Skip to main content

Management of the Patients with Negative Radioiodine Scan and Elevated Serum Thyroglobulin

  • Chapter
Thyroid Cancer
  • 1539 Accesses

Abstract

In the past two decades, significant improvements in the assays for serum thyroglobulin (Tg) have revolutionized the standard follow-up and surveillance for recurrence in patients with thyroid carcinoma (15). Not infrequently, we are faced with the management dilemma presented by patients with differentiated thyroid cancer (DTC) in whom measurable or high serum Tg levels suggest residual or metastatic disease, but their radioiodine diagnostic survey scans are negative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 339.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Spencer CA. New insights for using serum thyroglobulin (Tg) measurement for managing patients with differentiated thyroid carcinomas. Thyroid International 2003; 4:1–14.

    Google Scholar 

  2. Spencer CA, LoPresti JS, Fatemi S, Nicoloff JT. Detection of residual and recurrent differentiated thyroid carcinoma by serum thyroglobulin measurement. Thyroid 1999; 9:435–441.

    PubMed  CAS  Google Scholar 

  3. Torrens JI, Burch HB. Serum thyroglobulin measurement. Utility in clinical practice. Endocrinol Metab Clin N Amer 2001; 30:429–467.

    Article  CAS  Google Scholar 

  4. Whitley RJ, Ain KB. Thyroglobulin: a specific serum marker for the management of thyroid carcinoma. Clinics Lab Med 2004; 24:29–47.

    Article  Google Scholar 

  5. Toubeau M, Touzery C, Arveux P, et al. Predictive value for disease progression of serum thyroglobulin levels measured in the postoperative period and after (131)I ablation therapy in patients with differentiated thyroid cancer. J Nucl Med 2004; 45:988–994.

    PubMed  CAS  Google Scholar 

  6. Robbins J. Management of thyroglobulin-positive, body scan-negative thyroid cancer patients: evidence for the utility of I-131 therapy. J Endocrinol Investig 1999; 22:808–810.

    CAS  Google Scholar 

  7. Clark OH, Hoelting T. Management of patients with differentiated thyroid cancer who have positive serum thyroglobulin levels and negative radioiodine scans. Thyroid 1994; 4:501–505.

    PubMed  CAS  Google Scholar 

  8. McDougall IR. Management of thyroglobulin positive/whole-body scan negative: is 131-I therapy useful? J Endocrinol Invest 2001; 24:194–198.

    PubMed  CAS  Google Scholar 

  9. Levy EG, Fatourechi V, Robbins R, Ringel MD. Thyroglobulin-positive, radioiodine-negative thyroid cancer. Thyroid 2001; 11:599–602.

    Article  PubMed  CAS  Google Scholar 

  10. Gemsenjager E. Thyroglobulin-positive, radioiodine-negative thyroid cancer (Letter to Editor). Thyroid 2003; 13:833–834.

    Article  PubMed  CAS  Google Scholar 

  11. Hurley JR. Management of thyroid cancer: radioiodine ablation, “stunning,” and treatment of thyroglobulin-positive, (131)I scan-negative patients. Endocr Pract 2000; 6:401–406.

    PubMed  CAS  Google Scholar 

  12. National Comprehensive Cancer Network (NCCN) Thyroid Carcinoma Guidelines 2003, March 20, 2004. Available at: www.nccn.org/professionals/physician_gls/f_guidelines.asp#site.

    Google Scholar 

  13. Mazzaferri EL. Empirically treating high serum thyroglobulin levels. J Nucl Med 2005; 46:1079–1088.

    PubMed  Google Scholar 

  14. British Thyroid Association. Guidelines for the management of differentiated thyroid cancer in adults. Available at: www.britishthyroid-association.org/guidelines.htm. 2002.

