Skip to main content

Vascular and Neuronal Effects of VEGF in the Nervous System

Implications for Neurological Disorders

  • Chapter
The Cell Cycle in the Central Nervous System

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 1492 Accesses

Abstract

Blood vessels and nerves are both vital channels to and from tissues. Recent genetic insights show that they have much more in common than was originally anticipated. They use similar signals and principles to differentiate, grow, and navigate toward their targets. Moreover, the vascular and nervous systems cross talk and, when dysregulated, this contributes to medically important diseases. No factor is better known for its angiogenic effects than vascular endothelial growth factor (VEGF)—this molecule has been implicated in virtually every type of angiogenic disorder, including those associated with cancer, ischemia, and inflammation. Recent studies revealed, however, that VEGF is also involved in neurodegeneration. The role of VEGF in the nervous system is not restricted only to regulating vessel growth: VEGF also has direct effects on different types of neural cells—including even neural stem cells. Furthermore, genetic studies showed that mice with reduced VEGF levels develop adult-onset motor neuron degeneration reminiscent of the human neurodegenerative disorder amyotrophic lateral sclerosis (ALS), and additional genetic studies confirmed that VEGF is a modifier of motor neuron degeneration in humans and in SOD1G93A mice—a model of ALS. Reduced VEGF levels may promote motor neuron degeneration by limiting neural tissue perfusion, by reducing VEGF-dependent neuroprotection and/or by influencing neuroregeneration/neurogenesis. VEGF also affects neuron survival after acute spinal cord or cerebral ischemia and has been implicated in other neurological disorders such as diabetic and ischemic neuropathy, nerve regeneration, Parkinson’s disease, Alzheimer’s disease, and multiple sclerosis. These findings offer novel opportunities to better decipher the insufficiently understood molecular pathogenesis of many neurodegenerative disorders, and promise to open new avenues for future improved treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219:983–985.

    PubMed  CAS  Google Scholar 

  2. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9:653–660.

    PubMed  CAS  Google Scholar 

  3. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001;280:C1358–C1366.

    PubMed  CAS  Google Scholar 

  4. Shibuya M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct Funct 2001;26:25–35.

    PubMed  CAS  Google Scholar 

  5. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999;13:9–22.

    PubMed  CAS  Google Scholar 

  6. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18:4–25.

    PubMed  CAS  Google Scholar 

  7. Hiratsuka S, Minowa O, Kuno J, Noda, T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci USA 1998;95:9349–9354.

    PubMed  CAS  Google Scholar 

  8. Kendall RL, Wang G, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 1996;226:324–328.

    PubMed  CAS  Google Scholar 

  9. Nagura S, Katoh R, Miyagi E, Shibuya M, Kawaoi A. Expression of vascular endothelial growth factor (VEGF) and VEGF receptor-1 (Flt-1) in Graves disease possibly correlated with increased vascular density. Hum Pathol 2001;32:10–17.

    PubMed  CAS  Google Scholar 

  10. Luttun A, Tjwa M, Moons L, et al. Revascularization of ischemic tissues by P1GF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Fltl. Nat Med 2002;8:831–840.

    PubMed  CAS  Google Scholar 

  11. Autiero M, Luttun A, Tjwa M, Carmeliet P. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 2003;1:1356–1370.

    PubMed  CAS  Google Scholar 

  12. Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001;7:575–583.

    PubMed  CAS  Google Scholar 

  13. Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92:735–745.

    PubMed  CAS  Google Scholar 

  14. Neufeld G, Cohen T, Shraga N, Lange T, Kessler O, Herzog Y. The neuropilins: multifunctional semaphorin and VEGF receptors that modulate axon guidance and angiogenesis. Trends Cardiovasc Med 2002;12:13–19.

    PubMed  CAS  Google Scholar 

  15. Huez I, Bornes S, Bresson D, Creancier L, Prats H. New vascular endothelial growth factor isoform generated by internal ribosome entry site-driven CUG translation initiation. Mol Endocrinol 2001;15:2197–2210.

    PubMed  CAS  Google Scholar 

  16. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407:242–248.

    PubMed  CAS  Google Scholar 

  17. Hiratsuka S, Maru Y, Okada A, Seiki M, Noda T, Shibuya M. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 2001;61:1207–1213.

