Skip to main content

The Contribution of Bone Marrow-Derived Cells to Cerebrovascular Formation and Integrity

  • Chapter
The Cell Cycle in the Central Nervous System

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 1482 Accesses

Abstract

The contribution of bone marrow-derived circulating cells to the formation and maintenance of the vasculature, and the cerebrovasculature in particular, has been established. It is becoming evident that several different populations of cells including early progenitor-like cells, monocytic cells, and perhaps mesenchymal stem cells are responsible for the reported actions of “endothelial progenitor cells.” Large variation in the relative contribution of bone marrow-derived cells to formation and repair of the vasculature in different experimental systems illustrates some of the factors that influence the behavior of bone marrow-derived cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubin LL, Staddon JM. The cell biology of the blood-brain barrier. Annu Rev Neurosci 1999;22:11–28.

    Article  PubMed  CAS  Google Scholar 

  2. Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Biol 2000;20:57–76.

    CAS  Google Scholar 

  3. Petty MA, Lo EH. Junctional complexes of the BBB: permeability changes in neuroinflammation. Prog Neurobiol 2002;68:311–323.

    Article  PubMed  CAS  Google Scholar 

  4. Petty MA, Wettstein JG. Elements of cerebral microvascular ischaemia. Brain Res 2001;36:23–34.

    Article  CAS  Google Scholar 

  5. Rosenberg GA. Ischemic brain edema. Prog Cardiovasc Dis 1999;42:209–216.

    Article  PubMed  CAS  Google Scholar 

  6. Cervos-Nararro J, Lafuente JV. Traumatic Brain injuries: structural changes. J Neurol Sci 1991;103(Suppl):S3–S14

    Article  Google Scholar 

  7. Atwood CS, Bowen RL, Smith MA, Perry G. Cerebrovascular requirement for sealant, anti-coagulant and remodeling molecules that allow for the maintainance of vascular integrity and blood supply. Brain Res Rev 2003;43:164–178.

    Article  PubMed  CAS  Google Scholar 

  8. Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. Blood-brain barrier permeability precedes senile plaque formatin in an Alzheimer disease model. Microcirculation 2003;10:463–470.

    Article  PubMed  CAS  Google Scholar 

  9. Jellinger KA. Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 2002;109:813–836.

    Article  PubMed  CAS  Google Scholar 

  10. Floris S, Bleezer EL, Schreibelt G, et al. Blood-brain barrier permeability and monocyte infiltration in experimental allergic encephalomyelitis: a quantitative MRI study. Brain 2004;127:616–627.

    Article  PubMed  CAS  Google Scholar 

  11. Annunziata P. Blood-brain barrier changes during invasion of the central nervous system by HIV-1. Old and new insights into the mechanism. J Neurol 2003;250:901–906

    Article  PubMed  CAS  Google Scholar 

  12. Adams S, Brown H, Turner G. Breaking down the blood-brain barrier: signaling a path to cerebral malaria? Trends Parasitol 2002;18:360–366.

    Article  PubMed  CAS  Google Scholar 

  13. Calapai G, Marciano MC, Corica F, et al. Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol 2000;401:349–356.

    Article  PubMed  CAS  Google Scholar 

  14. Ding-Zhou L, Margaill I, Palmier B, Pruneau D, Plotkine M, Marchand-Verrecchia C. LF 16-0687-Ms, a bradykinin B2 receptor antagonist, reduces ischemic brain injury in a murine model of transient focal cerebral ischemia. Br J Pharmacol 2003;139:1539–1547.

    Article  PubMed  CAS  Google Scholar 

  15. Jacobson JR, Dudek SM, Birukov KG, et al. Cytoskeletal activation and altered gene expression in endothelial barrier regulation by simvistatin. Am J Respir Cell Mol Biol 2004;30:662–670.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang ZG, Zhang L, Tsang W, et al. Correlation of VEGF and angiopoietin expression with disruption of blood brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab 2002;22:379–392.

