Skip to main content

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 1554 Accesses

Abstract

Neural stem cells (NSCs) are the self-renewing, multipotent cells that generate neurons, astrocytes, and oligodendrocytes in the nervous system. In the fetus, NSCs participate to the development of the nervous system. Stem cells are present in many tissues of adult mammals where they contribute to cellular homeostasis and regeneration after injury. The central nervous system (CNS), unlike other adult tissues, elicits limited capacity to recover from injury. It was believed contrary to other adult tissues that the CNS lacks stem cells, and thus the capacity to generate new nerve cells. In the 1960s, preliminary studies by Altman and Das gave the first evidence that new neuronal cells were being generated in the adult brain. In the following decades, with the emergence of new technologies for identifying and characterizing neural progenitor and stem cells in vivo, and in vitro, new studies have contributed to confirm that neurogenesis occurs in the adult brain, and that NSCs reside in the adult CNS. Thus overturning the long-held dogma that we are born with a certain number of nerve cells and that the brain cannot generate new neurons and renew itself. In this chapter, we will review the evidences that neurogenesis occurs throughout adulthood in discrete regions of the adult brain and that NSCs reside in the CNS of mammals, including human beings. We will review and discuss the different theories regarding the origin of NSCs in the adult in the brain and spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman J, Das GD. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats J Comp Neurol 1965;124:319–336.

    Article  PubMed  CAS  Google Scholar 

  2. Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969;137:433–458.

    Article  PubMed  CAS  Google Scholar 

  3. Adrian EK Jr, Walker BE. Incorporation of thymidine-H3 by cells in normal and injured mouse spinal cord. J Neuropathol Exp Neurol 1962;21:597–609.

    Article  PubMed  Google Scholar 

  4. Taupin P, Gage FH. Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 2002;69:745–749.

    Article  PubMed  CAS  Google Scholar 

  5. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992;255:1707–1710.

    Article  PubMed  CAS  Google Scholar 

  6. Dolbeare F. Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part II: Oncology, chemotherapy and carcinogenesis. Histochem J 1995;27:923–964.

    PubMed  CAS  Google Scholar 

  7. del Rio JA, Soriano E. Immunocytochemical detection of 5′-bromodeoxyuridine incorporation in the central nervous system of the mouse. Brain Res Dev Brain Res 1989;49:311–317.

    PubMed  Google Scholar 

  8. Hockfield S, McKay RD. Identification of major cell classes in the developing mammalian nervous system. J Neurosci 1985;5:3310–3328.

    PubMed  CAS  Google Scholar 

  9. Frederiksen K, McKay RD. Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J Neurosci 1988;8:1144–1151.

    PubMed  CAS  Google Scholar 

  10. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell 1990;60:585–595.

    Article  PubMed  CAS  Google Scholar 

  11. Cattaneo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 1990;347:762–765.

    Article  PubMed  CAS  Google Scholar 

  12. Dahlstrand J, Lardelli M, Lendahl U. Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 1995;84:109–129.

    Article  PubMed  CAS  Google Scholar 

  13. Wood HB, Episkopou V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 1999;86:197–201.

    Article  PubMed  CAS  Google Scholar 

  14. Zappone MV, Galli R, Catena R, et al. Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 2000;127:2367–2382.

    PubMed  CAS  Google Scholar 

  15. Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron 2003;39:749–765.

    Article  PubMed  CAS  Google Scholar 

  16. D’Amour KA, Gage FH. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc Natl Acad Sci USA 2003;100(Suppl 1):11,866–11,872.

    Article  PubMed  CAS  Google Scholar 

  17. Komitova M, Eriksson PS. Sox-2 is expressed by neural progenitors and astroglia in the adult rat brain. Neurosci Lett 2004;369:24–27.

    Article  PubMed  CAS  Google Scholar 

  18. Okuda T, Tagawa K, Qi ML, et al. Oct-3/4 repression accelerates differentiation of neural progenitor cells in vitro and in vivo. Brain Res Mol Brain Res 2004;132:18–30.