    PubMed  CAS  Google Scholar 

  18. Autiero M, Waltenberger J, Communi D, et al. Role of P1GF in the intra-and intermolecular cross talk between the VEGF receptors Fltl and Flkl. Nat Med 2003;9:936–943.

    PubMed  CAS  Google Scholar 

  19. Aase K, von Euler G, Li X, et al. Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect. Circulation 2001;104:358–364.

    PubMed  CAS  Google Scholar 

  20. Bellomo D, Headrick JP, Silins GU, et al. Mice lacking the vascular endothelial growth factor-B gene (VEGF-B) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia. Circ Res 2000;86:E29–E35.

    PubMed  CAS  Google Scholar 

  21. Reichelt M, Shi S, Hayes M, et al. Vascular endothelial growth factor-B and retinal vascular development in the mouse. Clin Experiment Ophthalmol 2003;31:61–65.

    PubMed  Google Scholar 

  22. Wanstall JC, Gambino A, Jeffery TK, et al. Vascular endothelial growth factor-B-deficient mice show impaired development of hypoxic pulmonary hypertension. Cardiovasc Res 2002;55:361–368.

    PubMed  CAS  Google Scholar 

  23. Louzier V, Raffestin B, Leroux A, et al. Role of VEGF-B in the lung during development of chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2003;284:L926–L937.

    PubMed  CAS  Google Scholar 

  24. Mould AW, Tonks ID, Cahill MM, et al. Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis. Arthritis Rheum 2003;48:2660–2669.

    PubMed  CAS  Google Scholar 

  25. Lohela M, Saaristo A, Veikkola T, Alitalo K. Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost 2003;90:167–184.

    PubMed  CAS  Google Scholar 

  26. Stacker SA, Hughes RA, Achen MG. Molecular targeting of lymphatics for therapy. Curr Pharm Des 2004;10:65–74.

    PubMed  CAS  Google Scholar 

  27. He Y, Karpanen T, Alitalo K. Role of lymphangiogenic factors in tumor metastasis. Biochim Biophys Acta 2004;1654:3–12.

    PubMed  CAS  Google Scholar 

  28. Tille JC, Nisato R, Pepper MS. Lymphangiogenesis and tumour metastasis. Novartis Found Symp 2004;256:112–131; discussion 132–116,259–169.

    PubMed  CAS  Google Scholar 

  29. Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 2002;16:1151–1162.

    PubMed  CAS  Google Scholar 

  30. Liu Y, Cox SR, Morita T, Kourembanas S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res 1995:77:638–643.

    PubMed  CAS  Google Scholar 

  31. Levy NS, Chung S, Furneaux H, Levy AP. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 1998;273:6417–6423.

    PubMed  CAS  Google Scholar 

  32. Claffey KP, Shih SC, Mullen A, et al. Identification of a human VPF/VEGF 3′ untranslated region mediating hypoxia-induced mRNA stability. Mol Biol Cell 1998:9:469–481.

    PubMed  CAS  Google Scholar 

  33. Levy AP, Levy NS, Goldberg MA. Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 1996;271:2746–2753.

    PubMed  CAS  Google Scholar 

  34. Stein I, Itin A, Einat P, Skaliter R, Grossman Z, Keshet E. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 1998;18:3112–3119.

    PubMed  CAS  Google Scholar 

  35. Miller DL, Dibbens JA, Damert A, Risau W, Vadas MA, Goodall GJ. The vascular endothelial growth factor mRNA contains an internal ribosome entry site. FEBS Lett 1998;434:417–420.

    PubMed  CAS  Google Scholar 

  36. Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol 1998;18:6178–6190.

    PubMed  CAS  Google Scholar 

  37. van der Velden AW, Thomas AA. The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 1999;31:87–106.

    PubMed  Google Scholar 

  38. Skold MK, Marti HH, Lindholm T, et al. Induction of HIFlalpha but not HIF2alpha in motoneurons after ventral funiculus axotomy-implication in neuronal survival strategies. Exp Neurol 2004;188:2O–32.