    Google Scholar 

  15. Pacini F, Lippi F, Formica N, et al. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med 1987; 28:1888–1891.

    PubMed  CAS  Google Scholar 

  16. Wartofsky L, Sherman SI, Gopal J, et al. The use of radioactive iodine in patients with papillary and follicular thyroid cancer. J Clin Endocrinol Metab 1998; 83:4195–4203.

    Article  PubMed  CAS  Google Scholar 

  17. Spencer CA, Takeuchi M, Kazaroxyan M, et al. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J Clin Endocrinol Metab 1998; 83:1121–1127.

    Article  PubMed  CAS  Google Scholar 

  18. Maxon HR, Thomas SR, Boehringer A, et al. Low iodine diet in I-131 ablation of thyroid remnants. Clin Nucl Med 1983; 8:123–126.

    Article  PubMed  CAS  Google Scholar 

  19. Klutmann S, Jenicke L, Geiss-Tonshoff M, et al. Prevalence of iodineand thyroglobulin-negative findings in differentiated thyroid cancer. A retrospective analysis of patients treated from 1951 to 1998 in university hospital. Nuklearmedizin 2001; 40:143–147.

    PubMed  CAS  Google Scholar 

  20. Schlumberger M, Mancusi F, Baudin E, Pacini F. 131-I therapy for elevated thyroglobulin levels. Thyroid 1997; 7:273–276.

    PubMed  CAS  Google Scholar 

  21. Pineda JD, Lee T, Ain K, et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab 1995; 80:1488–1492.

    Article  PubMed  CAS  Google Scholar 

  22. Robbins J. Management of thyroglobulin-positive, body scan-negative thyroid cancer patients: evidence for the utility of I-131 therapy. J Endocrinol Investig 1999; 22:808–810.

    CAS  Google Scholar 

  23. De Keizer B, Koppeschaar HP, Zelissen PM, et al. Efficacy of high therapeutic doses of iodine-131 in patients with differentiated thyroid cancer and detectable serum thyroglobulin. Eur J Nucl Med 2001; 28:198–202.

    Article  PubMed  CAS  Google Scholar 

  24. McDougall IR. 131-I treatment of 131-I negative whole body scan, and positive thyroglobulin in differentiated thyroid carcinoma: what is being treated? Thyroid 1997; 7:669–672.

    PubMed  CAS  Google Scholar 

  25. Mazzaferri EL. Editorial: Treating high thyroglobulin with radioiodine: A magic bullet or a shot in the dark? J Clin Endocrinol Metab 1995; 80:1485–1487.

    Article  PubMed  CAS  Google Scholar 

  26. Fatourechi V, Hay ID, Javedan H, et al. Lack of impact of radioiodine therapy in Tg-positive, diagnostic whole-body scan-negative patients with follicular cell-derived thyroid cancer. J Clin Endocrinol Metab 2002; 87:1521–1526.

    Article  PubMed  CAS  Google Scholar 

  27. Fatourechi V, Hay ID. Treating the patient with differentiated thyroid cancer with thyroglobulin-positive iodine-131 diagnostic scannegative metastases: including comments on the role of serum thyroglobulin monitoring in tumor surveillance. Seminars Nucl Med 2000; 30:107–114.

    Article  CAS  Google Scholar 

  28. Pacini F, Agate L, Elisei R, et al. Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic (131)I whole body scan: comparison of patients treated with high (131)I activities versus untreated patients. J Clin Endocrinol Metab 2001; 86:4092–4097.

    Article  PubMed  CAS  Google Scholar 

  29. Koh JM, Kim ES, Ryu JS, et al. Effects of therapeutic doses of 131-I in thyroid papillary carcinoma patients with elevated thyroglobulin level and negative 131-I whole-body scan: comparative study. Clin Endocrinol 2003; 58:421–427.

    Article  CAS  Google Scholar 

  30. Ma C, Xie J, Kuang A. Is empiric 131-I therapy justified for patients with positive thyroglobulin and negative 131-K whole-body scanning results? J Nucl Med 2005; 46:1164–1170.

