Skip to main content

Critical Roles of Ca2+ and K+ Homeostasis in Apoptosis

  • Chapter
The Cell Cycle in the Central Nervous System

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 1483 Accesses

Abstract

Apoptosis occurs during the development, aging, and in various disease states. The apoptotic biochemical cascade involves activation of caspases, release of mitochondrial apoptotic factors, and nuclear DNA fragmentation, subjecting to regulation by pro- and antiapoptotic Bcl-2 genes. Emerging evidence supports that apoptosis is controlled by ionic mechanisms involving changes in Ca2+ and K+ homeostasis. It is proposed that Ca2+ changes in cell organelles mainly the endoplasmic reticulum (ER) and mitochondria, but not the cytosolic Ca2+, play critical roles in regulating and mediating apoptosis events. The Bcl-2 family members control the ER-mitochondria amplification loop of apoptosis. Overexpression of Bcl-2 or deficient for Bax and Bak lowers ER resting Ca2+ concentration ([Ca2+]ER) and secondarily decreased mitochondrial Ca2+ uptake. This fine-tuning of Ca2+ compartmentalization provides a mechanism for temporal and spatial regulation of Ca2+ signaling in apoptosis. Compelling evidence also reveals that excessive K+ efflux and intracellular K+ depletion are critical steps in apoptotic cell shrinkage and downstream events. Physiological concentration of intracellular K+ acts as a repressor of apoptotic effectors. A huge loss of cellular K+, likely a common event in apoptosis of many cell types, may serve as a disaster signal allowing the execution of the suicide program by activating key events in the apoptotic cascade including caspase cleavage, cytochrome-c release, and endonuclease activation. The proapoptotic disruption of K+ homeostasis can be mediated by overactivated K+ channels and, most likely, accompanied by reduced K+ uptake as a result of dysfunction of Na+,K+-adenosine triphosphatease. In addition to the K+ channels in the plasma membrane, mitochondrial K+ channels also play important roles in apoptosis. Investigations on the Ca2+ and K+ regulation of apoptosis, together with the molecular mechanism, have provided a more comprehensive understanding of the apoptotic mechanism. Further studies are needed to address new questions and may afford novel therapeutic strategies for apoptosis-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olney JW. Excitotoxicity: an overview. Can Dis Wkly Rep 1990;16(Suppl 1E):47–57; discussion 57–58.

    PubMed  Google Scholar 

  2. Choi DW. Excitotoxic cell death. J Neurobiol 1992;23:1261–1276.

    Article  PubMed  CAS  Google Scholar 

  3. Yu SP, Canzoniero LM, Choi DW. Ion homeostasis and apoptosis. Curr Opin Cell Biol 2001;13:405–411.

    Article  PubMed  CAS  Google Scholar 

  4. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001;3:E255–E263.

    Article  PubMed  CAS  Google Scholar 

  5. Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ, Scorrano L. Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem Pharmacol 2003;66:1335–1340.

    Article  PubMed  CAS  Google Scholar 

  6. Rizzuto R, Pinton P, Carrington W, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 1998;280:1763–1766.

    Article  PubMed  CAS  Google Scholar 

  7. Berridge MJ. Neuronal calcium signaling. Neuron 1998;21:13–26.

    Article  PubMed  CAS  Google Scholar 

  8. Csordas G, Thomas AP, Hajnoczky G. Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 1999;18:96–108.

    Article  PubMed  CAS  Google Scholar 

  9. Oyadomari S, Araki E, Mori M. Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis 2002;7:335–345.

    Article  PubMed  CAS  Google Scholar 

  10. Guo Q, Sopher BL, Furukawa K, et al. Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci 1997;17:4212–4222.

    PubMed  CAS  Google Scholar 

  11. Nakamura K, Bossy-Wetzel E, Burns K, et al. Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 2000;150:731–740.

    Article  PubMed  CAS  Google Scholar 

  12. Rutter GA, Theler JM, Murgia M, Wollheim CB, Pozzan T, Rizzuto R. Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic beta-cell line. Possible role in glucose and agonist-induced insulin secretion. J Biol Chem 1993;268:22,385–22,390.

    PubMed  CAS  Google Scholar 

  13. Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 1995;82:415–424.

    Article  PubMed  CAS  Google Scholar 

  14. Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P, Lechleiter JD. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 1995;377:438–441.

    Article  PubMed  CAS  Google Scholar 

  15. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000;1:11–21.