    Article  PubMed  CAS  Google Scholar 

  19. Lee MK, Tuttle JB, Rebhun LI, Cleveland DW, Frankfurter A. The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil Cytoskeleton 1990;17:118–132.

    Article  PubMed  CAS  Google Scholar 

  20. Menezes JR, Luskin MB. Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J Neurosci 1994;14:5399–5416.

    PubMed  CAS  Google Scholar 

  21. Fanarraga ML, Avila J, Zabala JC. Expression of unphosphorylated class III beta-tubulin isotype in neuroepithelial cells demonstrates neuroblast commitment and differentiation. Eur J Neurosci 1999;11:516–527.

    Article  PubMed  Google Scholar 

  22. Mullen RJ, Buck CR, Smith A. NeuN, a neuronal specific nuclear protein in vertebrates. Development 1992;116:201–211.

    PubMed  CAS  Google Scholar 

  23. Bernhardt R, Matus A. Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol 1984;226:203–221.

    Article  PubMed  CAS  Google Scholar 

  24. Sloviter RS. Calcium-binding protein (calbindin-D28k) and parvalbumin immunocytochemistry: localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity. J Comp Neurol 1989;280:183–196.

    Article  PubMed  CAS  Google Scholar 

  25. Reynolds R, Hardy R. Oligodendroglial progenitors labeled with the 04 antibody persist in the adult rat cerebral cortex in vivo. J Neurosci Res 1997;47:455–470.

    Article  PubMed  CAS  Google Scholar 

  26. Levine JM, Stallcup WB. Plasticity of developing cerebellar cells in vitro studied with antibodies against the NG2 antigen. J Neurosci 1987;7:2721–2731.

    PubMed  CAS  Google Scholar 

  27. Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB. Co-localization of NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells in the developing rat brain. J Neurosci Res 1996;43:299–314.

    Article  PubMed  CAS  Google Scholar 

  28. Keirstead HS, Levine JM, Blakemore WF. Response of the oligodendrocyte progenitor cell population (defined by NG2 labelling) to demyelination of the adult spinal cord. Glia 1998;22:161–170.

    Article  PubMed  CAS  Google Scholar 

  29. Homer PJ, Thallmair M, Gage FH. Defining the NG2-expressing cell of the adult CNS. J Neurocytol 2002;31:469–480.

    Article  Google Scholar 

  30. Debus E, Weber K, Osborn M. Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Differentiation 1983;25:193–203.

    Article  PubMed  CAS  Google Scholar 

  31. Cooper-Kuhn CM, Kuhn HG. Is it all DNA repair? Methodological considerations for detecting neurogenesis in the adult brain. Brain Res Dev Brain Res 2002;134:13–21.

    Article  PubMed  CAS  Google Scholar 

  32. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000;182:311–322.

    Article  PubMed  CAS  Google Scholar 

  33. Zacchetti A, van Garderen E, Teske E, Nederbragt H, Dierendonck JH, Rutteman GR. Validation of the use of proliferation markers in canine neoplastic and non-neoplastic tissues: comparison of KI-67 and proliferating cell nuclear antigen (PCNA) expression versus in vivo bromodeoxyuridine labelling by immunohistochemistry. APMIS 2003;111:430–438.

    Article  PubMed  CAS  Google Scholar 

  34. Kurki P, Vanderlaan M, Dolbeare F, Gray J, Tan EM. Expression of proliferating cell nuclear antigen (PCNA)/cyclin during the cell cycle. Exp Cell Res 1986;166:209–219.

    Article  PubMed  CAS  Google Scholar 

  35. Takahashi T, Caviness VS JR. PCNA-binding to DNA at the G1/S transition in proliferating cells of the developing cerebral wall. J Neurocytol 1993;22:1096–1102.