    Google Scholar 

  39. Oosthuyse B, Moons L, Storkebaum E, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 2001;28:131–138.

    PubMed  CAS  Google Scholar 

  40. Breier G, Albrecht U, Sterrer S, Risau W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 1992;114:521–532.

    PubMed  CAS  Google Scholar 

  41. Dumont DJ, Fong GH, Puri MC, Gradwohl G, Alitalo K, Breitman ML. Vascularization of the mouse embryo: a study of flk-1, tek, tie, and vascular endothelial growth factor expression during development. Dev Dyn 1995;203:80–92.

    PubMed  CAS  Google Scholar 

  42. Millauer B, Wizigmann-Voos S, Schnurch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993;72:835–846.

    PubMed  CAS  Google Scholar 

  43. Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 2002;109:693–705.

    PubMed  CAS  Google Scholar 

  44. Haigh JJ, Morelli PI, Gerhardt H, et al. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev Biol 2003;262:225–241.

    PubMed  CAS  Google Scholar 

  45. Bagnard D, Vaillant C, Khuth ST, et al. Semaphorin 3A-vascular endothelial growth factor-165 balance mediates migration and apoptosis of neural progenitor cells by the recruitment of shared receptor. J Neurosci 2001;21:3332–3341.

    PubMed  CAS  Google Scholar 

  46. Kitsukawa T, Shimizu M, Sanbo M, et al. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 1997;19:995–1005.

    PubMed  CAS  Google Scholar 

  47. Kawasaki T, Kitsukawa T, Bekku Y, et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 1999;126:4895–4902.

    PubMed  CAS  Google Scholar 

  48. Chen H, Bagri A, Zupicich JA, et al. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 2000;25:43–56.

    PubMed  Google Scholar 

  49. Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 2002;129:4797–4806.

    PubMed  CAS  Google Scholar 

  50. Carmeliet P. Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet 2003;4:710–720.

    PubMed  CAS  Google Scholar 

  51. Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J Neurosci 1999;19:5731–5740.

    PubMed  CAS  Google Scholar 

  52. Sondell M, Sundler F, Kanje M. Vascular endothelial growth factor is a neurotrophic factor which stimulates axonal outgrowth through the flk-1 receptor. Eur J Neurosci 2000;12:4243–4254.

    PubMed  CAS  Google Scholar 

  53. Silverman WF, Krum JM, Mani N, Rosenstein JM. Vascular, glial and neuronal effects of vascular endothelial growth factor in mesencephalic explant cultures. Neuroscience 1999;90:1529–1541.

    PubMed  CAS  Google Scholar 

  54. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor rescues HN33 neural cells from death induced by serum withdrawal. J Mol Neurosci 2000;14:197–203.

    PubMed  CAS  Google Scholar 

  55. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 2000;97:10,242–10,247.

    PubMed  CAS  Google Scholar 

  56. Matsuzaki H, Tamatani M, Yamaguchi A, et al. Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J 2001;15:1218–1220.

    PubMed  CAS  Google Scholar 

  57. Svensson B, Peters M, Konig HG, et al. Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J Cereb Blood Flow Metab 2002;22:1170–1175.

    PubMed  CAS  Google Scholar 

  58. Wick A, Wick W, Waltenberger J, Weller M, Dichgans J, Schulz JB. Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt. J Neurosci 2002;22:6401–6407.

    PubMed  CAS  Google Scholar 

  59. Jin K, Mao XO, Batteur SP, McEachron E, Leahy A, Greenberg DA. Caspase-3 and the regulation of hypoxic neuronal death by vascular endothelial growth factor. Neuroscience 2001;108:351–358.

    PubMed  CAS  Google Scholar 

  60. Ogunshola OO, Antic A, Donoghue MJ, et al. Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J Biol Chem 2002;277:11,410–11,415.

    PubMed  CAS  Google Scholar 

  61. Xu JY, Zheng P, Shen DH, et al. Vascular endothelial growth factor inhibits outward delayed-rectifier potassium currents in acutely isolated hippocampal neurons. Neuroscience 2003;118:59–67.

    PubMed  CAS  Google Scholar 

  62. Qiu MH, Zhang R, Sun FY. Enhancement of ischemia-induced tyrosine phosphorylation of Kv1.2 by vascular endothelial growth factor via activation of phosphatidylinositol 3-kinase. J Neurochem 2003;87:1509–1517.

