Skip to main content

Pathological Anatomy of Restenosis

  • Chapter
Essentials of Restenosis

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 724 Accesses

Abstract

Until recently, in-stent restenosis remained the “Achilles Heal” for interventional cardiologists. The introduction of drug-eluting stents (DES) [CYPHER, Cordis J&J, NJ (sirolimus) and TAXUS, Boston Scientific Corp. Boston (paclitaxel)] however, has made a tremendous impact on rates of in-stent restenosis with dramatic reductions fro 30 to 40% in bare metal stent to 0 to 9% with DES ((1)–(4)).The compelling results from large clinical trial with DES stents involve mostly simple lesion morphologies with follow-up of only 6–12 mo; it is still unclear whether a sustained benefit will be reached in more complex lesions and high-risk patients such as diabetics (5). In this review, the stages of healing in response to bare metal stents implants in animals and humans will be discussed as a bases for understanding the localized effects of polymers and/or drugs on these natural biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002;346:1773–1780.

    Article  PubMed  CAS  Google Scholar 

  2. Park SJ, Shim WH, Ho DS, et al. A paclitaxel-eluting stent for the prevention of coronary restenosis. N Engl J Med 2003;348:1537–1545.

    Article  PubMed  CAS  Google Scholar 

  3. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 2003;349:1315–1323.

    Article  PubMed  CAS  Google Scholar 

  4. Popma JJ, Leon MB, Moses JW, et al. Quantitative assessment of angiographic restenosis after sirolimus-eluting stent implantation in native coronary arteries. Circulation 2004;110:374–379.

    Article  PubMed  Google Scholar 

  5. Loutfi M, Mulvihill NT, Boccalatte M, Farah B, Fajadet J, Marco J. Impact of restenosis and disease progression on clinical outcome after multivessel stenting in diabetic patients. Catheter Cardiovasc Interv 2003;58:451–454.

    Article  PubMed  Google Scholar 

  6. Bennett MR, O’Sullivan M. Mechanisms of angioplasty and stent restenosis: implications for design of rational therapy. Pharmacol Ther 2001;91:149–166.

    Article  PubMed  CAS  Google Scholar 

  7. Froeschl M, Olsen S, Ma X, O’Brien ER. Current understanding of in-stent restenosis and the potential benefit of drug eluting stents. Curr Drug Targets Cardiovasc Haematol Disord 2004;4:103–117.

    Article  PubMed  CAS  Google Scholar 

  8. Carter AJ, Laird JR, Farb A, Kufs W, Wortham DC, Virmani R. Morphologic characteristics of lesion formation and time course of smooth muscle cell proliferation in a porcine proliferative restenosis model. J Am Coll Cardiol 1994;24:1398–1405.

    PubMed  CAS  Google Scholar 

  9. Farb A, John M, Acampado E, Kolodgie FD, Prescott MF, Virmani R. Oral everolimus inhibits instent neointimal growth. Circulation 2002;106:2379–2384.

    Article  PubMed  CAS  Google Scholar 

  10. Virmani R, Kolodgie FD, Farb A, Lafont A. Drug eluting stents: are human and animal studies comparable? Heart 2003;89:133–138.

    Article  PubMed  CAS  Google Scholar 

  11. Finn AV, Gold HK, Tang A, et al. A novel rat model of carotid artery stenting for the understanding of restenosis in metabolic diseases. J Vasc Res 2002;39:414–425.

    Article  PubMed  CAS  Google Scholar 

  12. Farb A, Weber DK, Kolodgie FD, Burke AP, Virmani R. Morphological predictors of restenosis after coronary stenting in humans. Circulation 2002;105:2974–2980.

    Article  PubMed  Google Scholar 

  13. Farb A, Kolodgie FD, Hwang J-Y, et al. Extracellular matrix changes in stented human coronary arteries. Circulation 2004;110:940–947.

    Article  PubMed  CAS  Google Scholar 

  14. Farb A, Sangiorgi G, Carter AJ, et al. Pathology of acute and chronic coronary stenting in humans. Circulation 1999;99:44–52.

    PubMed  CAS  Google Scholar 

  15. Komatsu R, Ueda M, Naruko T, Kojima A, Becker AE. Neointimal tissue response at sites of coronary stenting in humans: macroscopic, histological, and immunohistochemical analyses. Circulation 1998;98:224–233.