    Article  PubMed  CAS  Google Scholar 

  17. Marchi N, Rasmussen P, Kapural M, et al. Peripheral markers of brain damage and blood-brain barrier dysfunction. Restor Neurol Neurosci 2003;21(3,4):109–121.

    PubMed  CAS  Google Scholar 

  18. Pfefferkorn T, Rosenberg GA. Closure of the blood-brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke 2003;34:2025–2030.

    Article  PubMed  Google Scholar 

  19. Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res 2003;314:119–129.

    Article  PubMed  CAS  Google Scholar 

  20. Dambska M. The vascularization of the developing human brain. Folia Neuropathol 1995;33:189–193.

    PubMed  CAS  Google Scholar 

  21. Bauer HC, Steiner M, Bauer H. Embryonic development of the CNS microvasculature in the mouse: new insights into the structural mechanisms of early angiogenesis. EXS 1992;61:64–68.

    PubMed  CAS  Google Scholar 

  22. Risau W, Sariola H, Zerwes HG, et al. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 1988;102:471–478.

    PubMed  CAS  Google Scholar 

  23. Wilting J, Brand-Saberi B, Kurz H, Christ B. Development of the embryonic vascular system. Cell Mol Biol Res 1995;41:219–232.

    PubMed  CAS  Google Scholar 

  24. Kurz H. Physiology of angiogenesis. J Neuro-Oncol 2000;50:17–35.

    Article  CAS  Google Scholar 

  25. Hatzopoulos AK, Folkman J, Vasile E, Eiselen GK, Rosenberg RD. Isolation and characterization of endothelial progenitor cells from mouse embryos. Development 1998;125:1457–1468.

    PubMed  CAS  Google Scholar 

  26. Vajkoczy P, Blum S, Lamparter M, et al. Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med 2003;197:1755–1765.

    Article  PubMed  CAS  Google Scholar 

  27. Zadeh G, Guha A. Molecular regulators of angiogenesis in the developing nervous system and adult brain tumors. Int J Oncol 2003;23:557–567.

    PubMed  CAS  Google Scholar 

  28. Carmeliet P, Collen D. Molecular analysis of blood vessel formation and disease. Am J Physiol 1997;273:H2091–H2104.

    PubMed  CAS  Google Scholar 

  29. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Weigand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000;407:242–248.

    Article  PubMed  CAS  Google Scholar 

  30. Gale NW, Thurston G, Davis S, et al. Complementary and coordinated roles of the VEGFs and angiopoietins during normal and pathological vascular formation. Cold Spring Harb Symp Quant Biol 2002;67:267–273.

    Article  PubMed  CAS  Google Scholar 

  31. Bikfalvi A, Bicknell R. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting. Trends Pharmacol Sci 2002;23:576–582.

    Article  PubMed  CAS  Google Scholar 

  32. Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overex-pressing angiopoietin-1. Science 1999;286:2511–2514.

    Article  PubMed  CAS  Google Scholar 

  33. Thurston G, Rudge JS, Ioffe E, et al. Angiopoitin-1 protects the adult vasculature against plasma leakage. Nat Med 2000;6:460–463.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang Z, Chopp M. Vascular endothelial growth factor and angiopoietins in focal cerebral ischemia. Trends Cardiovasc Med 2002;12:62–66.

    Article  PubMed  CAS  Google Scholar 

  35. Risau W. Embryonic angiogenesis factors. Pharmacol Ther 1991;51:371–376.

    Article  PubMed  CAS  Google Scholar 

  36. Fee D, Grzybicki D, Dobbs, et al. Il-6 promotes vasculogenesis of murine brain microvessel endothelial cells. Cytokine 2000;12:655–665.

    Article  PubMed  CAS  Google Scholar 

  37. Lamszus K, Heese O, Westphal M. Angiogenesis-related growth factors in brain tumors. Cancer Treat Res 2004;117:169–190.

    PubMed  CAS  Google Scholar 

  38. Robertson PL, DuBois M, Bowman PD, Goldstein GW. Angiogenesis in developing rat brain: an in vivo and in vitro study. Brain Res 1985;355:219–223.