    Article  PubMed  CAS  Google Scholar 

  16. Chavis P, Fagni L, Lansman JB, Bockaert J. Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 1996;382:719–722.

    Article  PubMed  CAS  Google Scholar 

  17. Hoth M, Fanger CM, Lewis RS. Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 1997;137:633–648.

    Article  PubMed  CAS  Google Scholar 

  18. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R. Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 1999;96:13,807–13,812.

    Article  PubMed  CAS  Google Scholar 

  19. Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F. Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 1999;264:687–701.

    Article  PubMed  CAS  Google Scholar 

  20. Zamzami N, Marchetti P, Castedo M, et al. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett 1996;384:53–57.

    Article  PubMed  CAS  Google Scholar 

  21. Scorrano L, Petronilli V, Di Lisa F, Bernardi P. Commitment to apoptosis by GD3 ganglioside depends on opening of the mitochondrial permeability transition pore. J Biol Chem 1999;274:22,581–22,585.

    Article  PubMed  CAS  Google Scholar 

  22. Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P. Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha aopototic signaling. J Biol Chem 2001;276:12,035–12,040.

    Article  PubMed  CAS  Google Scholar 

  23. Gogvadze V, Robertson JD, Zhivotovsky B, Orrenius S. Cytochrome-c release occurs via Ca2+-dependent and Ca2+-independent mechanisms that are regulated by Bax. J Biol Chem 2001;276;19,066–19,071.

    Article  PubMed  CAS  Google Scholar 

  24. Lam M, Dubyak G, Chen L, Nunez G, Miesfeld RL, Distelhorst CW. Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Natl Acad Sci USA 1994;91:6569–6573.

    Article  PubMed  CAS  Google Scholar 

  25. Tagami S, Eguchi Y, Kinoshita M, Takeda M, Tsujimoto Y. A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity. Oncogene 2000; 19:5736–5746.

    Article  PubMed  CAS  Google Scholar 

  26. He H, Lam M, McCormick TS, Distelhorst CW. Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol 1997;138:1219–1228.

    Article  PubMed  CAS  Google Scholar 

  27. Bruce-Keller AJ, Begley JG, Fu W, et al. Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid beta-peptide. J Neurochem 1998;70:31–39.

    PubMed  CAS  Google Scholar 

  28. Distelhorst CW, McCormick TS. Bcl-2 acts subsequent to and independent of Ca2+ fluxes to inhibit apoptosis in thapsigargin-and glucocorticoid-treated mouse lymphoma cells. Cell Calcium 1996;19:473–483.

    Article  PubMed  CAS  Google Scholar 

  29. Pinton P, Ferrari D, Magalhaes P, et al. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 2000;148:857–862.

    Article  PubMed  CAS  Google Scholar 

  30. Foyouzi-Youssefi R, Arnaudeau S, Borner C, et al. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc Natl Acad Sci USA 2000;97:5723–5728.

    Article  PubMed  CAS  Google Scholar 

  31. Vanden Abeele F, Skryma R, Shuba Y, et al. Bcl-2-dependent modulation of Ca2+ homeostasis and store-operated channels in prostate cancer cells. Cancer Cell 2002;1:169–179.

    Article  Google Scholar 

  32. Wei MC, Zong WX, Cheng EH, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001;292:727–730.

    Article  PubMed  CAS  Google Scholar 

  33. Nutt LK, Chandra J, Pataer A, et al. Bax-mediated Ca2+ mobilization promotes cytochrome-c release during apoptosis. J Biol Chem 2002;277:20,301–20,308.

    Article  PubMed  CAS  Google Scholar 

  34. Nutt LK, Pataer A, Pahler J, et al. Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 2002;277:9219–9225.

    Article  PubMed  CAS  Google Scholar 

  35. Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 2003;300:135–139.

    Article  PubMed  CAS  Google Scholar 

  36. Aiba-Masago S, Liu Xb XB, Masago R, et al. Bax gene expression alters Ca2+ signal transduction without affecting apoptosis in an epithelial cell line. Oncogene 2002;21:2762–2767.

    Article  PubMed  CAS  Google Scholar 

  37. Minn AJ, Velez P, Schendel SL, et al. Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 1997;385:353–357.

    Article  PubMed  CAS  Google Scholar 

  38. Antonsson B, Conti F, Ciavatta A, et al. Inhibition of Bax channel-forming activity by Bcl-2. Science 1997;277:370–372.

