Skip to main content

Detection of Proliferation in Gliomas by Positron Emission Tomography Imaging

  • Chapter
Book cover The Cell Cycle in the Central Nervous System

Abstract

This chapter is a review of positron emission tomography (PET) imaging of cellular proliferation in brain tumors. PET with [C-ll]-thymidine or [F-18]-fluorothymidine is in the developmental stages. Estimation of proliferation requires (a) injecting one of these tracers intravenously followed by (b) collecting emission data from the tumor with the tomograph, (c) sampling arterial blood radioactivity during imaging, (d) analyzing plasma metabolites of the tracers, and (e) mathematically modeling all of the data. The calculated specific retention of the tracers as estimates of proliferation is expressed as a flux constant with units of milliliters per minute per gram. The blood-brain barrier (BBB) limits the transport, and ultimately the uptake, of both of these tracers. This complicates assessing proliferation in regions of tumors located behind an intact BBB and requires the estimation of the transport rate in addition to flux in regions where the BBB is broken down. Despite these challenges, early data show that estimations of proliferation by PET correlate well with tumor grade. However, more work is necessary to evaluate how reliably these tracers can be used to assess response to treatment interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cleaver JE. Thymidine metabolism and cell kinetics. Front Biol 1967;6:43–100.

    Google Scholar 

  2. Livingston RB, Ambus U, George SL, Freireich EJ, Hart JS. In vitro determination of thymidine-[H-3] labeling index in human solid tumors. Cancer Res 1974;34:1376–1380.

    PubMed  CAS  Google Scholar 

  3. Tannock IF, Hill RP (eds). The Basic Science of Oncology. New York: McGraw-Hill, 1992.

    Google Scholar 

  4. Krohn KA, Mankoff DA, Eary JF. Imaging cellular proliferation as a measure of response to therapy. J Clin Pharmacol Suppl 2001;4:S96–S103.

    Google Scholar 

  5. Mankoff DA, Dehdashti F, Shields AF. Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia 2000;2:71–88.

    Article  PubMed  CAS  Google Scholar 

  6. Coons SW, Johnson PC, Pearl DK. Prognostic significance of flow cytometry deoxyribonucleic acid analysis of human astrocytomas. Neurosurgery 1994;35:119–125.

    Article  PubMed  CAS  Google Scholar 

  7. Hoshino T, Ahn D, Prados MD, Lamborn K, Wilson CB. Prognostic significance of the proliferative potential of intracranial gliomas measured by bromodeoxyuridine labeling. Int J Cancer 1993;53:550–555.

    Article  PubMed  CAS  Google Scholar 

  8. Lamborn KR, Prados MD, Kaplan SB, Davis RL. Final report on the University of California-San Francisco experience with bromodeoxyuridine labeling index as a prognostic factor for the survival of glioma patients. Cancer 1999;85:925–935.

    Article  PubMed  CAS  Google Scholar 

  9. Matsutani M. Cell kinetics, In: Berger MS, Wilson CB (eds). The Gliomas. Philadelphia: WB Saunders Co., 1999.

    Google Scholar 

  10. Shibuya M, Ito S, Davis RL, Wilson CB, Hoshino T. A new method for analyzing the cell kinetics of human brain tumors by double labeling with bromodeoxyuridine in situ and with iododeoxyuridine in vitro. Cancer 1993;71:3109–3113.

    Article  PubMed  CAS  Google Scholar 

  11. Fujimaki T, Matsutani M, Takakura K. Analysis of BUdR (bromodeoxyuridine) labeling indices of cerebral glioblastomas after radiation therapy. J Jpn Soc Ther Radiol Oncol 1990;2:263–273.

    Google Scholar 

  12. Damaraju VL, Damaraju S, Young JD, et al. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 2003;22:7524–7536.

    Article  PubMed  CAS  Google Scholar 

  13. Young JD, Cheeseman CI, Mackey JR, Cass CE, Baldwin SA. Gastrointestinal Transport, Molecular Physiology, In: Fambrough D, Benos D, Barrett K, Domowitz M (eds). Current Topics in Membranes. San Diego, CA: Academic Press, 2000, pp 329–378.

    Google Scholar 

  14. Cornford EM, Oldendorf WH. Independent blood-brain barrier transport systems for nucleic acid precursors. Biochim Biophys Acta 1975;394:211–219.

    Article  PubMed  CAS  Google Scholar 

  15. Wells JM, Mankoff DA, Muzi M, et al. Kinetic analysis of 2-[11C] thymidine PET imaging studies of malignant brain tumors: compartmental model investigation and mathematical analysis. Mol Imaging 2002;1:151–159.

    Article  PubMed  CAS  Google Scholar 

  16. Mankoff DA, Shields AF, Graham MM, Link JM, Eary JF, Krohn KA. Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med 1998;39:1043–1055.

    PubMed  CAS  Google Scholar 

  17. Sherley JL, Kelly TJ. Regulation of human thymidine kinase during the cell cycle. J Biol Chem 1988;263:835O–8358.

    Google Scholar 

  18. Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA. Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 2003;44:2027–2032.

    PubMed  CAS  Google Scholar 

  19. Christman D, Crawford EJ, Friedkin M, Wolf AP. Detection of DNA synthesis in intact organisms with positron-emitting (methyl-11 Qthymidine. Proc Natl Acad Sci USA 1972;69:988–992.

    Article  PubMed  CAS  Google Scholar 

  20. Link JM, Grierson J, Krohn K. Alternatives in the synthesis of 2-[C-11]-thymidine. J Label Comp Radiopharm 1995;37:610–612.

    Google Scholar 

  21. Sundoro-Wu BM, Schmall B, Conti PS, Dahl JR, Drumm P, Jacobsen JK. Selective alkylation of pyrimidyldianions: synthesis and purification of 11C labeled thymidine for tumor visualization using positron emission tomography. Int J Appl Radiat Isot 1984;35:705–708.