    PubMed  CAS  Google Scholar 

  39. Stump MM, Jordan JL, DeBakey ME, Halpert B. Endothelium grown from circulating blood on isolated intravascular Dacron hub. Am J Pathol 1963;43:361–367.

    PubMed  CAS  Google Scholar 

  40. Mackenzie JR, Hackett M, Topuzlu C, Tibbs DJ. Origin of arterial prosthesis lining from circulating blood cells. Arch Surg 1968;97:879–885.

    PubMed  CAS  Google Scholar 

  41. Shi Q, Wu MH, Hayashida N, Wechezak AR, Clowes AW, Sauvage LR. Proof of fallout endothelial-ization of impervious Dacron grafts in the aorta and inferior vena cava of the dog. J Vase Surg 1994;20:546–556; discussion 556–557.

    CAS  Google Scholar 

  42. Wu MH, Shi Q, Wechezak AR, Clowes AW, Gordon IL, Sauvage LR. Definitive proof of endothelialization of a Dacron arterial prosthesis in a human being. J Vase Surg 1995;21:862–867.

    Article  CAS  Google Scholar 

  43. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med 2002;346:5–15.

    Article  PubMed  Google Scholar 

  44. Lagaaij EL, Cramer-Knijnenburg GF, van Kemenade FJ, van Es LA, Bruijn JA, van Krieken JH. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet 2001;6:33–37.

    Article  Google Scholar 

  45. Hove WR, van Hoek B, Bajema IM, Ringers J, van Krieken JH, Lagaaij EL. Extensive chimerism in liver transplants: vascular endothelium, bile duct epithelium, and hepatocytes. Liver Transpl 2003;9:552–556.

    Article  PubMed  Google Scholar 

  46. Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP. Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 1997;337:1584–1590.

    Article  PubMed  CAS  Google Scholar 

  47. Mutin M, Canavy I, Blann A, Bory M, Sampol J, Dignat-George F. Direct evidence of endothelial injury in acute myocardial infarction and unstable angina by demonstration of circulating endothelial cells. Blood 1999;93:2951–2958.

    PubMed  CAS  Google Scholar 

  48. Grefte A, van der Giessen M, van Son W. The TH. Circulating Cytomegalovirus (CMV)-infected endothelial cells in patients with an active CMV infection. J Infect Dis 1993;167:270–277.

    PubMed  CAS  Google Scholar 

  49. Abbott J, Giordano FJ. Stem cells and cardiovascular disease. J Nucl Cardiol 2003;10:403–412.

    Article  PubMed  Google Scholar 

  50. Verfaillie CM. Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 2002;12:502–508.

    Article  PubMed  CAS  Google Scholar 

  51. Verfaillie CM, Schwartz R, Reyes M, Jiang Y. Unexpected potential of adult stem cells. Ann NY Acad Sci 2003;996:231–234.

    PubMed  CAS  Google Scholar 

  52. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418:41–49.

    Article  PubMed  CAS  Google Scholar 

  53. Prockop DJ. Marrow stromal cell as stem cells for nonhematopoietic tissues. Science 1997;276:71–74.

    Article  PubMed  CAS  Google Scholar 

  54. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;5302:964–967.

    Article  Google Scholar 

  55. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999;85:221–228.

    PubMed  CAS  Google Scholar 

  56. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000;105:71–77.

    Article  PubMed  CAS  Google Scholar 

  57. Shi Q, Rafii S, Wu MHD, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998;92:362–367.

    PubMed  CAS  Google Scholar 

  58. Gehling UM, Ergun S, Schumacher U, et al. In vitro differentiation of endothelial cells from AC 133-positive progenitor cells Blood 2000;95:3106–3112.

    PubMed  CAS  Google Scholar 

  59. Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers DG. Differentiation and expansion of endothelial cells from human bone marrow. British J Hematol 2001;115:186–194.

    Article  CAS  Google Scholar 

  60. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC 133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 2000;95:952–958.