    Article  PubMed  CAS  Google Scholar 

  39. Schlesinger PH, Gross A, Yin XM, et al. Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci USA 1997;94:11,357–11,362.

    Article  PubMed  CAS  Google Scholar 

  40. Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R. The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 2001;20:2690–2701.

    Article  PubMed  CAS  Google Scholar 

  41. Pan Z, Damron D, Nieminen AL, Bhat MB, Ma J. Depletion of intracellular Ca2+ by caffeine and ryanodine induces apoptosis of Chinese hamster ovary cells transfected with ryanodine receptor. J Biol Chem 2000;275:19,978–19,984.

    Article  PubMed  CAS  Google Scholar 

  42. Chami M, Gozuacik D, Lagorce D, et al. SERCA1 truncated proteins unable to pump calcium reduce the endoplasmic reticulum calcium concentration and induce apoptosis. J Cell Biol 2001;153:1301–1314.

    Article  PubMed  CAS  Google Scholar 

  43. Yu SP, Choi DW. Ions, cell volume, and apoptosis. Proc Natl Acad Sci USA 2000;97:9360–9362.

    Article  PubMed  CAS  Google Scholar 

  44. Okada Y, Maeno E. Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comp Biochem Physiol A Mol Integr Physiol 2001;130:377–383.

    Article  PubMed  CAS  Google Scholar 

  45. Yu SP. Regulation and critical role of potassium homeostasis in apoptosis. Prog Neurobiol 2003;70:363–386.

    Article  PubMed  CAS  Google Scholar 

  46. Ojcius DM, Zychlinsky A, Zheng LM, Young JD. Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Exp Cell Res 1991;197:43–49.

    Article  PubMed  CAS  Google Scholar 

  47. Duke RC, Witter RZ, Nash PB, Young JD, Ojcius DM. Cytolysis mediated by ionophores and pore-forming agents: role of intracellular calcium in apoptosis. FASEB J 1994;8:237–246.

    PubMed  CAS  Google Scholar 

  48. Que FG, Gores GJ, LaRusso NF. Development and initial application of an in vitro model of apoptosis in rodent cholangiocytes. Am J Physiol 1997;272:G106–G115.

    PubMed  CAS  Google Scholar 

  49. Yu SP, Yeh CH, Sensi SL, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 1997;278:114–117.

    Article  PubMed  CAS  Google Scholar 

  50. Marklund L, Behnam-Motlagh P, Henriksson R, Grankvist K. Bumetanide annihilation of amphotericin B-induced apoptosis and cytotoxicity is due to its effect on cellular K+ flux. J Antimicrob Chemother 2001;48:781–786.

    Article  PubMed  CAS  Google Scholar 

  51. Hughes FM, Jr, Bortner CD, Purdy GD, Cidlowski JA. Intracellular K+ suppresses the activation of apoptosis in lymphocytes. J Biol Chem 1997;272:30,567–30,576.

    Article  PubMed  CAS  Google Scholar 

  52. Barbiero G, Duranti F, Bonelli G, Amenta JS, Baccino FM. Intracellular ionic variations in the apoptotic death of L cells by inhibitors of cell cycle progression. Exp Cell Res 1995;217:410–418.

    Article  PubMed  CAS  Google Scholar 

  53. Hughes FM, Jr, Cidlowski JA. Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo. Adv Enzyme Regul 1999;39:157–171.

    Article  PubMed  CAS  Google Scholar 

  54. Montague JW, Bortner CD, Hughes FM, Jr, Cidlowski JA. A necessary role for reduced intracellular potassium during the DNA degradation phase of apoptosis. Steroids 1999;64:563–569.

    Article  PubMed  CAS  Google Scholar 

  55. Perregaux D, Gabel CA. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 1994;269:15,195–15,203.

    PubMed  CAS  Google Scholar 

  56. Walev I, Klein J, Husmann M, et al. Potassium regulates IL-1 beta processing via calcium-independent phospholipase A2. J Immunol 2000;164:5120–5124.

    PubMed  CAS  Google Scholar 

  57. Thompson GJ, Langlais C, Cain K, Conley EC, Cohen GM. Elevated extracellular [K+] inhibits death-receptor-and chemical-mediated apoptosis prior to caspase activation and cytochrome-c release. Biochem J 2001;357:137–145.