    PubMed  CAS  Google Scholar 

  63. Rosenstein JM, Mani N, Khaibullina A, Krum JM. Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. J Neurosci 2003;23:11,036–11,044.

    PubMed  CAS  Google Scholar 

  64. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 2002;99:11,946–11,950.

    PubMed  CAS  Google Scholar 

  65. Fabel K, Tam B, Kaufer D, et al. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 2003;18:2803–2812.

    PubMed  Google Scholar 

  66. Maurer MH, Tripps WK, Feldmann RE, Jr, Kuschinsky W. Expression of vascular endothelial growth factor and its receptors in rat neural stem cells. Neurosci Lett 2003;344:165–168.

    PubMed  CAS  Google Scholar 

  67. Zhu Y, Jin K, Mao XO, Greenberg DA. Vascular endothelial growth factor promotes proliferation of cortical neuron precursors by regulating E2F expression. FASEB J 2003;17:186–193.

    PubMed  CAS  Google Scholar 

  68. Zhang H, Vutskits L, Pepper MS, Kiss JZ. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol 2003;163:1375–1384.

    PubMed  CAS  Google Scholar 

  69. Krum JM, Mani N, Rosenstein JM. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 2002;110:589–604.

    PubMed  CAS  Google Scholar 

  70. Krum JM, Khaibullina A. Inhibition of endogenous VEGF impedes revascularization and astroglial proliferation: roles for VEGF in brain repair. Exp Neurol 2003;181:241–257.

    PubMed  CAS  Google Scholar 

  71. Forstreuter F, Lucius R, Mentlein R. Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J Neuroimmunol 2002;132:93–98.

    PubMed  CAS  Google Scholar 

  72. Schratzberger P, Schratzberger G, Silver M, et al. Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy. Nat Med 2000;6:405–413.

    PubMed  CAS  Google Scholar 

  73. Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med 2001;344:1688–1700.

    PubMed  CAS  Google Scholar 

  74. Hand CK, Rouleau GA. Familial amyotrophic lateral sclerosis. Muscle Nerve 2002;25:135–159.

    PubMed  CAS  Google Scholar 

  75. Green SL, Tolwani RJ. Animal models for motor neuron disease. Lab Anim Sci 1999;49:480–487.

    PubMed  CAS  Google Scholar 

  76. Yang Y, Hentati A, Deng HX, et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat Genet 2001;29:160–165.

    PubMed  CAS  Google Scholar 

  77. Wilhelmsen KC. Disinhibition-dementia-parkinsonism-amyotrophy complex (DDPAC) is a non-Alzheimer’s frontotemporal dementia. J Neural Transm Suppl 1997;49:269–275.

    PubMed  CAS  Google Scholar 

  78. Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998;393:702–705.

    PubMed  CAS  Google Scholar 

  79. Rabin BA, Griffin JW, Crain BJ, Scavina M, Chance PF, Cornblath DR. Autosomal dominant juvenile amyotrophic lateral sclerosis. Brain 1999;122(Pt 8):1539–1550.

    PubMed  Google Scholar 

  80. Hosier BA, Siddique T, Sapp PC, et al. Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA 2000;284:1664–1669.

    Google Scholar 

  81. Hand CK, Khoris J, Salachas F, et al. A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am J Hum Genet 2002;70:251–256.

    PubMed  CAS  Google Scholar 

  82. Ruddy DM, Parton MJ, Al-Chalabi A, et al. Two families with familial amyotrophic lateral sclerosis are linked to a novel locus on chromosome 16q. Am J Hum Genet 2003;73:390–396.

    PubMed  CAS  Google Scholar 

  83. Sapp PC, Hosier BA, McKenna-Yasek D, et al. Identification of two novel loci for dominantly inherited familial amyotrophic lateral sclerosis. Am J Hum Genet 2003;73:397–403.

    PubMed  CAS  Google Scholar 

  84. Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2001;2:806–819.

    PubMed  CAS  Google Scholar 

  85. Dal Canto MC, Gurney ME. Neuropathological changes in two lines of mice carrying a transgene for mutant human Cu,Zn SOD, and in mice overexpressing wild type human SOD: a model of familial amyotrophic lateral sclerosis (FALS). Brain Res 1995;676:25–40.

