellaropoulos, Drying and evaporation processes, in Handbook of Environmental Engineering, Vol. 4, L. K. Wang and N. C. Pereira (eds.), Humana Press, Totowa, NJ, 1986, pp. 373–46.Google Scholar
  2. 2.
    US EPA, Process Design Manual for Sludge Treatment and Disposal, EPA-625/1-79-011, US Environmental Protection Agency, Washington, DC, 1979.Google Scholar
  3. 3.
    US EPA, Innovative and Alternating Technology Assessment Manual, 430/9-78-009, US Environmental Protection Agency, Washington, DC, 1980.Google Scholar
  4. 4.
    US EPA, Design Manual: Dewatering Municipal Wastewater Sludges, EPA/625/1-87/014, US Environmental Protection Agency, Washington, DC, 1987.Google Scholar
  5. 5.
    US EPA, Handbook: Septage Treatment and Disposal, EPA-625/6-84-009, US Environmental Protection Agency, Washington, DC, 1984.Google Scholar
  6. 6.
    US EPA, Control of Air Emissions from Superfund Sites, EPA-625/R-92/012, US Environmental Protection Agency, Washington, DC, 1992.Google Scholar
  7. 7.
    A. J. Buonicore and W. T. Davis (eds.), Air Pollution Engineering Manual, Air and Waste Management Association, Van Nostrand Reinhold, New York, 1992.Google Scholar
  8. 8.
    W. L. Badger and J. T. Banchero, Introduction to Chemical Engineering, Chapter 10. McGraw-Hill, New York, 1955.Google Scholar
  9. 9.
    W. L. McCabe and J. C. Smith, Unit Operations of Chemical Engineering, Chapter 25, McGraw-Hill, New York, 1976.Google Scholar
  10. 10.
    J. H. Perry (ed.), Chemical Engineer’s Handbook, McGraw-Hill, New York, 1963.Google Scholar
  11. 11.
    R. D. Leary, Production of vitamin B12 from Milorganite. Proc. of 9th Purdue Industrial Waste Conf., p. 173, 1954.Google Scholar
  12. 12.
    E. B. Besselievre, The Treatment of Industrial Wastes, McGraw-Hill, New York 1969.Google Scholar
  13. 13.
    J. H. Yaminmota, J. F. Schnelle, and J. M. O’Donnell, High nitrogen synthetic fertilizer produced from organic wastes. Public Works 106 (1975).Google Scholar
  14. 14.
    Editor, 2002 Manual: sludge drying. Public Works 133(5), 333, 334 (2002).Google Scholar
  15. 15.
    Editor, 2002-2003 Industrial and municipal wastewater technology buyer’s guide: evaporators. Water Environment Federation 14, 87,88 (2002).Google Scholar
  16. 16.
    Editor, 1999-2000 Buyer’s guide: evaporators. Pollution Engineering 31(11), 40, 41 (1999).Google Scholar
  17. 17.
    Editor, 2002 Buyer’s guide: evaporation equipment. Environmental Protection 13(3), 120, 121 (2002).Google Scholar
  18. 18.
    Editor, 2001 Buyer’s guide: evaporators. Chemical Engineering 107(9), 310–316 (2000).Google Scholar
  19. 19.
    M. Krofta and L. K. Wang, Innovation in the Water Treatment Field and Systems Appropriate and Affordable for Smaller Communities, Report # PB82-201476, US Dept. of Commerce, National Technical Information Service, Springfield, VA, March, 1982.Google Scholar
  20. 20.
    M. Krofta and L. K. Wang, Flotation Plants in U.S.A. for Potable Water Treatment, Report # PB82-220690, US Dept. of Commerce, National Technical Information Service, Springfield, VA, March, 1982.Google Scholar
  21. 21.
    M. Krofta and L. K. Wang, Alternative Water Treatment Systems Using Flotation Technology, Report # PB82-211400, US Dept. of Commerce, National Technical Information Service, Springfield, VA, April, 1982.Google Scholar
  22. 22.
    M. Krofta and L. K. Wang, Potable water treatment by dissolved air flotation and filtration. Journal American Water Works Association 74(6), 304–310 (1992).Google Scholar
  23. 23.
    M. Krofta and L. K. Wang, Startup and Continuous Operation of Lenox Water Treatment Plant, Report # PB85-182616/AS, US Dept. of Commerce, National Technical Information Service, Springfield, VA, June, 1982.Google Scholar
  24. 24.
    M. Krofta and L. K. Wang, Data of Lenox Water Treatment Plant, Report # PB84-192061, US Dept. of Commerce, National Technical Information Service, Springfield, VA, July, 1982.Google Scholar
  25. 25.
    M. Krofta and L. K. Wang, Development of innovative Sandfloat systems for water purification and pollution control. ASPE Plumbing 0(1), 1–16 (1984) (NTIS Report # PB83-107961).Google Scholar
  26. 26.
    M. Krofta and L. K. Wang, Design, Construction and Operation of Lenox Water Treatment Plant, U.S.A. Project Summary, Report # PB83-17126, US Dept. of Commerce, National Technical Information Service, Springfield, VA, 1983.Google Scholar
  27. 27.