    PubMed  Google Scholar 

  31. Ford D, Giridharan S, McConkey C, et al. External beam radiotherapy in the managment of differentiated thyroid cancer. Clin Oncol 2003; 15:337–341.

    Article  CAS  Google Scholar 

  32. Brierley JD, Tsang RW. External-beam radiation therapy in the treatment of differentiated thyroid cancer. Semin Surg Oncol 1999; 16:42–49.

    Article  PubMed  CAS  Google Scholar 

  33. Alam MS, Takeuchi R, Kasagi K, et al. Value of combined technetium-99m hydroxy methylene diphosphonate and Thallium-201 imaging in detecting bone metastases from thyroid carcinoma. Thyroid 1997; 7:705–712.

    Article  PubMed  CAS  Google Scholar 

  34. Almeida-Filho P, Ravizzini GC, Almeida C, et al. Whole-body Tc-99m sestamibi scintigraphy in the follow-up of differentiated thyroid carcinoma. Clin Nucl Med 2000; 25:443–446.

    Article  PubMed  CAS  Google Scholar 

  35. Carril JM, Quirce R, Serrano J, et al. Total body scintigraphy with thallium-201 and iodine-131 in the follow-up of differentiated thyroid cancer. J Nucl Med 1997; 38:686–692.

    PubMed  CAS  Google Scholar 

  36. Dadparvar S, Chevres A, Tulchinsky M, et al. Clinical utility of technetium-99m methoxisobutylisonitrile imaging in differentiated thyroid carcinoma: comparison with thallium-201 and iodine-131 scintigraphy and serum thyroglobulin quantitation. Eur J Nucl Med 1995; 22:1330–1338.

    Article  PubMed  CAS  Google Scholar 

  37. Lorberboym M, Murthy S, Mechanick JI, et al. Thallium-201 and iodine-131 scintigraphy in differentiated thyroid carcinoma. J Nucl Med 1996; 37:1487–1491.

    PubMed  CAS  Google Scholar 

  38. Ugur O, Kostakoglu L, Caner B, et al. Comparison of 201-Tl, 99mTc-MIBI and 131-I imaging in the follow-up of patients with well differentiated thyroid carcinoma. Nucl Med Commun 1996; 17:373–377.

    Article  PubMed  CAS  Google Scholar 

  39. Harder W, Lind P, Molnar M, et al. Thallium-201 uptake with negative iodine-131 scintigraphy and serum thyroglobulin in metastatic oxyphilic papillary thyroid carcinoma. J Nucl Med 1998; 39:236–238.

    PubMed  CAS  Google Scholar 

  40. Elser H, Henze M, Hermann C, et al. 99m-Tc-MIBI for recurrent and metastatic differentiated thyroid carcinoma. Nuklearmedizin 1997; 36:7–12.

    PubMed  CAS  Google Scholar 

  41. Lind P, Gallowitsch HJ. The use of non-specific tracers in the follow up of differentiated thyroid cancer: results with Tc-99m tetrofosmin whole body scintigraphy. Acta Med Austr 1996; 23:69–75.

    CAS  Google Scholar 

  42. Gallowitsch HJ, Kresnik E, Mikosch P, et al. Tc-99m-tetrafosmin scintigraphy: an alternative scintigraphic method for following up differentiated thyroid carcinoma-preliminary results. Nuklearmedizin 1996; 35:230–235.

    PubMed  CAS  Google Scholar 

  43. Lind P, Gallowitsch HJ, Langsteger W, et al. Technetium-99mtetrafosmin whole-body scintigraphy in the follow-up of differentiated thyroid carcinoma. J Nucl Med 1997; 38:348–352.