    Article  PubMed  CAS  Google Scholar 

  58. Adams JM, Cory S. Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 2002;14:715–720.

    Article  PubMed  CAS  Google Scholar 

  59. Yu SP, Farhangrazi ZS, Ying HS, Yeh CH, Choi DW. Enhancement of outward potassium current may participate in beta-amyloid peptide-induced cortical neuronal death. Neurobiol Dis 1998;5:81–88.

    Article  PubMed  CAS  Google Scholar 

  60. Yu SP, Yeh CH, Gottron F, Wang X, Grabb MC, Choi DW. Role of the outward delayed rectifier K+ current in ceramide-induced caspase activation and apoptosis in cultured cortical neurons. J Neurochem 1999;73:933–941.

    Article  PubMed  CAS  Google Scholar 

  61. Wang L, Xu D, Dai W, Lu L. An ultraviolet-activated K+ channel mediates apoptosis of myeloblastic leukemia cells. J Biol Chem 1999;274:3678–3685.

    Article  PubMed  CAS  Google Scholar 

  62. Wang L, Li T, Lu L. UV-induced corneal epithelial cell death by activation of potassium channels. Invest Ophthalmol Vis Sci 2003;44:5095–5101.

    Article  PubMed  Google Scholar 

  63. Furukawa K, Barger SW, Blalock EM, Mattson MR Activation of K+ channels and suppression of neuronal activity by secreted beta-amyloid-precursor protein. Nature 1996;379:74–78.

    Article  PubMed  CAS  Google Scholar 

  64. Jalonen TO, Charniga CJ, Wielt DB. beta-Amyloid peptide-induced morphological changes coincide with increased K+ and Cl channel activity in rat cortical astrocytes. Brain Res 1997;746:85–97.

    Article  PubMed  CAS  Google Scholar 

  65. Colom LV, Diaz ME, Beers DR, Neely A, Xie WJ, Appel SH. Role of potassium channels in amyloid-induced cell death. J Neurochem 1998;70:1925–1934.

    PubMed  CAS  Google Scholar 

  66. Ekhterae D, Platoshyn O, Zhang S, Remillard CV, Yuan JX. Apoptosis repressor with caspase domain inhibits cardiomyocyte apoptosis by reducing K+ currents. Am J Physiol Cell Physiol 2003;284:C1405–C1410.

    PubMed  CAS  Google Scholar 

  67. Nietsch HH, Roe MW, Fiekers JF, Moore AL, Lidofsky SD. Activation of potassium and chloride channels by tumor necrosis factor alpha. Role in liver cell death. J Biol Chem 2000;275:20,556–20,561.

    Article  PubMed  CAS  Google Scholar 

  68. Penning LC, Denecker G, Vercammen D, Declercq W, Schipper RG, Vandenabeele P. A role for potassium in TNF-induced apoptosis and gene-induction in human and rodent tumour cell lines. Cytokine 2000; 12:747–750.

    Article  PubMed  CAS  Google Scholar 

  69. Ekhterae D, Platoshyn O, Krick S, Yu Y, McDaniel SS, Yuan JX. Bcl-2 decreases voltage-gated K+ channel activity and enhances survival in vascular smooth muscle cells. Am J Physiol Cell Physiol 2001;281:C157–C165.

    PubMed  CAS  Google Scholar 

  70. Yu SP, Choi DW. K+ efflux mediated by delayed rectifier K+ channels contributes of neuronal death, Amsterdam, New York: John Wiley & Sons Ltd., 1999.

    Google Scholar 

  71. Pal S, Hartnett KA, Nerbonne JM, Levitan ES, Aizenman E. Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci 2003;23:4798–4802.

    PubMed  CAS  Google Scholar 

  72. Brevnova EE, Platoshyn O, Zhang S, Yuan JX. Overexpression of human KCNA5 increases IK V and enhances apoptosis. Am J Physiol Cell Physiol 2004;287:C715–C722.

    Article  PubMed  CAS  Google Scholar 

  73. Bock J, Szabo I, Jekle A, Gulbins E. Actinomycin D-induced apoptosis involves the potassium channel Kv1.3. Biochem Biophys Res Commun 2002;295:526–531.

    Article  PubMed  CAS  Google Scholar 

  74. Nadeau H, McKinney S, Anderson DJ, Lester HA. R0MK1 (Kir1.1) causes apoptosis and chronic silencing of hippocampal neurons. J Neurophysiol 2000;84:1062–1075.

