Skip to main content

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Vasculogenesis, angiogenesis, and arteriogenesis are terms used to describe the formation of blood vessels. Embryonic neovascularization by vasculogenesis refers to the formation of primitive blood vessels inside the embryo and its surrounding membranes and involves the in situ differentiation of mesoderm-derived angioblasts, which aggregate and form de novo blood vessels. Vascularization of the brain occurs primarily through angiogenesis. Angiogenesis involves the formation of new blood vessels via sprouting or splitting from pre-existing vessels and occurs both pre- and postnatally. Arteriogenesis refers to the enlargement of pre-existing collateral arterioles to form larger arteries. Specific angiogenic factor signaling systems choreograph each step of blood vessel formation. Vasculogenesis and angiogenesis are not exclusive processes but instead constitute complementary mechanisms for postnatal neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flamme IRW. Induction of vasculogenesis and hematopoiesis in vitro. Development 1992;116:435–439.

    PubMed  CAS  Google Scholar 

  2. Asahara TAK. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 2004;287:C575–C579.

    Article  Google Scholar 

  3. Poole TFEB, Cox CM. The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn 2001;220:1–17.

    Article  PubMed  CAS  Google Scholar 

  4. Yamashita JIH, Hirashima M, Ogawa M, et al. Flk-1 positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000;408:92–96.

    Article  PubMed  CAS  Google Scholar 

  5. Patan S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation growth and remodeling. J Neuro-Oncol 2000;50:1–15.

    Article  CAS  Google Scholar 

  6. Gault JS, Sarin H, Nabil A, Shenkar R, Awad I. Pathobiology of Human Cerebrovascular Malformations: Basic Mechanisms and Clinical Relevance. Neurosurgery 2004;55(l):1–20.

    Article  PubMed  Google Scholar 

  7. Yamada S, ed. Arteriovenous Malformations in Functional Areas of the Brain. Armonk, NY: Futura Publishing, 1999.

    Google Scholar 

  8. Wang HC, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998;93:741–753.

    Article  PubMed  CAS  Google Scholar 

  9. Pardanaud LY, Yassine F, Dieterlen-Lievre F. Relationship between vasculogenesis, angiogenesis, and haematopoiesis during avian ontogeny. Development 1989;105:473–485.

    PubMed  CAS  Google Scholar 

  10. D’Angelo MA, Afanasieva T, Aguzzi A. Angiogenesis in transgenic models of multistep carcinogenesis. J Neuro-Oncol 2000;50:89–98.

    Article  CAS  Google Scholar 

  11. Kurz H. Physiology of angiogenesis. J Neuro-Oncol 2000;50:17–35.

    Article  CAS  Google Scholar 

  12. Marin-Padilla M. Early vascularization of the embryonic cerebral cortex: Colgi and electron microscopic studies. J Comp Neurol 1985;241:237–249.

    Article  PubMed  CAS  Google Scholar 

  13. Strong L. The early embryonic pattern of internal vascularization of the mammalian cerebral cortex. J Comp Neurol 1964;123:121–138.

    Article  PubMed  CAS  Google Scholar 

  14. Webb CVWG. Genes that regulate metastasis and angiogenesis. J Neuro-Oncol 2000;50:71–87.

    Article  CAS  Google Scholar 

  15. Ferrara N. Vascular endothelial growth factor and the regulation of vascular angiogenesis. Recent Prog Horm Res 2000;55:15–36.

    PubMed  CAS  Google Scholar 

  16. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001;280:C1358–C1366.

    PubMed  CAS  Google Scholar 

  17. Yancopoulus GS, Davis S, Gale NW, Rudge JS. Vascular specific growth factors and blood vessel formation. Nature 2000;407:242–248.

    Article  Google Scholar 

  18. Lopes M. Angiogenesis in brain tumors. Microsc Res Tech 2003;60:225–230.

    Article  PubMed  CAS  Google Scholar 

  19. Damert AM, Machein M, Breier G, et al. Upregulation of vascular endothelial growth factor (VEGF) in the vasculature of oligodendrogliomas. Neuropathol Appl Neurobiol 1997;24:29–35.

    Google Scholar 

  20. Harrigan M. Angiogenic factors in the central nervous system. Neurosurgery 2003;53(3):1–23.

    Google Scholar 

  21. Jansen M, de Witt Hamer PC, Witmer AN, Troost D, van Noorden CJ. Current perspectives on antiangiogenesis strategies in the treatment of malignant gliomas. Brain Res Rev 2004;45:143–163.