    PubMed  CAS  Google Scholar 

  44. Macapinlac HA. Clinical usefulness of FDG PET in differentiated thyroid cancer. J Nucl Med 2001; 42:77–78.

    PubMed  CAS  Google Scholar 

  45. Adler LP, Bloom AD. Positron emission tomography of thyroid masses. Thyroid 1993; 3:195–200.

    PubMed  CAS  Google Scholar 

  46. McDougall IR, Davidson J, Segall GM. Positron emission tomography of the thyroid, with an emphasis on thyroid cancer. Nucl Med Commun 2001; 22:485–492.

    Article  PubMed  CAS  Google Scholar 

  47. Schoder H, Yeung HWD. Positiron emission imaging of head and neck cancer, including thyroid carcinoma. Semin Nucl Med 2004; 34:180–197.

    Article  PubMed  Google Scholar 

  48. deGroot JW, Links TP, Jager PL, et al. Impact of 18F-fluoro-2-D-glucose positron emission tomograph (FDG-PET) in patients with biochemical evidence of recurrent or residual medullary thyroid cancer. Ann Surg Oncol 2004; 11:786–794.

    Article  CAS  Google Scholar 

  49. Ortega F, Maldonado A, Maranes P, et al. PET-FDG in thyroid cancer with high thyroglobulin levels and negative 131-I scan. A case report. Revista Espanola de Medicina Nuclear 1999; 18:50–54.

    PubMed  CAS  Google Scholar 

  50. Muros MA, Llamas-Elvira JM, Ramirez-Navarro A, et al. Utility of fluorine-18-fluorodeoxyglucose positron emission tomography in differentiated thyroid carcinoma with negative radioiodine scans and elevated serum thyroglobulin levels. Am J Surg 2000; 179:457–461.

    Article  PubMed  CAS  Google Scholar 

  51. Laking GR, Price PM. Clinical impact of (18)F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative (131)I scanning results after therapy. J Nucl Med 2002; 43:1728–1729.

    PubMed  Google Scholar 

  52. Frilling A, Tecklenborg K, Gorges R, et al. Preoperative diagnostic value of [(18)F] fluorodeoxyglucose positron emission tomography in patients with radioiodine-negative recurrent well-differentiated thyroid carcinoma. Ann Surg 2001; 234:804–811.

    Article  PubMed  CAS  Google Scholar 

  53. Alnafisi NS, Driedger A, Coates G, et al. FDG-PET of recurrent or metastatic 131I-negative papillary thyroid carcinoma. J Nucl Med 2000; 41:1010–1015.

    PubMed  CAS  Google Scholar 

  54. Grunwald F, Menzel C, Bender H, et al. Comparison of 18FDG-PET with 131-Iodine and 99m-Tc-sestamibi scintigraphy in differentiated thyroid cancer. Thyroid 1997; 7:327–335.

    Article  PubMed  CAS  Google Scholar 

  55. Schluter B, Bohuslavizki KH, Beyer W, et al. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med 2001; 42:71–76.

    PubMed  CAS  Google Scholar 

  56. Wang W, Macapinlac H, Larson SM, et al. [18F]-2-fluoro-2-deoxy-Dglucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic (131)I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab 1999; 84:2291–2302.

    Article  PubMed  CAS  Google Scholar 

  57. Chung JK, So Y, Lee JS, et al. Value of FDG-PET in papillary thyroid carcinoma with negative 131-I whole body scan. J Nucl Med 1999; 40:986–992.

    PubMed  CAS  Google Scholar 

  58. Helal BO, Merlet P, Toubert ME, et al. Clinical impact of (18)F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative (131)I scanning results after therapy. J Nucl Med 2001; 42:1464–1469.

    PubMed  CAS  Google Scholar 

  59. van Tol KM, Jager PL, Dullaart RP. Links TP. Follow-up in patients with differentiated thyroid carcinoma with positive 18F-fluoro-2-deoxy-Dglucose-positron emission tomography results, elevated thyroglobulin levels, and negative high-dose 131I posttreatment whole body scans. J Clin Endocrinol Metab 2000; 85:2082–2083.