    PubMed  CAS  Google Scholar 

  75. Lang PA, Kaiser S, Myssina S, Wieder T, Lang F, Huber SM. Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 2003;285:C1553–C1560.

    PubMed  CAS  Google Scholar 

  76. Trimarchi JR, Liu L, Smith PJ, Keefe DL. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am J Physiol Cell Physiol 2002;282:C588–C594.

    PubMed  CAS  Google Scholar 

  77. Patel AJ, Lazdunski M. The 2P-domain K+ channels: role in apoptosis and tumorigenesis. Pflugers Arch 2004;448:261–273.

    Article  PubMed  CAS  Google Scholar 

  78. Wang H, Zhang Y, Cao L, et al. HERG K+ channel, a regulator of tumor cell apoptosis and proliferation. Cancer Res 2002;62:4843–4848.

    PubMed  CAS  Google Scholar 

  79. Han H, Wang J, Zhang Y, et al. HERG K channel conductance promotes H2O2-induced apoptosis in HEK293 cells: cellular mechanisms. Cell Physiol Biochem 2004;14:121–134.

    Article  PubMed  CAS  Google Scholar 

  80. Krick S, Platoshyn O, Sweeney M, et al. Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2002;282:H184–H193.

    PubMed  CAS  Google Scholar 

  81. Elliott JI, Higgins CF. IKCa1 activity is required for cell shrinkage, phosphatidylserine translocation and death in T lymphocyte apoptosis. EMBO Rep 2003;4:189–194.

    Article  PubMed  CAS  Google Scholar 

  82. Yu SP, Yeh C, Strasser U, Tian M, Choi DW. NMDA receptor-mediated K+ efflux and neuronal apoptosis. Science 1999;284:336–339.

    Article  PubMed  CAS  Google Scholar 

  83. Xiao AY, Homma M, Wang XQ, Wang X, Yu SP. Role of K+ efflux in apoptosis induced by AMPA and kainate in mouse cortical neurons. Neuroscience 2001;108:61–67.

    Article  PubMed  CAS  Google Scholar 

  84. McLaughlin B, Pal S, Tran MP, et al. p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci 2001;21:3303–3311.

    PubMed  CAS  Google Scholar 

  85. Gomez-Angelats M, Bortner CD, Cidlowski JA. Protein kinase C (PKC) inhibits fas receptor-induced apoptosis through modulation of the loss of K+ and cell shrinkage. A role for PKC upstream of caspases. J Biol Chem 2000;275:19,609–19,619.

    Article  PubMed  CAS  Google Scholar 

  86. Dallaporta B, Marchetti P, de Pablo MA, et al. Plasma membrane potential in thymocyte apoptosis. J Immunol 1999;162:6534–6542.

    PubMed  CAS  Google Scholar 

  87. Wang X, Xiao AY, Ichinose T, Yu SP. Effects of tetraethylammonium analogs on apoptosis and membrane currents in cultured cortical neurons. J Pharmacol Exp Ther 2000;295:524–530.

    PubMed  CAS  Google Scholar 

  88. Fordyce CB, Jagasia R, Schlichter JC. Modulation of microglia-induced neurotoxicity. Soc Neurosci Abstr 2002;892:17.

    Google Scholar 

  89. Huang H, Gao TM, Gong L, Zhuang Z, Li X. Potassium channel blocker TEA prevents CA1 hip-pocampal injury following transient forebrain ischemia in adult rats. Neurosci Lett 2001;305:83–86.

    Article  PubMed  CAS  Google Scholar 

  90. Wei L, Yu SP, Gottron F, Snider BJ, Zipfel GJ, Choi DW. Potassium channel blockers attenuate hypoxia-and ischemia-induced neuronal death in vitro and in vivo. Stroke 2003;34:1281–1286.

    Article  PubMed  CAS  Google Scholar 

  91. Cowan AI, Martin RL. Ionic basis of membrane potential changes induced by anoxia in rat dorsal vagal motoneurones. J Physiol 1992;455:89–109.

    PubMed  CAS  Google Scholar 

  92. Haddad GE, Petrich ER, Zumino AP, Schanne OF. Background K+ currents and response to metabolic inhibition during early development in rat cardiocytes. Mol Cell Biochem 1997;177:159–168.

