Advanced Oxidation Processes

  • M. B. Ray
  • J. Paul Chen
  • Lawrence K. Wang
  • Simo Olavi Pehkonen
Part of the Handbook of Environmental Engineering book series (HEE, volume 4)


Since the early 1970s, advanced oxidation processes (AOPs) have been used considerably to remove both low and high concentrations of organic compounds from diverse sources such as groundwater, municipal and industrial wastewater, sludge destruction, and volatile organic compound (VOC) control. These processes, although often having high capital and operating costs, are the only viable treatment methods for effluents containing refractory, toxic, and non-biodegradable materials. In the AOP, the organic compounds can be completely mineralized to carbon dioxide and water mostly by hydroxyl radicals, the second most powerful oxidizing agent generated in situ in the reaction environment. The rate constant values of oxidation of the organics with hydroxyl radicals range from 108 to 1011 M1s−1


Anic Compound Xenon Flash Lamp Multitubular Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Munter, Advanced oxidation processes-current status and prospects, Proc. Estonian Acad. Sci. Chem. 50, 59–80 (2001).Google Scholar
  2. 2.
    M Bhowmick and M. J. Semmens, Ultraviolet photooxidation for the destruction of VOCs in air, Wat. Res. 28, 2407–2415 (1994).CrossRefGoogle Scholar
  3. 3.
    M. B. Ray, Photodegradation of the volatile organic compounds in the gas phase: A review, Developments in Chem. Eng. Mineral Processing 8, 405–439 (2000).Google Scholar
  4. 4.
    J. H. Wang and M. B. Ray, Application of ultraviolet photooxidation to remove organic pollutants in the gas phase, Separation and Purification Technol. 19, 11–20 (2000).CrossRefGoogle Scholar
  5. 5.
    P. T. Buckley and J. W. Birks, Evaluation of visible-light photolysis of ozone-water cluster molecules as a source of atmospheric hydroxyl radical and hydrogen peroxide, Atmospheric Environment 29, 2409–2415 (1995).CrossRefGoogle Scholar
  6. 6.
    J. R. Bolton, J. E. Valladares, J. P. Zanin, et al., Figures-of-merit for advanced oxidation technologies: a comparison of homogeneous UV/H2O2, heterogeneous UV/TiO2 and electron beam processes, J. Adv. Oxid. Technol. 3, 174–181 (1998).Google Scholar
  7. 7.
    L. Chih-Hsiang and M. D. Gurol, Chemical oxidation by photolytic decomposition of hydrogen peroxide, Environ. Sci. Technol. 29, 3008–3014 (1995).Google Scholar
  8. 8.
    J. L. Graham, R. Striebich, C. L. Patterson, E. R. Krishnan, and R. C. Haught. MTBE oxidation byproducts from the treatment of surface waters by ozonation and UV-ozonation. Chemosphere 54, 1011–1016 (2004).CrossRefGoogle Scholar
  9. 9.
    M. Bideau, B. Claudel, L. Faure, and M. Rachimoellah, Photo-oxidation of formic acid by oxygen in the presence of titanium dioxide and dissolved copper ions: oxygen transfer and reaction kinetics, Chem. Eng. Comm. 93, 167–179 (1990).CrossRefGoogle Scholar
  10. 10.
    M. D. Driessen, T. M. Miller, and V. H. Grassian. Photocatalytic oxidation of trichloroethylene on zinc oxide: characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy, J. Molecular Catalysis A: Chemical 131, 149–156 (1998).CrossRefGoogle Scholar
  11. 11.
    J. P. Chen, M. Liu, L. Zhang, J. D. Zhang, and L. T. Jin. Application of nano TiO2 towards polluted water treatment combined with electro-photochemical method. Wat. Res. 37, 3815–3820 (2003).CrossRefGoogle Scholar
  12. 12.