    Article  PubMed  CAS  Google Scholar 

  36. Hall PA, McKee PH, Menage HD, Dover R, Lane DP. High levels of p53 protein in UV-irradiated normal human skin. Oncogene 1993;8:203–207.

    PubMed  CAS  Google Scholar 

  37. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 1992;119:493–501.

    Article  PubMed  CAS  Google Scholar 

  38. Namura S, Zhu J, Fink K, et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 1998;18:3659–3668.

    PubMed  CAS  Google Scholar 

  39. Pompeiano M, Blaschke AJ, Flavell RA, Srinivasan A, Chun J. Decreased apoptosis in proliferative and postmitotic regions of the Caspase 3-deficient embryonic central nervous system. J Comp Neurol 2000;423:1–12.

    Article  PubMed  CAS  Google Scholar 

  40. Ekdahl CT, Mohapel P, Elmer E, Lindvall O. Caspase inhibitors increase short-term survival of progenitor-cell progeny in the adult rat dentate gyrus following status epilepticus. Eur J Neurosci 2001;14:937–945.

    Article  PubMed  CAS  Google Scholar 

  41. Mozdziak P, Schultz E. Retroviral labeling is an appropriate marker for dividing cells. Biotech Histochem 2000;75:141–146.

    PubMed  CAS  Google Scholar 

  42. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001;7:33–40.

    Article  PubMed  CAS  Google Scholar 

  43. Corotto FS, Henegar JA, Maruniak JA. Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci Lett 1993;149:111–114.

    Article  PubMed  CAS  Google Scholar 

  44. Luskin MB. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 1993;11:173–189.

    Article  PubMed  CAS  Google Scholar 

  45. Seki T, Arai Y. Highly polysialylated neural cell adhesion molecule (NCAM-H) is expressed by newly generated granule cells in the dentate gyrus of the adult rat. J Neurosci 1993;13:2351–2358.

    PubMed  CAS  Google Scholar 

  46. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 1996;16:2027–2033.

    PubMed  CAS  Google Scholar 

  47. Liu J, Solway K, Messing RO, Sharp FR. Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 1998;18:7768–7778.

    PubMed  CAS  Google Scholar 

  48. Jin K, Sun Y, Xie L, et al. Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 2003;24:171–189.

    Article  PubMed  CAS  Google Scholar 

  49. Cameron HA, Wolley CS, McEwen BS, Gould E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neurosci 1993;56:337–344.

    Article  CAS  Google Scholar 

  50. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313–1317.

    Article  PubMed  CAS  Google Scholar 

  51. Sanai N, Tramontin AD, Quinones-Hinojosa A, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004;427:740–744.

    Article  PubMed  CAS  Google Scholar 

  52. Bedard A, Parent A. Evidence of newly generated neurons in the human olfactory bulb. Brain Res Dev Brain Res 2004;151:159–168.

    Article  PubMed  CAS  Google Scholar 

  53. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science 1994;264:1145–1148.

    Article  PubMed  CAS  Google Scholar 

  54. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997;17:5046–5061.

    PubMed  CAS  Google Scholar 

  55. Bonfanti L, Peretto P, Merighi A, Fasolo A. Newly-generated cells from the rostral migratory stream in the accessory olfactory bulb of the adult rat. Neuroscience 1997;81:489–502.

    Article  PubMed  CAS  Google Scholar 

  56. Kaplan MS, Bell DH. Neuronal proliferation in the 9-month-old rodent-radioautographic study of granule cells in the hippocampus. Exp Brain Res 1983;52:1–5.

    Article  PubMed  CAS  Google Scholar 

  57. Markakis EA, Gage FH. Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J Comp Neurol 1999;406:449–460.

    Article  PubMed  CAS  Google Scholar 

  58. Van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature 2002;415:1030–1034.

    Article  PubMed  CAS  Google Scholar 

  59. Carlen M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisen J. Functional integration of adult-born neurons. Curr Biol 2002;12:606–608.