    Article  PubMed  CAS  Google Scholar 

  22. Vander Borght T, Labar D, Pauwels S, Lambotte L. Production of [2-11C]thymidine for quantification of cellular proliferation with PET. Int J Rad Appl Instrum [A] 1991;42:103–104.

    Article  Google Scholar 

  23. Shields AF, Lim K, Grierson J, Link J, Krohn KA. Utilization of labeled thymidine in DNA synthesis: studies for PET. J Nucl Med 1990;31:337–342.

    PubMed  CAS  Google Scholar 

  24. Eary JF, Mankoff DA, Spence AM, et al. 2-[C-11]thymidine imaging of malignant brain tumors. Cancer Res 1999;59:615–621.

    PubMed  CAS  Google Scholar 

  25. De Reuck J, Santens P, Goethals P, et al. [Methyl-11C]thymidine positron emission tomography in tumoral and non-tumoral cerebral lesions. Acta Neurol Belg 1999;99:118–125.

    PubMed  Google Scholar 

  26. Vander Borght T, Pauwels S, Lambotte L, et al. Brain tumor imaging with PET and 2-[carbon-11]thymidine. J Nucl Med 1994;35:974–982.

    Google Scholar 

  27. Lonneux M, Labar D, Bol A, Jamar F, Pauwels S. Uptake of 2-11-Cthymidine in colonic and bronchial tumors. In: Paans AMS, Pruim J, Franssen EJF, Vaalburg W, (eds), Metabolic Imaging of Cancer: Proceedings of the European Conference on Research and Application of Positron Emission Tomography in Oncology. Groningen, the Netherlands: PET-Centrum AZG, 1996.

    Google Scholar 

  28. Brooks DJ, Lammertsma AA, Beaney RP, et al. Measurement of regional cerebral pH in human subjects using continuous inhalation of 11CO2 and positron emission tomography. J Cereb Blood Flow Metab 1984;4:458–465.

    PubMed  CAS  Google Scholar 

  29. Buxton RB, Wechsler LR, Alpert NM, Ackerman RH, Elmaleh DR, Correia JA. Measurement of brain pH using 11CO2 and positron emission tomography. J Cereb Blood Flow Metab 1984;4:8–16.

    PubMed  CAS  Google Scholar 

  30. O’Sullivan F. Metabolic images from dynamic positron emission tomography studies. Stat Methods Med Res 1994;3:87–101.

    Article  PubMed  CAS  Google Scholar 

  31. O’Sullivan F, Muzi M, Graham MM, Spence AM. Parametric imaging by mixture analysis in 3-D: Validation for dual-tracer glucose studies. In: Myers R, Cunningham V, Bailey D, Jones T, (eds), Quantitation of Brain Function Using PET. London: Academic Press, Inc, 1996, pp 297–300.

    Google Scholar 

  32. Wells JM, Mankoff DA, Eary JF, et al. Kinetic analysis of 2-[11C]thymidine PET imaging studies of malignant brain tumors: preliminary patient results. Mol Imaging 2002;1:145–150.

    Article  PubMed  CAS  Google Scholar 

  33. Shields AF, Grierson JR, Kozawa SM, Zheng M. Development of labeled thymidine analogs for imaging tumor proliferation. Nucl Med Biol 1996;23:17–22.

    Article  PubMed  CAS  Google Scholar 

  34. Grierson JR, Shields AF. Radiosynthesis of 3′-deoxy-3′-[(18)F] fluorothymidine: [(18)F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 2000;27:143–156.

    Article  PubMed  CAS  Google Scholar 

  35. Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4:1334–1336.

    Article  PubMed  CAS  Google Scholar 

  36. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43:1210–1217.

    PubMed  CAS  Google Scholar 

  37. Grierson JR, Schwartz JL, Muzi M, Jordan R, Krohn KA. Metabolism of 3′-deoxy-3′-[F-18]fluo-rothymidine (FLT) in proliferating A549 cells: validations for positron emission tomography (PET). Nuc Med Biol 2004;31:829–837.

    Article  CAS  Google Scholar 

  38. Bendaly EA, Sloan AE, Dohmen BM, et al. Use of 18F-FLT-PET to assess the metabolic activity of primary and metastatic brain tumors (abstract). J Nucl Med 2002;3:111P.

    Google Scholar 

  39. Sloan AE, Bendaly EA, Dohman BM, et al. Use of 18F-FLT-PET to assess the metabolic activity of primary, recurrent and metastatic brain tumors (abstract). Neuro-Oncology 2002;4:363.

    Google Scholar 

  40. Sloan AE, Shields AF, Kupsky W, et al. Superiority of [F-18]FLT-PET compared to FDG PET in assessing proliferative activity and tumor physiology in primary and recurrent intracranial gliomas (abstract). Neuro-Oncology 2001;3:345.

    Google Scholar 

  41. Macdonald DR, Cascino TL, Schold SCJ, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990;8:1277–1280.

    PubMed  CAS  Google Scholar 

  42. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR Am J Neuroradiol 1998;19:407–413.

    PubMed  CAS  Google Scholar 

  43. Shields AF, Mankoff DA, Link JM, et al. Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 1998;39:1757–1762.

    PubMed  CAS  Google Scholar 

  44. Vesselle H, Grierson J, Muzi M, et al. In vivo validation of 3′deoxy-3′-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 2002;8:3315–3323.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Spence, A.M. et al. (2006). Detection of Proliferation in Gliomas by Positron Emission Tomography Imaging. In: Janigro, D. (eds) The Cell Cycle in the Central Nervous System. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-021-8_29

Download citation

Publish with us

Policies and ethics