    Google Scholar 

  86. Lambrechts D, Storkebaum E, Morimoto M, et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet 2003;34:383–394.

    PubMed  CAS  Google Scholar 

  87. Gros-Louis F, Laurent S, Lopes AA, et al. Absence of mutations in the hypoxia response element of VEGF in ALS. Muscle Nerve 2003;28:774–775.

    PubMed  Google Scholar 

  88. Devos D, Moreau C, Lassalle P, et al. Low levels of the vascular endothelial growth factor in CSF from early ALS patients. Neurology 2004;62:2127–2129.

    PubMed  CAS  Google Scholar 

  89. Storkebaum E, Lambrechts D, Manka D, et al. VEGF, a modifier of motor neuron degeneration in SOD1 G93A mice, protects against motor neuron loss after spinal cord ischemia: evidence for a vascular hypothesis. Program No. 602.11. 2003 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, online.

    Google Scholar 

  90. Sopher BL, Thomas PS, Jr, LaFevre-Bernt MA, et al. Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 2004;41:687–699.

    PubMed  CAS  Google Scholar 

  91. Pramatarova A, Laganiere J, Roussel J, Brisebois K, Rouleau GA. Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment. J Neurosci 2001;21:3369–3374.

    PubMed  CAS  Google Scholar 

  92. Gong YH, Parsadanian AS, Andreeva A, Snider WD, Elliott JL. Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration. J Neurosci 2000;20:660–665.

    PubMed  CAS  Google Scholar 

  93. Lino MM, Schneider C, Caroni P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J Neurosci 2002;22:4825–4832.

    PubMed  CAS  Google Scholar 

  94. Buijs PC, Krabbe-Hartkamp MJ, Bakker CJ, et al. Effect of age on cerebral blood flow: measurement with ungated two-dimensional phase-contrast MR angiography in 250 adults. Radiology 1998;209:667–674.

    PubMed  CAS  Google Scholar 

  95. Ochiai-Kanai R, Hasegawa K, Takeuchi Y, Yoshioka H, Sawada T. Immunohistochemical nitrotyrosine distribution in neonatal rat cerebrocortical slices during and after hypoxia. Brain Res 1999;847:59–70.

    PubMed  CAS  Google Scholar 

  96. Kobari M, Obara K, Watanabe S, Dembo T, Fukuuchi Y. Local cerebral blood flow in motor neuron disease: correlation with clinical findings. J Neurol Sci 1996;144:64–69.

    PubMed  CAS  Google Scholar 

  97. Waldemar G, Vorstrup S, Jensen TS, Johnsen A, Boysen G. Focal reductions of cerebral blood flow in amyotrophic lateral sclerosis: a [99mTc]-d,l-HMPAO SPECT study. J Neurol Sci 1992;107:19–28.

    PubMed  CAS  Google Scholar 

  98. Heath PR, Shaw PJ. Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle Nerve 2002;26:438–458.

    PubMed  CAS  Google Scholar 

  99. Ramsden DB, Parsons RB, Ho SL, Waring RH. The aetiology of idiopathic Parkinson’s disease. Mol Pathol 2001;54:369–380.

    PubMed  CAS  Google Scholar 

  100. Kennea NL, Mehmet H. Neural stem cells. J Pathol 2002;197:536–550.

    PubMed  Google Scholar 

  101. Yamamoto S, Yamamoto N, Kitamura T, Nakamura K, Nakafuku M. Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol 2001;172:115–127.

    PubMed  CAS  Google Scholar 

  102. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002;110:429.

    PubMed  CAS  Google Scholar 

  103. Ogawa Y, Sawamoto K, Miyata T, et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 2002;69:925–933.

    PubMed  CAS  Google Scholar 

  104. Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, der Kooy D. In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 1996;16:2649–2658.

    PubMed  CAS  Google Scholar 

  105. Martens DJ, Seaberg RM, van der Kooy D. In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur J Neurosci 2002;16:1045–1057.