    Article  PubMed  CAS  Google Scholar 

  60. Belluzzi O, Benedusi M, Ackman J, LoTurco JJ. Electrophysiological differentiation of new neurons in the olfactory bulb. J Neurosci 2003;23:10,411–10,418.

    PubMed  CAS  Google Scholar 

  61. Yamada M, Onodera M, Mizuno Y, Mochizuki H. Neurogenesis in olfactory bulb identified by retro-viral labeling in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated adult mice. Neuroscience 2004;124:173–181.

    Article  PubMed  CAS  Google Scholar 

  62. Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 2001;435:406–417.

    Article  PubMed  CAS  Google Scholar 

  63. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997;386:493–495.

    Article  PubMed  CAS  Google Scholar 

  64. Morshead CM, van der Kooy D. Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain. J Neurosci 1992;12:249–256.

    PubMed  CAS  Google Scholar 

  65. Kato T, Yokouchi K, Fukushima N, Kawagishi K, Li Z, Moriizumi T. Continual replacement of newly-generated olfactory neurons in adult rats. Neurosci Lett 2001;307:17–20.

    Article  PubMed  CAS  Google Scholar 

  66. Gould E, Vail N, Wagers M, Gross CG. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA 2001;98:10,910–10,917.

    Article  PubMed  CAS  Google Scholar 

  67. Dayer AG, Ford AA, Cleaver KM, Yassaee M, Cameron HA. Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol 2003;460:563–572.

    Article  PubMed  Google Scholar 

  68. Rietze R, Poulin P, Weiss S. Mitotically active cells that generate neurons and astrocytes are present in multiple regions of the adult mouse hippocampus. J Comp Neurol 2000;424:397–408.

    Article  PubMed  CAS  Google Scholar 

  69. Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science 1999;286:548–552.

    Article  PubMed  CAS  Google Scholar 

  70. Bedard A, Cossette M, Levesque M, Parent A. Proliferating cells can differentiate into neurons in the striatum of normal adult monkey. Neurosci Lett 2002;328:213–216.

    Article  PubMed  CAS  Google Scholar 

  71. Bernier PJ, Bedard A, Vinet J, Levesque M, Parent A. Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc Natl Acad Sci USA 2002;99:11,464–11,469.

    Article  PubMed  CAS  Google Scholar 

  72. Zhao M, Momma S, Delfani K, et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 2003;100:7925–7930.

    Article  PubMed  CAS  Google Scholar 

  73. Kornack DR, Rakic P. Cell proliferation without neurogenesis in adult primate neocortex. Science 2001;294:2127–2130.

    Article  PubMed  CAS  Google Scholar 

  74. Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH. The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 2002;22:6639–6649.

    PubMed  CAS  Google Scholar 

  75. Frielingsdorf H, Schwarz K, Brundin P, Mohapel P. No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci USA 2004;101:10,177–10,182.

    Article  PubMed  CAS  Google Scholar 

  76. Horner PJ, Power AE, Kempermann G, et al. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 2000;20:2218–2228.

    PubMed  CAS  Google Scholar 

  77. Gross CG. Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 2000;1:67–73.

    Article  PubMed  CAS  Google Scholar 

  78. Gage FH. Mammalian neural stem cells. Science 2000;287:1433–1438.

    Article  PubMed  CAS  Google Scholar 

  79. Gage FH, Coates PW, Palmer TD, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 1995;92:11,879–11,883.

    Article  PubMed  CAS  Google Scholar 

  80. Gritti A, Parati EA, Cova L, et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 1996;16:1091–1100.

    PubMed  CAS  Google Scholar 

  81. Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 1997;8:389–404.

    Article  PubMed  CAS  Google Scholar 

  82. Palmer TD, Ray J, Gage FH. FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol Cell Neurosci 1995;6:474–486.

    Article  PubMed  CAS  Google Scholar 

  83. Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996;175:1–13.