    Article  PubMed  CAS  Google Scholar 

  22. Damert AM, Machein M, Breier G, Fujita MQ, Hanahan D, Risau W, Plate KH. Upregulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 1997;57:3860–3864.

    PubMed  CAS  Google Scholar 

  23. Ikeda E, Achen MG, Brier G, Risau W. Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 1995;270:19,761–19,766.

    Article  PubMed  CAS  Google Scholar 

  24. Plate KB, Brier G, Welch H, Mennel H, Risau W. Vascular endothelial growth factor and glioma angiogenesis: Coordinate induction of VEGF receptors, distribution of VEGF protein and possible in vivo regulatory mechanisms. Int J Cancer 1994;59:520–529.

    Article  PubMed  CAS  Google Scholar 

  25. Wang DH, Su Huang HJ, Kazlauskas A, Cavence WK. Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phyosphatidylinositol 3-kinase. Cancer Res 1999;59:11,464–11,472.

    Google Scholar 

  26. Sanchea-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L, Bernabeu C. Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human endothelial growth factor gene expression. J Biol Chem 2001;276:38,527–38,535.

    Article  Google Scholar 

  27. Chiarugi V. Molecular polarity in endothelial cells and tumor-induced angiogenesis. Oncol Res 2000;12:1–4.

    PubMed  CAS  Google Scholar 

  28. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occludens. J Biol Chem 1999;274:23,463–23,467.

    Article  PubMed  CAS  Google Scholar 

  29. Jones N, Iljin K, Dumont DJ, Alitalo K. Tie receptors: New modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2001;2:257–267.

    Article  PubMed  CAS  Google Scholar 

  30. Maisonpierre PS, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997;277:55–60.

    Article  PubMed  CAS  Google Scholar 

  31. Lobov IB, Brooks PC, Lang RA. Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 2002;99(17):11,205–11,210.

    Article  PubMed  CAS  Google Scholar 

  32. Visconti RR, Richardson CD, Sato TN. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor. Proc Natl Acad Sci 2002;99:8219–8224.

    Article  PubMed  CAS  Google Scholar 

  33. Loughna S, Sato TN. A combinatorial role of angiopoietin-1 and orphan receptor TIE1 pathways in establishing vascular polarity during angiogenesis. Mol Cell 2001;7:233–239.

    Article  PubMed  CAS  Google Scholar 

  34. Sato TN, Tozawa Y, Deutsch U. Distinct roles of the receptor tyrosine kinase Tie-1 and Tie-2 in blood vessel formation. Nature 1995;376:70–74.

    Article  PubMed  CAS  Google Scholar 

  35. Beck H, Acker T, Wiessner C, Allegrini P, Plate K. Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol 2000;157:1473–1483.

    PubMed  CAS  Google Scholar 

  36. Breier G, Blum S, Peli J. Transforming growth factor-beta and Ras regulate the VEGF/VEGF-receptor system during tumor angiogenesis. Int J Cancer 1976;97:142–148.

    Article  CAS  Google Scholar 

  37. Ingber D. Extracellular matrix and cell shape: Potential control points for inhibition of angiogenesis. J Cell Biochem 1991;47:236–241.

    Article  PubMed  CAS  Google Scholar 

  38. Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction betwteen embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998;93:741–753.

    Article  PubMed  CAS  Google Scholar 

  39. Friedlander MB, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct alpha V integrins. Scin 1995;270:1500–1502.

    Article  CAS  Google Scholar 

  40. Robertson PL, Du Bois M, Bowman PD, Goldstein GW. An in vivo and in vitro study. Brain Res 1985;355:219–223.

    PubMed  CAS  Google Scholar 

  41. Hobson B, Denekamp J. Endothelial proliferation in tumors and normal tissues: continuous labeling studies. Br J Cancer 1984;49:405–413.

    PubMed  CAS  Google Scholar 

  42. D’Angelo MG, Afanasieva T, Aguzzi A. Angiogenesis in transgenic models of multistep carcinogenesis. J Neuro-Oncol 2000;50:89–98.

    Article  CAS  Google Scholar 

  43. Takahashi T, Kalka C, Masuda H, et al. Ischemia and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999;5:434–438.

    Article  PubMed  CAS  Google Scholar 

  44. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6:389–395.