    M. Krofta and L. K. Wang, Design, Construction and Operation of Lenox Water Treatment Plant, U.S.A. Project Documentation, Report # PB83-164731, US Dept. of Commerce, National Technical Information Service, Springfield, VA, Jan, 1983.Google Scholar
  28. 28.
    M. Krofta and L. K. Wang, Over One-Year Operation of Lenox Water Treatment Plan-Part 1. Report # PB83-247270, US Dept. of Commerce, National Technical Information Service, Springfield, VA, July 1983.Google Scholar
  29. 29.
    M. Krofta and L. K. Wang, Over One-Year Operation of Lenox Water Treatment Plant-Part 2, Report # PB83-247288, US Dept. of Commerce, National Technical Information Service, Springfield, VA, July, 1983.Google Scholar
  30. 30.
    M. Krofta and L. K. Wang, Application of dissolved air flotation to the Lenox Massachusetts water supply: water purification by flotation. Journal of New England Water Works Association 249–264 (1985).Google Scholar
  31. 31.
    M. Krofta and L. K. Wang, Dissolved air flotation to the Lenox Massachusetts water supply: sludge thickening by flotation or lagoon. Journal of New England Water Works Association 265–284 (1985).Google Scholar
  32. 32.
    M. Krofta and L. K. Wang, Potable Water Pretreatment for Turbidity and Color Removal by Dissolved Air Flotation and Filtration for the Town of Lenox, Massachusetts, Report # PB82-182064, US Dept. of Commerce, National Technical Information Service, Springfield, VA, Oct., 1981.Google Scholar
  33. 33.
    M. Krofta and L. K. Wang, Monitoring and Control of Lenox Water Treatment Plant, Lenox, Massachusetts, Report # PB84-192079, US Department of Commerce, National Technical Information Service, Springfield, VA, March, 1982.Google Scholar
  34. 34.
    M. Krofta and L. K. Wang, Development of innovative flotation-filtration systems for water treatment, Part A: First full-scale Sandfloat plant in US. Proceedings of American Water Works Association Water Reuse Symposium III. Vol. 3, pp. 1226–1237, Aug, 1984.Google Scholar
  35. 35.
    M. Krofta and L. K. Wang, Development of innovative flotation-filtration systems for water treatment, Part B: Dissolved air flotation plants for small communities. Proceedings of American Water Works Association Water Reuse Symposium III. Vol. 3, pp. 1238–1250, Aug, 1984.Google Scholar
  36. 36.
    M. Krofta and L. K. Wang, Application of dissolved air flotation in water purification. Symposium on Environmental Technology and Management, Report # PB88-200571/AS, US Dept. of Commerce, National Technical Information Service, Springfield, VA, Nov., 1985.Google Scholar
  37. 37.
    M. Krofta and L. K. Wang, Recycling of filter backwash water and alum sludge for reuse in water treatment Plants. Biennial Conference of the National Water Supply Improvement Association, July, 1988.Google Scholar
  38. 38.
    L. K. Wang, The State-of-the-Art Technologies for Water Treatment and Management. UNIDO Training Manual No. 8-8-95, United Nations Industrial Development Organization (UNIDO), Vienna, Austria, August, 1995.Google Scholar
  39. 39.
    L. K. Wang, Potable water treatment using dissolved air flotation. OCEESA Journal 13(1), 12–16 (1996).Google Scholar
  40. 40.
    L. K. Wang, Water and waste treatment using advanced dissolved air flotation. 1991 Annual Conference of the Korea Society of Water Pollution Research and Control, Seoul, Korea. Feb., 1991.Google Scholar
  41. 41.
    L. K. Wang, Case history of Lenox, Pittsfield and Coxsackie water treatment plants. The Sixth Annual Water Treatment Technical Conference, Saratoga Springs, New York, April, 1991.Google Scholar
  42. 42.
    L. K. Wang, Innovative and cost-effective Lenox Water Treatment Plant. Water Treatment 7(4), 387–406 (1992).Google Scholar
  43. 43.
    M. J. Pidwirny, Fundamentals of Physical Geography, Department of Geography, Okanagan University, Canada. June., 2003.Google Scholar
  44. 44.
    L. K. Wang, E. M. Fahey, and Z. Wu, Dissolved air flotation, Chapter 12, in Physicochemical Treatment Processes, L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.), Humana Press, Inc. Totowa, NJ, 2005, pp. 431-500 (2005).Google Scholar
  45. 45.
    R. E. Sonntag, C. Borgnakke, and G. J. Van Wylen, Fundamentals of Thermodynamics, Wiley, Hoboken, NJ (2003).Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • Lawrence K. Wang
    • 1
  • Nazih K. Shammas
    • 1
  • Clint Williford
    • 2
  • Wei-Yin Chen
    • 2
  • Georgios P. Sakellaropoulos
  1. 1.Lenox Institute of Water TechnologyLenox
  2. 2.Department of Chemical EngineeringUniversity of Mississippi, University

Personalised recommendations