    PubMed  CAS  Google Scholar 

  16. Anderson PG, Bajaj RK, Baxley WA, Roubin GS. Vascular pathology of balloon-expandable flexible coil stents in humans. J Am Coll Cardiol 1992;19:372–381.

    PubMed  CAS  Google Scholar 

  17. Grewe PH, Deneke T, Machraoui A, Barmeyer J, Muller KM. Acute and chronic tissue response to coronary stent implantation: pathologic findings in human specimen. J Am Coll Cardiol 2000;35:157–163.

    Article  PubMed  CAS  Google Scholar 

  18. Chung IM, Gold HK, Schwartz SM, Ikari Y, Reidy MA, Wight TN. Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment. J Am Coll Cardiol 2002;40:2072–2081.

    Article  PubMed  CAS  Google Scholar 

  19. Pickering JG, Weir L, Jekanowski J, Kearney MA, Isner JM. Proliferative activity in peripheral and coronary atherosclerotic plaque among patients undergoing percutaneous revascularization. J Clin Invest 1993;91:1469–1480.

    Article  PubMed  CAS  Google Scholar 

  20. O’Brien ER, Alpers CE, Stewart DK, et al. Proliferation in primary and restenotic coronary atherectomy tissue. Implications for antiproliferative therapy. Circ Res 1993;73:223–231.

    PubMed  CAS  Google Scholar 

  21. Yao F, Visovatti S, Johnson CS, et al. Age and growth factors in porcine full-thickness wound healing. Wound Repair Regen 2001;9:371–377.

    Article  PubMed  CAS  Google Scholar 

  22. Forrester JS, Fishbein M, Helfant R, Fagin J. A paradigm for restenosis based on cell biology: clues for the development of new preventive therapies. J Am Coll Cardiol 1991;17:758–769.

    PubMed  CAS  Google Scholar 

  23. Schwartz RS, Huber KC, Murphy JG, et al. Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model. J Am Coll Cardiol 1992;19:267–274.

    Article  PubMed  CAS  Google Scholar 

  24. Welt FG, Rogers C. Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol 2002;22:1769–1776.

    Article  PubMed  CAS  Google Scholar 

  25. Welt FG, Edelman ER, Simon DI, Rogers C. Neutrophil, not macrophage, infiltration precedes neointimal thickening in balloon-injured arteries. Arterioscler Thromb Vasc Biol 2000;20:2553–2558.

    PubMed  CAS  Google Scholar 

  26. Inoue T, Uchida T, Yaguchi I, Sakai Y, Takayanagi K, Morooka S. Stent-induced expression and activation of the leukocyte integrin Mac-1 is associated with neointimal thickening and restenosis. Circulation 2003;107:1757–1763.

    Article  PubMed  CAS  Google Scholar 

  27. Feldman LJ, Aguirre L, Ziol M, et al. Interleukin-10 inhibits intimal hyperplasia after angioplasty or stent implantation in hypercholesterolemic rabbits. Circulation 2000;101:908–916.

    PubMed  CAS  Google Scholar 

  28. Piek JJ, van der Wal AC, Meuwissen M, et al. Plaque inflammation in restenotic coronary lesions of patients with stable or unstable angina. J Am Coll Cardiol 2000;35:963–967.

    Article  PubMed  CAS  Google Scholar 

  29. Pels K, Labinaz M, Hoffert C, O’Brien ER. Adventitial angiogenesis early after coronary angioplasty: correlation with arterial remodeling. Arterioscler Thromb Vasc Biol 1999;19:229–238.

    PubMed  CAS  Google Scholar 

  30. Winter PM, Morawski AM, Caruthers SD, et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003;108:2270–2274.

    Article  PubMed  CAS  Google Scholar 

  31. McCarthy MJ, Loftus IM, Thompson MM, et al. Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg 1999;30:261–268.

    Article  PubMed  CAS  Google Scholar 

  32. Mofidi R, Crotty TB, McCarthy P, Sheehan SJ, Mehigan D, Keaveny TV. Association between plaque instability, angiogenesis and symptomatic carotid occlusive disease. Br J Surg 2001;88:945–950.

    Article  PubMed  CAS  Google Scholar 

  33. Brasen JH, Kivela A, Roser K, et al. Angiogenesis, vascular endothelial growth factor and plateletderived growth factor-BB expression, iron deposition, and oxidation-specific epitopes in stented human coronary arteries. Arterioscler Thromb Vasc Biol 2001;21:1720–1726.