    Article  PubMed  CAS  Google Scholar 

  45. Grant MB, May WS, Caballero S, et al. Adult hematopoietic stem cells provide financial hemangioblast activity during retinal neovascularization. Nat Med 2002;8:607–612.

    Article  PubMed  CAS  Google Scholar 

  46. Brugger W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L. Reconstitution of hematopoiesis after high-dose chemotherapy by autologous progenitor cells generated ex vivo. N Engl J Med 1995;333:283–287.

    Article  PubMed  CAS  Google Scholar 

  47. Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contricution to adult blood vessel formation. Circ Res 2000;87:728–730.

    PubMed  CAS  Google Scholar 

  48. Ashara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.

    Article  Google Scholar 

  49. Ashara T, Masuda H, Takahashi T. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999;85:221–228.

    Google Scholar 

  50. Davidoff AM, Ng CY, Brown P, et al. Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice. Clin Cancer Res 2001;7:2870–2879.

    PubMed  CAS  Google Scholar 

  51. Lyden D, Hattori K, Dias S. Impaired recruitment of bone-marrow derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001;7:1194–1201.

    Article  PubMed  CAS  Google Scholar 

  52. Chao M. Neurotrophins and their receptors: a convergence point for many signaling pathways. Nat Rev Neurosci 2003;4:299–309.

    Article  PubMed  CAS  Google Scholar 

  53. Lin TN, Wang CK, Cheung WM, Hsu CY. Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2000;20:387–395.

    Article  PubMed  CAS  Google Scholar 

  54. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I. A herparin-binding angiogenic protein-basic fibroblast growth factor is stored with basement membrane. Am J Pathol 1998;130:393–400.

    Google Scholar 

  55. Machein MR, Plate KH. VEGF in brain tumors. J Neuro-Oncol 2000;50:109–150.

    Article  CAS  Google Scholar 

  56. Plate KH, Breir G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 1992;359:845–847.

    Article  PubMed  CAS  Google Scholar 

  57. Berkman RA, Merrill MJ, Reinhold WC. Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms. J Clin Invest 1993;91:153–159.

    Article  PubMed  CAS  Google Scholar 

  58. Criscuolo GR, Balledux JP. Clinical neurosciences in the decade of the brain: Hypotheses in neuro-oncology-VEG/PF acts upon the actin cytoskeleton and is inhibited by dexamethasone: Relevance to tumor angiogenesis and vasogenic edema. Yale J Biol Med 1996;69:337–355.

    PubMed  CAS  Google Scholar 

  59. Ding H, Roncari L, Wu X, Shannon P, Naggy A, Guha A. Expression and hypoxic regulation of angiopoietins in human astrocytomas. Neurooncology 2001;3:1–10.

    CAS  Google Scholar 

  60. Audero E, Cascone I, Zanon I, et al. Expression of angiopoietin-1 in human glioblastomas regulates tumor-induced angiogenesis in vivo and in vitro studies. Arterioscler Thromb Vase Biol 2001;21:536–541.

    CAS  Google Scholar 

  61. Marchuk DA, Srinivasan S, Squire TL, Zawistowki JS. Vascular morphogenesis: tales of two syndromes. Hum Mol Genet R 2003;12:97–112.

    Article  CAS  Google Scholar 

  62. Kirsch M, Schackert G, Black PM. Angiogenesis, metastasis, and endogenous inhibition. J Neuro-Oncol 2000;41(2)173–180.

    Article  Google Scholar 

  63. Puduvalli VK, Sawaya R. Antiangiogenesis—therapeutic strategies and clinical implications for brain tumors. J Neuro-Oncol 2000;50(l,2):189–200.

    Article  CAS  Google Scholar 

  64. Puduvalli VK. Inhibition of angiogenesis as a therapeutic strategy against brain tumors. Cancer Treat Res 2004;117:307–336.

    PubMed  CAS  Google Scholar 

  65. Millauer BS, Shawver LK, Plate KH, Risau W. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 1994;367:576–579.

    Article  PubMed  CAS  Google Scholar 

  66. Short SC, Traish D, Dowe A, Hines F, Gore M, Brada M. Thalidomide as an anti-angiogenic agent in relapsed gliomas. J Neuro-Oncol 2001;51:41–45.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Grant, G.A., Janigro, D. (2006). Vasculogenesis and Angiogenesis. In: Janigro, D. (eds) The Cell Cycle in the Central Nervous System. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-021-8_4

Download citation

Publish with us

Policies and ethics