    Article  PubMed  CAS  Google Scholar 

  93. Guatteo E, Federici M, Siniscalchi A, Knopfel T, Mercuri NB, Bernardi G. Whole cell patch-clamp recordings of rat midbrain dopaminergic neurons isolate a sulphonylurea-and ATP-sensitive component of potassium currents activated by hypoxia. J Neurophysiol 1998;79:1239–1245.

    PubMed  CAS  Google Scholar 

  94. Xuan Chi X, Xu ZC. Potassium currents in CA1 neurons of rat hippocampus increase shortly after transient cerebral ischemia. Neurosci Lett 2000;281:5–8.

    Article  PubMed  CAS  Google Scholar 

  95. Johnston AR, Fraser JR, Jeffrey M, MacLeod N. Alterations in potassium currents may trigger neurodegeneration in murine scrapie. Exp Neurol 1998;151:326–333.

    Article  PubMed  CAS  Google Scholar 

  96. Franklin JL, Fickbohm DJ, Willard AL. Long-term regulation of neuronal calcium currents by prolonged changes of membrane potential. J Neurosci 1992;12:1726–1735.

    PubMed  CAS  Google Scholar 

  97. Koike T, Martin DP, Johnson EM, Jr. Role of Ca2+ channels in the ability of membrane depolarization to prevent neuronal death induced by trophic-factor deprivation: evidence that levels of internal Ca2+ determine nerve growth factor dependence of sympathetic ganglion cells. Proc Natl Acad Sci USA 1989;86:6421–6425.

    Article  PubMed  CAS  Google Scholar 

  98. Johnson EM, Jr, Koike T, Franklin J. A “calcium set-point hypothesis” of neuronal dependence on neurotrophic factor. Exp Neurol 1992;115:163–166.

    Article  PubMed  Google Scholar 

  99. Yu SP, Sensi SL, Canzoniero LM, Buisson A, Choi DW. Membrane-delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons. J Physiol 1997;499(Pt 3):721–732.

    PubMed  CAS  Google Scholar 

  100. Lauritzen I, Zanzouri M, Honore E, et al. K+-dependent cerebellar granule neuron apoptosis. Role of task leak K+ channels. J Biol Chem 2003;278:32,068–32,076.

    Article  PubMed  CAS  Google Scholar 

  101. Chin LS, Park CC, Zitnay KM, et al. 4-Aminopyridine causes apoptosis and blocks an outward rectifier K+ channel in malignant astrocytoma cell lines. J Neurosci Res 1997;48:122–127.

    Article  PubMed  CAS  Google Scholar 

  102. Choi BY, Kim HY, Lee KH, Cho YH, Kong G. Clofilium, a potassium channel blocker, induces apoptosis of human promyelocytic leukemia (HL-60) cells via Bcl-2-insensitive activation of caspase-3. Cancer Lett 1999;147:85–93.

    Article  PubMed  CAS  Google Scholar 

  103. Kim JA, Kang YS, Jung MW, Kang GH, Lee SH, Lee YS. Ca2+ influx mediates apoptosis induced by 4-aminopyridine, a K+ channel blocker, in HepG2 human hepatoblastoma cells. Pharmacology 2000;60:74–81.

    Article  PubMed  CAS  Google Scholar 

  104. Abdul M, Hoosein N. Expression and activity of potassium ion channels in human prostate cancer. Cancer Lett 2002;186:99–105.

    Article  PubMed  CAS  Google Scholar 

  105. Manikkam M, Li Y, Mitchell BM, Mason DE, Freeman LC. Potassium channel antagonists influence porcine granulosa cell proliferation, differentiation, and apoptosis. Biol Reprod 2002;67:88–98.

    Article  PubMed  CAS  Google Scholar 

  106. Wei L, Xiao AY, Jin C, Yang A, Lu ZY, Yu SP. Effects of chloride and potassium channel blockers on apoptotic cell shrinkage and apoptosis in cortical neurons. Pflugers Arch 2004;448:325–334.

    Article  PubMed  CAS  Google Scholar 

  107. Yang A, Wang XQ, Sun CS, Wei L, Yu SP. Inhibitory effects of clofilium on membrane currents associated with Ca channels, NMDA receptor channels and Na+, K+-ATPase in cortical neurons. Pharmacology 2005;73:162–168.

    Article  PubMed  CAS  Google Scholar 

  108. Wang XQ, Xiao AY, Sheline C, et al. Apoptotic insults impair Na+, K+-ATPase activity as a mechanism of neuronal death mediated by concurrent ATP deficiency and oxidant stress. J Cell Sci 2003;116:2099–2110.