    PubMed  CAS  Google Scholar 

  61. Rehman J, Li J, Orschell CM, March KL. Peripheral blood endothelial progenitors cells are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 2003;107:1164–1169.

    Article  PubMed  Google Scholar 

  62. Schmeisser A, Garlichs CD, Zhang H, et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 2001;49:671–680.

    Article  PubMed  CAS  Google Scholar 

  63. Nakul-Aquaronne D, Bayle J, Frelin C. Coexpression of endothelial markers and CD14 by cytokine mobilized CD34+ cells under angiogenic stimulation. Cardiovasc Res 2003;57:816–823.

    Article  PubMed  CAS  Google Scholar 

  64. Harraz M, Jiao C, Hanlon HD, Hartley RS. Schatteman GCCD34-blood-derived human endothelial cell progenitors. Stem Cells 2001;19:304–312.

    Article  PubMed  CAS  Google Scholar 

  65. Fernandez Pujol B, Licibello FC, Gehling UM, et al. Endothelial-like cells derived from CD14 positive monocytes. Differentiation 2000;65:287–300.

    Article  PubMed  CAS  Google Scholar 

  66. Bailey AS, Jiang S, Afentoulis M, et al. Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood 2004;103:13–19.

    Article  PubMed  CAS  Google Scholar 

  67. Havemann K, Pujol BF, Adamkiewicz J. In vitro transformation of monocytes and dendritic cells into endothelial like cells. Adv Exp Med Biol 2003;522:47–57.

    PubMed  CAS  Google Scholar 

  68. Glod J, Kobiler D, Noel M, Marie D, Fine HA. Monocytes form a vascular barrier and parcipitate in vessel repair after brain injury. Blood 2005, in press.

    Google Scholar 

  69. Fujiyama S, Amano K, Uehira K, et al. Bone marrow monocyte lineage cells adhere to injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothe-lialization as endothelial progenitor cells. Circ Res 2003;93:980–989.

    Article  PubMed  CAS  Google Scholar 

  70. Freedman SB, Isner JM. Therapeutic angiogenesis for ischemic cardiovascular disease. J Mol Cell Cardiol 2001;33:379–393.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res 2002;90:284–288.

    Article  PubMed  CAS  Google Scholar 

  72. Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001;7:1194–1201.

    Article  PubMed  CAS  Google Scholar 

  73. Ferrari N, Glod J, Lee J, Kobiler D, Fine HA. Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Ther 2003; 10:647–656.

    Article  PubMed  CAS  Google Scholar 

  74. Machein MR, Renninger S, de Lima-Hahn E, Plate KH. Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol 2003;13:582–597.

    Article  PubMed  CAS  Google Scholar 

  75. Murayama T, Asahara T. Bone marrow-derived endothelial progenitor cells for vascular regeneration. Curr Opin Mol Ther 2002;4:395–402.

    PubMed  Google Scholar 

  76. Rafii S, Lyden D, Benezra R, Hattori K, Heissig B. Vascular and hematopoietic stem cells: novel targets for anti-angiogenesis therapy. Nat Rev Cancer 2002;2:826–835.

    Article  PubMed  CAS  Google Scholar 

  77. Rabbany SY, Heissig B, Hattori K, Rafii S. Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. Trends Mol Med 2003;9:109–117.

    Article  PubMed  CAS  Google Scholar 

  78. Kalka C, Masuda H, Takahashi T, et al. Vascular Endothelial Growth Factor (165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 2000;86:1198–1202.

    PubMed  CAS  Google Scholar 

  79. Kalka C, Tehrani H, Laudenberg B, et al. VEGF gene transfer mobilizes endothelial progenitor cells in patients with inoperable coronary disease. Ann Thorac Surg 2000;70:829–834.

    Article  PubMed  CAS  Google Scholar 

  80. Bahlmann FH, DeGroot K, Spandau JM, et al. Erythropoietin regulates endothelial progenitor cells. Blood 2004;103:921–926.

    Article  PubMed  CAS  Google Scholar 

  81. Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003;102:1340–1346.