    PubMed  Google Scholar 

  106. Sun Y, Jin K, Xie L, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 2003;111:1843–1851.

    PubMed  CAS  Google Scholar 

  107. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000;425:479 94.

    PubMed  Google Scholar 

  108. Shah NM, Groves AK, Anderson DJ. Alternative neural crest cell fates are instructively promoted by TGFbeta superfamily members. Cell 1996;85:331–343.

    PubMed  CAS  Google Scholar 

  109. Mi H, Haeberle H, Barres BA. Induction of astrocyte differentiation by endothelial cells. J Neurosci 2001;21:1538–1547.

    PubMed  CAS  Google Scholar 

  110. Louissaint A, Jr, Rao S, Leventhal C, Goldman SA. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 2002;34:945–960.

    PubMed  CAS  Google Scholar 

  111. Katoh-Semba R, Asano T, Ueda H, et al. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J 2002;16:1328–1330.

    PubMed  CAS  Google Scholar 

  112. Miller RG, Mitchell JD, Lyon M, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Amyotroph Lateral Scler Other Motor Neuron Disord 2003;4:191–206.

    PubMed  CAS  Google Scholar 

  113. Ochs G, Penn RD, York M, et al. A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1:201–206.

    PubMed  CAS  Google Scholar 

  114. Miller RG, Petajan JH, Bryan WW, et al. A placebo-controlled trial of recombinant human ciliary neurotrophic (rhCNTF) factor in amyotrophic lateral sclerosis. rhCNTF ALS Study Group. Ann Neurol 1996;39:256–260.

    PubMed  CAS  Google Scholar 

  115. Lai EC, Felice KJ, Festoff BW, et al. Effect of recombinant human insulin-like growth factor-I on progression of ALS. A placebo-controlled study. The North America ALS/IGF-I Study Group. Neurology 1997;49:1621–1630.

    PubMed  CAS  Google Scholar 

  116. Borasio GD, Robberecht W, Leigh PN, et al. A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I Study Group. Neurology 1998;51:583–586.

    PubMed  CAS  Google Scholar 

  117. Azari MF, Lopes EC, Stubna C, et al. Behavioural and anatomical effects of systemically administered leukemia inhibitory factor in the SOD1(G93A G1H) mouse model of familial amyotrophic lateral sclerosis. Brain Res 2003;982:92–97.

    PubMed  CAS  Google Scholar 

  118. Feeney SJ, Austin L, Bennett TM, et al. The effect of leukaemia inhibitory factor on SOD1 G93A murine amyotrophic lateral sclerosis. Cytokine 2003;23:108–118.

    PubMed  CAS  Google Scholar 

  119. Ramer MS, Bradbury EJ, Michael GJ, Lever IJ, McMahon SB. Glial cell line-derived neurotrophic factor increases calcitonin gene-related peptide immunoreactivity in sensory and motoneurons in vivo. Eur J Neurosci 2003;18:2713–2721.

    PubMed  Google Scholar 

  120. Boyd JG, Gordon T. A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain-derived neurotrophic factor. Eur J Neurosci 2002;15:613–626.

    PubMed  CAS  Google Scholar 

  121. Thome RG, Frey WH, 2nd. Delivery of neurotrophic factors to the central nervous system: pharma-cokinetic considerations. Clin Pharmacokinet 2001;40:907–946.

    Google Scholar 

  122. Acsadi G, Anguelov RA, Yang H, et al. Increased survival and function of SOD1 mice after glial cell-derived neurotrophic factor gene therapy. Hum Gene Ther 2002;13:1047–1059.

    PubMed  CAS  Google Scholar 

  123. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 2003;301:839–842.

    PubMed  CAS  Google Scholar 

  124. Li B, Xu W, Luo C, Gozal D, Liu R. VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SODl-mediated motor neuron cell death. Brain Res Mol Brain Res 2003;111:155–164.

    PubMed  CAS  Google Scholar 

  125. Azzouz M, Ralph GS, Storkebaum E, et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 2004;429:413–417.

    PubMed  CAS  Google Scholar 

  126. Storkebaum E, Lambrechts D, Dewerchin M, et al. Treatment of motorneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 2005;8:5–7.