    Article  PubMed  CAS  Google Scholar 

  84. Weiss S, Dunne C, Hewson J, et al. Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 1996;16:7599–7609.

    PubMed  CAS  Google Scholar 

  85. Palmer TD, Markakis EA, Willhoite AR, Safar F, Gage FH. Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. J Neurosci 1999;19:8487–8497.

    PubMed  CAS  Google Scholar 

  86. Gritti A, Frolichsthal-Schoeller P, Galli R, et al. Epidermal and fibroblast growth factors behave as mitogenic regulators for a single multipotent stem cell-like population from the subventricular region of the adult mouse forebrain. J Neurosci 1999;19:3287–3297.

    PubMed  CAS  Google Scholar 

  87. Shihabuddin LS, Horner PJ, Ray J, Gage FH. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 2000;20:8727–8735.

    PubMed  CAS  Google Scholar 

  88. Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH. Cell culture. Progenitor cells from human brain after death. Nature 2001;411:42,43.

    Article  PubMed  CAS  Google Scholar 

  89. Schwartz PH, Bryant PJ, Fuja TJ, Su H, O’Dowd DK, Klassen H. Isolation and characterization of neural progenitor cells from post-mortem human cortex. J Neurosci Res 2003;74:838–851.

    Article  PubMed  CAS  Google Scholar 

  90. Markakis EA, Palmer TD, Randolph-Moore L, Rakic P, Gage FH. Novel neuronal phenotypes from neural progenitor cells. J Neurosci 2004;24:2886–2897.

    Article  PubMed  CAS  Google Scholar 

  91. Temple S. Division and differentiation of isolated CNS blast cells in microculture. Nature 1989;340:471–473.

    Article  PubMed  CAS  Google Scholar 

  92. Kilpatrick TJ, Bartlett PF. Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 1993;10:255–265.

    Article  PubMed  CAS  Google Scholar 

  93. Davis AA, Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 1994;372:263–266.

    Article  PubMed  CAS  Google Scholar 

  94. Qian X, Davis AA, Goderie SK, Temple S. FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 1997;18:81–93.

    Article  PubMed  CAS  Google Scholar 

  95. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999;96:25–34.

    Article  PubMed  CAS  Google Scholar 

  96. Taupin P, Ray J, Fischer WH, et al. FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron 2000;28:385–397.

    Article  PubMed  CAS  Google Scholar 

  97. Turk V, Bode W. The cystatins: protein inhibitors of cysteine proteinases. FEBS lett 1991;285:213–219.

    Article  PubMed  CAS  Google Scholar 

  98. Seaberg RM, van der Kooy D. Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 2002;22:1784–1793.

    PubMed  CAS  Google Scholar 

  99. Becq H, Jorquera I, Ben-Ari Y, Weiss S, Represa A. Differential properties of dentate gyrus and CA1 neural precursors. J Neurobiol 2005;62:243–261.

    Article  PubMed  CAS  Google Scholar 

  100. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999;97:703–716.

    Article  PubMed  CAS  Google Scholar 

  101. Chiasson BJ, Tropepe V, Morshead CM, van der Kooy D. Adult mammalian forebrain ependymal and subependymal cells demonstrate proliferative potential, but only subependymal cells have neural stem cell characteristics. J Neurosci 1999;19:4462–4471.

    PubMed  CAS  Google Scholar 

  102. Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 2000;97:13,883–13,888.

    Article  PubMed  CAS  Google Scholar 

  103. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 2001;21:7153–7160.

    PubMed  CAS  Google Scholar 

  104. Morshead CM, Garcia AD, Sofroniew MV, van Der Kooy D. The ablation of glial fibrillary acidic protein-positive cells from the adult central nervous system results in the loss of forebrain neural stem cells but not retinal stem cells. Eur J Neurosci 2003;18:76–84.