    Article  PubMed  CAS  Google Scholar 

  82. Llevadot J, Murasawa S, Kureishi Y, et al. HMG-CoA reductase inhibitor mobilizes bone marrow-derived endothelial progenitor cells. J Clin Invest 2001;108:399–405.

    Article  PubMed  CAS  Google Scholar 

  83. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002;109:625–637.

    Article  PubMed  CAS  Google Scholar 

  84. Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J. Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 2002;33:1362–1368.

    Article  PubMed  Google Scholar 

  85. Beck H, Voswinckel R, Wagner S, et al. Participation of bone marrow-derived cells in long-term repair processes after experimental stroke. J Cereb Blood Flow Metab 2003;23:709–717.

    Article  PubMed  Google Scholar 

  86. Moore XL, Lu J, Sun L, Zhu CJ, Tan P, Wong MC. Endothelial progenitor cells’ “homing” specificity to brain tumors. Gene Ther 2004;11:811–818.

    Article  PubMed  CAS  Google Scholar 

  87. Csaky KG, Baffi JZ, Byrnes GA, et al. Recruitment of marrow-derived endothelial cells to experimental choroidal neovascularization by local expression of vascular endothelial growth factor. Exp Eye Res 2004;78:1107–1116.

    Article  PubMed  CAS  Google Scholar 

  88. Espinosa-Heidmann DG, Caicedo A, Hernandez EP, Csaky KG, Cousins SW. Bone-marrow derived progenitor cells contribute to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003;44:4914–4919.

    Article  PubMed  Google Scholar 

  89. Sengupta N, Caballero S, Mames RN, Butler JM, Scott EW, Grant MB. The role of adult bone marrow-derived stem cells in choroidal neovascularization. Invest Opththalmol Vis Sci 2003;44:4908–4913.

    Article  Google Scholar 

  90. Vallieres L, Sawchenko PE. Bone marrow-derived cells that populate the adult mouse brain preserve their hematopoietic identity. J Neurosci 2003;23:5197–5207.

    PubMed  CAS  Google Scholar 

  91. Szmitko PE, Fedak PWM, Weisel RD, Stewart DJ, Kutryk MJB, Verma S. Endothelial progenitor cells, new hope for a broken heart. Circulation 2003;107:3093–3100.

    Article  PubMed  Google Scholar 

  92. Iihoshi S, Honmou O, Houkin K, Hashi K, Kocsis JD. A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischemia in adult rats. Brain Res 2004;1007:1–9.

    Article  PubMed  CAS  Google Scholar 

  93. Mahmood A, Lu D, Wang L, Li Y, Lu M, Chopp M. Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 2001;49:1196–1203.

    Article  PubMed  CAS  Google Scholar 

  94. Mahmood A, Lu D, Yi L, Chen JL, Chopp M. Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J Neurosurg 2001;94:683–685.

    Google Scholar 

  95. Borlongan CV, Lind JG, Dillon-Carter O, et al. Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res 2004;1010:108–116.

    Article  PubMed  CAS  Google Scholar 

  96. Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 2000;20:1311–1319.

    Article  PubMed  CAS  Google Scholar 

  97. Chen J, Li Y, Zhang R, et al. Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain Res 2004;1005:21–28.

    Article  PubMed  CAS  Google Scholar 

  98. Lu D, Li Y, Wang L, Chen J, Mahmood A, Chopp M. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury. J Neurotrauma 2001;18:813–819.

    Article  PubMed  CAS  Google Scholar 

  99. Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M. Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 2001;12:559–563.

    Article  PubMed  CAS  Google Scholar 

  100. Chopp M, Li Y. Treatment of neural injury with marrow stromal cells. Lancet Neurol 2002; 1:92–100.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Kobiler, D., Glod, J. (2006). The Contribution of Bone Marrow-Derived Cells to Cerebrovascular Formation and Integrity. In: Janigro, D. (eds) The Cell Cycle in the Central Nervous System. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-021-8_17

Download citation

Publish with us

Policies and ethics