    Google Scholar 

  127. Hayashi T, Abe K, Suzuki H, Itoyama Y. Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 1997;28:2039–2044.

    PubMed  CAS  Google Scholar 

  128. Plate KH, Beck H, Danner S, Allegrini PR, Wiessner C. Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol 1999;58:654–666.

    PubMed  CAS  Google Scholar 

  129. Zhang ZG, Zhang L, Tsang W, et al. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab 2002;22:379–392.

    PubMed  CAS  Google Scholar 

  130. van Bruggen N, Thibodeaux H, Palmer JT, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 1999;104:1613–1620.

    PubMed  Google Scholar 

  131. Zhang ZG, Zhang L, Jiang Q, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 2000;106:829–838.

    PubMed  CAS  Google Scholar 

  132. Harrigan MR, Ennis SR, Sullivan SE, Keep RF. Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume. Acta Neurochir (Wien) 2003;145:49–53.

    CAS  Google Scholar 

  133. Hayashi T, Abe K, Itoyama Y. Reduction of ischemic damage by application of vascular endothelial growth factor in rat brain after transient ischemia. J Cereb Blood Flow Metab 1998;18:887–895.

    PubMed  CAS  Google Scholar 

  134. Marti HJ, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 2000;156:965–976.

    PubMed  CAS  Google Scholar 

  135. Lennmyr F, Ata KA, Funa K, Olsson Y, Terent A. Expression of vascular endothelial growth factor (VEGF) and its receptors (Fit-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol 1998;57:874–882.

    PubMed  CAS  Google Scholar 

  136. Beck H, Acker T, Puschel AW, Fujisawa H, Carmeliet P, Plate KH. Cell type-specific expression of neuropilins in an MCA-occlusion model in mice suggests a potential role in post-ischemic brain remodeling. J Neuropathol Exp Neurol 2002;61:339–350.

    PubMed  CAS  Google Scholar 

  137. Yang ZJ, Bao WL, Qiu MH, et al. Role of vascular endothelial growth factor in neuronal DNA damage and repair in rat brain following a transient cerebral ischemia. J Neurosci Res 2002;70:140–149.

    PubMed  CAS  Google Scholar 

  138. Manoonkitiwongsa PS, Schultz RL, McCreery DB, Whitter EF, Lyden PD. Neuroprotection of ischemic brain by vascular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis. J Cereb Blood Flow Metab 2004;24:693–702.

    PubMed  CAS  Google Scholar 

  139. Veves A, King GL. Can VEGF reverse diabetic neuropathy in human subjects? J Clin Invest 2001;107:1215–1218.

    PubMed  CAS  Google Scholar 

  140. Samii A, Unger J, Lange W. Vascular endothelial growth factor expression in peripheral nerves and dorsal root ganglia in diabetic neuropathy in rats. Neurosci Lett 1999;262:159–162.

    PubMed  CAS  Google Scholar 

  141. Schratzberger P, Walter DH, Rittig K, et al. Reversal of experimental diabetic neuropathy by VEGF gene transfer. J Clin Invest 2001;107:1083–1092.

    PubMed  CAS  Google Scholar 

  142. Simovic D, Isner JM, Ropper AH, Pieczek A, Weinberg DH. Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol 2001;58:761–768.

    PubMed  CAS  Google Scholar 

  143. Isner JM, Ropper A, Hirst K. VEGF gene transfer for diabetic neuropathy. Hum Gene Ther 2001:12:1593–1594.

    PubMed  CAS  Google Scholar 

  144. Vaquero J, Zurita M, de Oya S, Coca S. Vascular endothelial growth/permeability factor in spinal cord injury. J Neurosurg 1999;90:220–223.

    PubMed  CAS  Google Scholar 

  145. Skold M, Cullheim S, Hammarberg H, et al. Induction of VEGF and VEGF receptors in the spinal cord after mechanical spinal injury and prostaglandin administration. Eur J Neurosci 2000;12:3675–3686.

    PubMed  CAS  Google Scholar 

  146. Hayashi T, Sakurai M, Abe K, Sadahiro M, Tabayashi K, Itoyama Y. Expression of angiogenic factors in rabbit spinal cord after transient ischaemia. Neuropathol Appl Neurobiol 1999;25:63–71.