    M. Goel, H. Hongqiang, A. S. Mujumdar, and M. B. Ray, Sonochemical decomposition of volatile and non-volatile organic compounds—a comparative study, Wat. Res. 38, 4247–4261 (2004).CrossRefGoogle Scholar
  13. 13.
    P. G. Blystone, M. D. Johnson, W. R. Haag, and P. F. Daley, Advanced Ultraviolet Flash Lamps Destruction of Organic Contaminants in Air, Chapter 18. American Chemical Society (1993).Google Scholar
  14. 14.
    A. Wekhof, Treatment of contaminated water, air and soil with UV flash lamps, Environmental Progress 10, 241–247 (1991).CrossRefGoogle Scholar
  15. 15.
    E. Villenave, and R. Lesclaux, Kinetics and atmospheric implications of peroxy radical cross reactions involving the CH3C(O)O2 radical, J. Geophysical Res. 103 (D19), 25,273–25,285 (1998).CrossRefGoogle Scholar
  16. 16.
    J. Z. Yu and H. A. Jeffries, Atmospheric photooxidation of alkylbenzenes—II. Evidence of formation of epoxide intermediates, Atmospheric Environment 31, 2281–2287 (1997).CrossRefGoogle Scholar
  17. 17.
    J. Z. Yu, H. A. Jeffries, and. K. G. Sexton, Atmospheric photooxidation of alkylbenzenes—I. Carbonyl product analyses, Atmospheric Environment 31, 2261–2280 (1997).CrossRefGoogle Scholar
  18. 18.
    D. Chen, L. Fengmei, and A. K. Ray, Effect of mass transfer and catalyst layer thickness on photocatalytic reaction, AIChE J. 46, 1034–1045 (2000).CrossRefGoogle Scholar
  19. 19.
    S. W. Zou. Photocatalytic treatment of wastewater contaminated with organic waste and heavy metal from semiconductor industry. M.Eng. dissertation, National University of Singapore, Singapore (2005).Google Scholar
  20. 20.
    A. E. Cassano, C. A. Martín, R. J. Brandi, and O. M. Alfano, Photoreactor analysis and design: fundamentals and applications, Ind. Eng. Chem. Res. 34, 2155–2201 (1995).CrossRefGoogle Scholar
  21. 21.
    Y. Quan, S. Pehkonen, and M. B. Ray, Evaluation of three different lamp emission models using novel application of potassium ferrioxalate actinometry, Ind. Eng. Chem. Res. 43, 948–955 (2004).CrossRefGoogle Scholar
  22. 22.
    T. Yokota and S. Suzuki, Estimation of light absorption rate in a tank type photoreactor with multiple lamps, J. Chem. Eng. Japan 28, 300–305 (1995).CrossRefGoogle Scholar
  23. 23.
    G. A. Loraine and W. H. Glaze, Destruction of vapor phase halogenated methanes by means of ultraviolet photolysis, 47th Purdue University Industrial Waste Conference Proceedings, pp. 309–316, 1992.Google Scholar
  24. 24.
    D. Spangenberg, U. Möller, and K. Kleinermanns, Photooxidation of exhaust pollutants, Chemosphere 33, 43–49 (1996).CrossRefGoogle Scholar
  25. 25.
    O. K. Scheible, Development of a rationally based design protocol for the ultraviolet light disinfection process, Journal WPCF 59, 25–31 (1987).Google Scholar
  26. 26.
    M. R. Nimlos, W. A. Jacoby, D. M. Blake, and T. A. Milne, Direct mass spectrometric studies of the destruction of hazardous wastes. 2. Gas-Phase Photocatalytic Oxidation of Trichloroethylene over TiO2: products and mechanisms, Environ. Sci. Technol. 27, 732–740 (1993).CrossRefGoogle Scholar
  27. 27.
    E. R. Blatchley III, Numerical modelling of UV intensity: application to collimated-beam reactors and continuous-flow systems, Wat. Res. 31, 2205–2218 (1997).CrossRefGoogle Scholar
  28. 28.
    A. R. Tymoschuk, O. M. Alfano, and A. E. Cassano, The multitubular photoreactor. 1. Radiation field for constant absorption reactors. Ind. Eng. Chem. Res. 32, 1328–1341 (1993).CrossRefGoogle Scholar
  29. 29.
    O. M. Alfano, M. Vicente, S. Esplugas, and A. E. Cassano, Radiation field inside a tubular multilamp reactor for water and wastewater treatment, Ind. Eng. Chem. Res. 29, 1270–1278 (1990).CrossRefGoogle Scholar
  30. 30.
    F. Chen, S. O. Pehkonen, and M. B. Ray, Kinetics and mechanisms of UV-photodegradation of chlorinated organics in the gas phase, Wat. Res. 36, 4203–4214 (2002).CrossRefGoogle Scholar
  31. 31.
    M. Hossain and G. B. Raupp, Radiation field modeling in a photocatalytic monolith reactor, Chem. Eng. Sci. 53, 3771–3780 (1998).CrossRefGoogle Scholar
  32. 32.
    H. Ibrahim and H. de Lasa, Novel photocatalytic reactor for the destruction of airborne pollutants reaction kinetics and quantum yields, Ind. Eng. Chem. Res. 38, 3211–3217 (1999).CrossRefGoogle Scholar
  33. 33.
    Q. Yang, S. Pehkonen, and M. B. Ray, A light distribution model for an annular reactor with a cylindrical reflector, Ind. Eng. Chem. Res. 44, 3471–3479 (2005).CrossRefGoogle Scholar
  34. 34.
    U.S. Army Corps of Engineers, Engineering and Design: Ultraviolet/Chemical Oxidation, ETL 1110-1-161, Department of the Army, Washington, DC, March, 1996.Google Scholar
  35. 35.
    J. R. Bolton, K. G. Bircher, W. Tumas, and C. A. Tolman, Figures of merit for the technical development and application of advanced oxidation process. J. Adv. Oxid. Tech. 1, 13–17 (1996).Google Scholar
  36. 36.
    M. Romero, J. Blanco, B. Sa’nchez, et al., Solar photocatalytic degradation of water and air pollutants: challenges and perspectives, Solar Energy 66, 169–182 (1999).CrossRefGoogle Scholar
  37. 37.
    M. D. Driessen, T. M. Miller, and V. H. Grassian, Photocatalytic oxidation of trichloroethylene on zinc oxide: characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy, Journal of Molecular Catalysis A: Chemical 131, 149–156 (1998).CrossRefGoogle Scholar
  38. 38.
    A. K. Ray and A. A. C. M. Beenackers, A novel photocatalytic reactor for water purification, AIChE Journal 44, 477–483 (1998).CrossRefGoogle Scholar
  39. 39.
    A. K. Ray, Design, modeling and experimentation of a new large-scale photocatalytic reactor for water treatment, Chem. Eng. Sci. 54, 3113–3125 (1999).CrossRefGoogle Scholar
  40. 40.
    A. K. Ray and A. A. C. M. Beenackers, Development of a new photocatalytic reactor for purification, Catalysis Today 40, 73–83 (1998).CrossRefGoogle Scholar
  41. 41.
    T. K. Sengupta, M. F. Kabir, and A. K. Ray, A Taylor vortex photocatalytic reactor for water purification, Ind. Eng. Chem. Res. 40, 5268–5281 (2001).CrossRefGoogle Scholar
  42. 42.
    A. Bhattacharyya, S. Kawi, and M. B. Ray, Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents, Catalysis Today 98, 431–439 (2004).CrossRefGoogle Scholar
  43. 43.
    M. Krofta and L. K. Wang. Flotation Engineering, Technical Manual No. Lenox/1-06-2000/368, Lenox Institute of Water Technology, Lenox, MA, USA, Jan, 2000.Google Scholar
  44. 44.
    L. K. Wang. New Technologies for Water and Wastewater Treatment. NYS AWWA-NYWEA Joint Tiff Symposium. Liverpool, NY. Nov. 15-17, 2005.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2006

Authors and Affiliations

  • M. B. Ray
    • 1
  • J. Paul Chen
    • 2
  • Lawrence K. Wang
    • 3
  • Simo Olavi Pehkonen
  1. 1.Department of Chemical and Biochemical EngineeringThe University of Western OntarioLondonCanada
  2. 2.Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore
  3. 3.Lenox Institute of Water TechnologyLenox

Personalised recommendations