    Article  PubMed  Google Scholar 

  105. Imura T, Kornblum HI, Sofroniew MV. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci 2003;23:2824–2832.

    PubMed  CAS  Google Scholar 

  106. Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 2004;7:1233–1241.

    Article  PubMed  CAS  Google Scholar 

  107. Morshead CM, Reynolds BA, Craig CG, et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 1994;13:1071–1082.

    Article  PubMed  CAS  Google Scholar 

  108. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 2001;21:7153–7160.

    PubMed  CAS  Google Scholar 

  109. Alonso G. Neuronal progenitor-like cells expressing polysialylated neural cell adhesion molecule are present on the ventricular surface of the adult rat brain and spinal cord. J Comp Neurol 1999;414:149–166.

    Article  PubMed  CAS  Google Scholar 

  110. Yamamoto S, Yamamoto N, Kitamura T, Nakamura K, Nakafuku M. Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol 2001;172:115–127.

    Article  PubMed  CAS  Google Scholar 

  111. Geschwind DH, Ou J, Easterday MC, et al. A genetic analysis of neural progenitor differentiation. Neuron 2001;29:325–339.

    Article  PubMed  CAS  Google Scholar 

  112. Terskikh AV, Easterday MC, Li L, et al. From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc Natl Acad Sci USA 2001;98:7934–7939.

    Article  PubMed  CAS  Google Scholar 

  113. Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA. “Sternness”: transcriptional profiling of embryonic and adult stem cells. Science 2002;298:597–600.

    Article  PubMed  CAS  Google Scholar 

  114. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science 2002;298:601–604.

    Article  PubMed  CAS  Google Scholar 

  115. Yaworsky PJ, Kappen C. Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene. Dev Biol 1999;205:309–321.

    Article  PubMed  CAS  Google Scholar 

  116. Kornblum HI, Geschwind DH. Molecular markers in CNS stem cell research: hitting a moving target. Nat Rev Neurosci 2001;2:843–846.

    Article  PubMed  CAS  Google Scholar 

  117. Chu VT, Gage FH. Chipping away at stem cells. Proc Natl Acad Sci USA 2001;98:7652,7653.

    Article  PubMed  CAS  Google Scholar 

  118. Suslov ON, Kukekov VG, Ignatova TN, Steindler DA. Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc Natl Acad Sci USA 2002;99:14,506–14,511.

    Article  PubMed  CAS  Google Scholar 

  119. Evsikov AV, Solter D. Comment on “’sternness’:transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature”. Science 2003;302:393.

    Article  PubMed  CAS  Google Scholar 

  120. Fortunel NO, Otu HH, Ng HH, et al. Comment on “’stemness’:transcriptional profiling of embryonic and adult stem cells” and “a stem cell molecular signature”. Science 2003;302:393.

    Article  PubMed  CAS  Google Scholar 

  121. Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN. Microfabricated platform for studying stem cell fates. Biotechnol Bioeng 2004;88:399–415.

    Article  PubMed  CAS  Google Scholar 

  122. Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 2000;97:14,720–14,725.

    Article  PubMed  CAS  Google Scholar 

  123. Wang S, Roy NS, Benraiss A, Goldman SA. Promoter-based isolation and fluorescence-activated sorting of mitotic neuronal progenitor cells from the adult mammalian ependymal/subependymal zone. Dev Neurosci 2000;22:167–176.

    Article  PubMed  Google Scholar 

  124. Roy NS, Benraiss A, Wang S, et al. Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J Neurosci Res 2000;59:321–331.

    Article  PubMed  CAS  Google Scholar 

  125. Rietze RL, Valcanis H, Brooker GF, Thomas T, Voss AK, Bartlett PF. Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 2001;412:736–739.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Taupin, P. (2006). Neural Stem Cells. In: Janigro, D. (eds) The Cell Cycle in the Central Nervous System. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-021-8_2

Download citation

Publish with us

Policies and ethics