    Article  PubMed  CAS  Google Scholar 

  109. Wang XQ, Xiao AY, Yang A, LaRose L, Wei L, Yu SP. Block of Na+,K+-ATPase and induction of hybrid death by 4-aminopyridine in cultured cortical neurons. J Pharmacol Exp Ther 2003;305:502–506.

    Article  PubMed  CAS  Google Scholar 

  110. Grover GJ, Garlid KD. ATP-Sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol 2000;32:677–695.

    Article  PubMed  CAS  Google Scholar 

  111. Akao M, Ohler A, O’Rourke B, Marban E. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res 2001;88:1267–1275.

    Article  PubMed  CAS  Google Scholar 

  112. Dos Santos P, Kowaltowski AJ, Laclau MN, et al. Mechanisms by which opening the mitochondrial ATP-sensitive K+ channel protects the ischemic heart. Am J Physiol Heart Circ Physiol 2002;283:H284–H295.

    PubMed  Google Scholar 

  113. Murphy KP, Greenfield SA. ATP-sensitive potassium channels counteract anoxia in neurones of the substantia nigra. Exp Brain Res 1991;84:355–358.

    Article  PubMed  CAS  Google Scholar 

  114. Shimizu K, Lacza Z, Rajapakse N, Horiguchi T, Snipes J, Busija DW. MitoK(ATP) opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am J Physiol Heart Circ Physiol 2002;283:H1005–H1011.

    PubMed  CAS  Google Scholar 

  115. Grover GJ. Pharmacology of ATP-sensitive potassium channel (KATP) openers in models of myocardial ischemia and reperfusion. Can J Physiol Pharmacol 1997;75:309–315.

    Article  PubMed  CAS  Google Scholar 

  116. Garlid KD, Paucek P. The mitochondrial potassium cycle. IUBMB Life 2001;52:153–158.

    Article  PubMed  CAS  Google Scholar 

  117. Fujita H, Takizawa S, Nanri K, Matsushima K, Ogawa S, Shinohara Y. Potassium channel opener reduces extracellular glutamate concentration in rat focal cerebral ischemia. Brain Res Bull 1997;43:365–368.

    Article  PubMed  CAS  Google Scholar 

  118. Takaba H, Nagao T, Yao H, Kitazono T, Ibayashi S, Fujishima M. An ATP-sensitive potassium channel activator reduces infarct volume in focal cerebral ischemia in rats. Am J Physiol 1997;273:R583–R586.

    PubMed  CAS  Google Scholar 

  119. Lauritzen I, De Weille JR, Lazdunski M. The potassium channel opener (-)-cromakalim prevents glutamate-induced cell death in hippocampal neurons. J Neurochem 1997;69:1570–1579.

    Article  PubMed  CAS  Google Scholar 

  120. Goodman Y, Mattson MP. K+ channel openers protect hippocampal neurons against oxidative injury and amyloid beta-peptide toxicity. Brain Res 1996;706:328–332.

    Article  PubMed  CAS  Google Scholar 

  121. Mizumura T, Nithipatikom K, Gross GJ. Bimakalim, an ATP-sensitive potassium channel opener, mimics the effects of ischemic preconditioning to reduce infarct size, adenosine release, and neutrophil function in dogs. Circulation 1995;92:1236–1245.

    PubMed  CAS  Google Scholar 

  122. Menasche P, Kevelaitis E, Mouas C, Grousset C, Piwnica A, Bloch G. Preconditioning with potassium channel openers. A new concept for enhancing cardioplegic protection? J Thorac Cardiovasc Surg 1995;110:1606–1613.

    Article  PubMed  CAS  Google Scholar 

  123. Ichinose M, Yonemochi H, Sato T, Saikawa T. Diazoxide triggers cardioprotection against apoptosis induced by oxidative stress. Am J Physiol Heart Circ Physiol 2003;284:H2235–H2241.

    PubMed  CAS  Google Scholar 

  124. Bortner CD, Hughes FM, Jr, Cidlowski JA. A primary role for K+ and Na+ efflux in the activation of apoptosis. J Biol Chem 1997;272:32,436–32,442.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yu, S.P. (2006). Critical Roles of Ca2+ and K+ Homeostasis in Apoptosis. In: Janigro, D. (eds) The Cell Cycle in the Central Nervous System. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59745-021-8_10

Download citation

Publish with us

Policies and ethics