    Article  PubMed  CAS  Google Scholar 

  34. Sturge J, Carey N, Davies AH, Powell JT. Fibrin monomer and fibrinopeptide B act additively to increase DNA synthesis in smooth muscle cells cultured from human saphenous vein. J Vasc Surg 2001;33:847–853.

    Article  PubMed  CAS  Google Scholar 

  35. Naito M, Stirk CM, Smith EB, Thompson WD. Smooth muscle cell outgrowth stimulated by fibrin degradation products. The potential role of fibrin fragment E in restenosis and atherogenesis. Thromb Res 2000;98:165–174.

    Article  PubMed  CAS  Google Scholar 

  36. Kodama M, Naito M, Nomura H, et al. Role of D and E domains in the migration of vascular smooth muscle cells into fibrin gels. Life Sci 2002;71:1139–1148.

    Article  PubMed  CAS  Google Scholar 

  37. Stirk CM, Reid A, Melvin WT, Thompson WD. Locating the active site for angiogenesis and cell proliferation due to fibrin fragment E with a phage epitope display library. Gen Pharmacol 2000;35:261–267.

    PubMed  CAS  Google Scholar 

  38. Le May MR, Labinaz M, Marquis JF, et al. Predictors of long-term outcome after stent implantation in a saphenous vein graft. Am J Cardiol 1999;83:681–686.

    Article  PubMed  Google Scholar 

  39. Pratsos A, Fischman DL, Savage MP. Restenosis in Saphenous Vein Grafts. Curr Interv Cardiol Rep 2001;3:287–295.

    PubMed  Google Scholar 

  40. van Beusekom HM, van der Giessen WJ, van Suylen R, Bos E, Bosman FT, Serruys PW. Histology after stenting of human saphenous vein bypass grafts: observations from surgically excised grafts 3 to 320 days after stent implantation. J Am Coll Cardiol 1993;21:45–54.

    PubMed  Google Scholar 

  41. Pessanha BS, Farb A, Weber DK, Burke AP, Virmani R. Accelerated atherosclerotic change in saphenous vein bypass graft restenosis: Importance of the lipid core. J Am Coll Cardiol 2002;39:33A.

    Article  Google Scholar 

  42. Tarantini G, Briguori C, Stankovic G, et al. Insulin-treated diabetes mellitus and predictors of midterm clinical outcome after percutaneous coronary interventions with stent implantation. Ital Heart J 2003;4:843–849.

    PubMed  Google Scholar 

  43. Carter AJ, Bailey L, Devries J, Hubbard B. The effects of uncontrolled hyperglycemia on thrombosis and formation of neointima after coronary stent placement in a novel diabetic porcine model of restenosis. Coron Artery Dis 2000;11:473–479.

    Article  PubMed  CAS  Google Scholar 

  44. Burke AP, Kolodgie FD, Zieske A, et al. Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol 2004;24:1266–1271.

    Article  PubMed  CAS  Google Scholar 

  45. Farb A, Heller PF, Shroff S, et al. Pathological analysis of local delivery of paclitaxel via a polymercoated stent. Circulation 2001;104:473–479.

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki T, Kopia G, Hayashi S, et al. Stent-based delivery of sirolimus reduces neointimal formation in a porcine coronary model. Circulation 2001;104:1188–1193.

    Article  PubMed  CAS  Google Scholar 

  47. Serruys PW, Ormiston J, Degertekin M, et al. Actinomycin-eluting stent for coronary revascularization: A randomized feasibility and safety study (The ACTION Trial). J Am Coll Cardiol 2004; (in press).

    Google Scholar 

  48. Virmani R, Guagliumi G, Farb A, et al. Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 2004;109:701–705.

    Article  PubMed  Google Scholar 

  49. Kornowski R, Hong MK, Virmani R, Jones R, Vodovotz Y, Leon MB. Granulomatous foreign body reactions contribute to exaggerated in-stent restenosis. Coron Artery Dis 1999;10:9–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Virmani, R., Kolodgie, F.D., Finn, A.V., Gold, H.K. (2007). Pathological Anatomy of Restenosis. In: Duckers, H.J., Nabel, E.G., Serruys, P.W. (eds) Essentials of Restenosis. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-001-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-001-0_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-491-3

  • Online ISBN: 978-1-59745-001-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics