Skip to main content

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 4))

Abstract

Chlorine has been used as a disinfectant in potable water systems for over 100 yr. Free chlorine and combined chlorine (chloramines) are the two forms of chlorine widely used for the disinfection. Free chlorine is added as chlorine gas or sodium/calcium hypochlorite to the water. The reaction of chlorine in water produces hypochlor-ous acid and hydrochloric acid: Cl2 + H2O ↔ HOC1 + HC1 Chlorine Hypochlorous acid Hyddrochloric acid:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. K. Wang, Y. T. Hung and N. K. Shammas (eds.), Physicochemical Treatment Processes, The Humana Press, Totowa, NJ, 2005.

    Google Scholar 

  2. L. K. Wang, Y. T. Hung, and N. K. Shammas (eds.), Advanced Physicochemical Treatment Processes, The Humana Press, Totowa, NJ, 2006.

    Google Scholar 

  3. G. F. Connell, The Chlorination/Chloramination Handbook. American Water Works Association. Water Disinfection Series, Denver, CO, 1996.

    Google Scholar 

  4. US EPA, Ambient Water Quality Criteria for Ammonia, EPA 440/5-85-001, US Environmental Protection Agency, Washington, DC, 1984.

    Google Scholar 

  5. AWWA, American National Standard for Disinfection of Water-Storage Facilities, ANSI/AWWA C652-92, American Water Works Association, Denver, CO, 1992.

    Google Scholar 

  6. AWWA, American National Standard for Disinfection of Water Treatment Plants, ANSI/AWWA C653-97, American Water Works Association, Denver, CO, 1997.

    Google Scholar 

  7. AWWA, American National Standard for Disinfecting Water Mains, ANSI/AWWA C651-99. American Water Works Association, Denver, CO, 1999.

    Google Scholar 

  8. J. J. Vasconcelos, et al., Kinetics of chlorine decay. J. AWWA 89, 54–65 (1997).

    CAS  Google Scholar 

  9. G. C. White, Handbook of Chlorination and Alternative Disinfectants. Wiley-Interscience, NY, 1999.

    Google Scholar 

  10. Metcalf and Eddy, Inc., Wastewater Engineering: Treatment, Disposal and Reuse, McGraw Hill, NY, 1981.

    Google Scholar 

  11. E. Bockman, Catalytic carbon: A new weapon in the chloramine battle. Water Conditioning and Purification 39(7), 36–38 (1997).

    Google Scholar 

  12. R. W Farmer and S. L. Kovacic,Catalytic activated carbon offers breakthrough for dialysis water treatment. Dialysis & Transplantation, November bd26, 771–775 (1997).

    Google Scholar 

  13. V. L. Snoeyink and M. T. Suidan, Dechlorination by activated carbon and other reducing agents. In Water and Wastewater Disinfection, J. D. Johnson, (ed.), Ann Arbor Science Publishers Inc., Ann Arbor, MI, 1975, pp. 339–358.

    Google Scholar 

  14. WPCF, Wastewater Disinfection. Manual of Practice FD-10, Water Pollution Control Federation, Alexandria, VA, 1986.

    Google Scholar 

  15. General Chemical, Water Treatment Dechlorination. Product Bulletin, Parsippany, NJ, 1988.

    Google Scholar 

  16. US EPA, Methods for Aquatic Toxicity Identification Evaluations, Phase I, Toxicity Characterization Procedures, Report No. USEPA-600/3-88/034, US Environmental Protection Agency, Washington, DC, 1988, pp. 8–27 and Table 8.4.

    Google Scholar 

  17. S. L. Bean, Dechlorination alternatives. Environmental Protection, 6(5), 25–26 (1995).

    Google Scholar 

  18. Maria W. Tikkanen, Development of guidance manual for disposal of chlorinated water. Proceedings of the AWWA Annual Conference, June, 2000.

    Google Scholar 

  19. Maria W. Tikkanen, Guidance Manual for Disposal of Chlorinated Water, AWWA Research Foundation Report 90863, Denver, CO, 2001.

    Google Scholar 

  20. R. L. Hardison and M. Hamamoto, An Alternative Dechlorination Process, CWEA Annual Conference, Oakland, CA, 1998.

    Google Scholar 

  21. R. L. Hardison, Best Sulfur Products, Modesto, CA. Personal communication, 1999.

    Google Scholar 

  22. G. Peterka, Vitamin C a promising dechlorination reagent. Opflow 24 (12), 1–5 (1998).

    Google Scholar 

  23. M. Bedner, W. A MacCrehan, and G. R. Helz, Making chlorine cleaner: An investigation of alternate dechlorination agents for chloramine removal in wastewater. Proceedings of the Oxidation and Reduction Technologies for Water Treatment, Division of the Environmental Chemistry, American Chemical Society, August, 2004.

    Google Scholar 

  24. L.K. Wang. New Technologies for Water and Wastewater Treatment. NYS AWWA-NYWEA Joint Tiff Symposium. Liverpool, NY. November, 15–17, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ganesh, R., Leong, L.Y.C., Tikkanen, M.W., Peterka, G.J. (2006). Dechlorination. In: Wang, L.K., Hung, YT., Shammas, N.K. (eds) Advanced Physicochemical Treatment Processes. Handbook of Environmental Engineering, vol 4. Humana Press. https://doi.org/10.1007/978-1-59745-029-4_13

Download citation

Publish with us

Policies and ethics