    PubMed  CAS  Google Scholar 

  147. Widenfalk J, Lipson A, Jubran M, et al. Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 2003;120:951–960.

    PubMed  CAS  Google Scholar 

  148. Benton RL, Whittemore SR. VEGF165 therapy exacerbates secondary damage following spinal cord injury. Neurochem Res 2003;28:1693–1703.

    PubMed  CAS  Google Scholar 

  149. Lang-Lazdunski L, Matsushita K, Hirt L, et al. Spinal cord ischemia. Development of a model in the mouse. Stroke 2000;31:208–213.

    CAS  Google Scholar 

  150. Sondell M, Lundborg G, Kanje M. Vascular endothelial growth factor stimulates Schwann cell invasion and neovascularization of acellular nerve grafts. Brain Res 1999;846:219–228.

    PubMed  CAS  Google Scholar 

  151. Hobson MI, Green CJ, Terenghi G. VEGF enhances intraneural angiogenesis and improves nerve regeneration after axotomy. J Anat 2000;197(Pt 4):591–605.

    PubMed  CAS  Google Scholar 

  152. Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5:146–156.

    PubMed  CAS  Google Scholar 

  153. Facchiano F, Fernandez E, Mancarella S, et al. Promotion of regeneration of corticospinal tract axons in rats with recombinant vascular endothelial growth factor alone and combined with adenovirus coding for this factor. J Neurosurg 2002;97:161–168.

    PubMed  CAS  Google Scholar 

  154. Kalaria RN. Small vessel disease and Alzheimer’s dementia: pathological considerations. Cerebrovasc Dis 2002;13:48–52.

    PubMed  CAS  Google Scholar 

  155. Nagata K, Kondoh Y, Atchison R, et al. Vascular and metabolic reserve in Alzheimer’s disease. Neurobiol Aging 2000;21:301–307.

    PubMed  CAS  Google Scholar 

  156. Kalaria RN, Cohen DL, Premkumar DR, Nag S, LaManna JC, Lust WD. Vascular endothelial growth factor in Alzheimer’s disease and experimental cerebral ischemia. Brain Res Mol Brain Res 1998;62:101–105.

    PubMed  CAS  Google Scholar 

  157. Tarkowski E, Issa R, Sjogren M, et al. Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer’s disease and vascular dementia. Neurobiol Aging 2002;23:237–243.

    PubMed  CAS  Google Scholar 

  158. Yasuhara T, Shingo T, Kobayashi K, et al. Neuroprotective effects of vascular endothelial growth factor (VEGF) upon dopaminergic neurons in a rat model of Parkinson’s disease. Eur J Neurosci 2004;19:1494–1504.

    PubMed  Google Scholar 

  159. Pitzer MR, Sortwell CE, Daley BF, et al. Angiogenic and neurotrophic effects of vascular endothelial growth factor (VEGF165): studies of grafted and cultured embryonic ventral mesencephalic cells. Exp Neurol 2003;182:435–445.

    PubMed  CAS  Google Scholar 

  160. Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N. Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 2002;13:554–573.

    Google Scholar 

  161. Kirk SL, Karlik SJ. VEGF and vascular changes in chronic neuroinflammation. J Autoimmun 2003:21:353–363.

    PubMed  CAS  Google Scholar 

  162. Proescholdt MA, Jacobson S, Tresser N, Oldfield EH, Merrill MJ. Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats. J Neuropathol Exp Neurol 2002;61:914–925.

    PubMed  CAS  Google Scholar 

  163. Armstrong RJ, Barker RA. Neurodegeneration: a failure of neuroregeneration? Lancet 2001;358:1174–1176.

    PubMed  CAS  Google Scholar 

  164. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once just a specific angiogenic factor, now attractive for neuroprotection? BioEssays 2004;26:943–954.

    PubMed  CAS  Google Scholar 

  165. Wahl M. Support for VEGF treatment grows. MDA/ALS Newsmagazine 2004;9(7).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Moons, L., Carmeliet, P., Dewerchin, M. (2006). Vascular and Neuronal Effects of VEGF in the Nervous System. In: Janigro, D. (eds) The Cell Cycle in the Central Nervous System. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-021-8_19

Download citation

Publish with us

Policies and ethics