    Article  PubMed  Google Scholar 

  60. Fridrich L, Messa C, Landoni C, et al. Whole-body scintigraphy with 99m-TC-MIBI, 18F-FDG and 131-I in patients with metastatic thyroid carcinoma. Nucl Med Commun 1997; 18:3–9.

    Article  PubMed  CAS  Google Scholar 

  61. Feine U, Lietzenmayer R, Hanke JP, et al. Fluorine-18-FDG and iodine-131 uptake in thyroid cancer. J Nucl Med 1996; 37:1468–1472.

    PubMed  CAS  Google Scholar 

  62. Dietlein M, Scheidhauer K, Voth E, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 1997; 24:1342–1348.

    Article  PubMed  CAS  Google Scholar 

  63. Altenvoerde G, Lerch H, Kuwert T, et al. Positron emission tomography with F-18-deoxyglucose in patients with differentiated thyroid carcinoma, elevated thyroglobulin levels, and negative iodine scans. Langenbecks Arch Surg 1998; 383:160–163.

    PubMed  CAS  Google Scholar 

  64. Grunwald F, Kalicke T, Feine U, et al. (18)F-FDG PET scanning in patients with thyroid cancer: results of a multicentre study. Eur J Nucl Med 1999; 26:1547–1552.

    Article  PubMed  CAS  Google Scholar 

  65. Wang W, Larson SM, Fazzari M, et al. Prognostic value of (18)F-FDG PET scanning in patients with thyroid cancer. J Clin Endocrinol Metab 2000; 85:1107–1113.

    Article  PubMed  CAS  Google Scholar 

  66. Hung MC, Wu HS, Kao Ch, et al. F18-fluorodeoxyglucose positron emission tomography in detecting metastatic papillary thyroid carcinoma with elevated human serum thyroglobulin levels but negative I-131 whole body scan. Endocr Res 2003; 29:169–175.

    Article  PubMed  Google Scholar 

  67. Deichen JT, Schmidt C, Prante O, et al. Influence of TSH on uptake of [18F]fluorodeoxyglucose in human thyroid cells in vitro. Eur J Nucl Med Mol Imaging 2004; 31:507–512.

    Article  PubMed  CAS  Google Scholar 

  68. Mruck S, Pfahlberg A, Papadopoulos T, et al. Uptake of 201TI into primary cell cultures from human thyroid tissue is multiplied by TSH. J Nucl Med 2002; 43:145–152.

    PubMed  CAS  Google Scholar 

  69. Chin BB, Patel P, Chhade C, et al. Recombinant human thyrotropin stimulation of fluoro-d-glucose positron emission tomography uptake in well-differentiated thyroid carcinoma. J Clin Endocrinol Metab 2004; 89:91–95.

    Article  PubMed  CAS  Google Scholar 

  70. Petrich T, Borner AR, Otto D, et al. Influence of rhTSH on [18-F] fluorodeoxyglucose uptake by differentiated thyroid carcinoma. Eur J Nucl Med Molec Imaging 2002; 29:641–647.

    Article  CAS  Google Scholar 

  71. Moog F, Linke R, Manthey N, et al. Influence of thyroid-stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J Nucl Med 2000; 41:1989–1995.

    PubMed  CAS  Google Scholar 

  72. van Tol KM, Jager PL, Piers DA, et al. Better yield of 18-fluorodeoxyglucose-positron emission tomography in patiens with metastatic differentiated thyroid carcinoma during thyrotropin stimulation. Thyroid 2002; 12:381–387.

    Article  PubMed  Google Scholar 

  73. Kasner DL, Spieth ME, Starkman ME, Zdor-North D. Iodine-131-negative whole body scan reverses to positive after a combination thyrogen stimulation and withdrawal. Clin Nucl Med 2002; 27:772–780.

    Article  PubMed  Google Scholar 

  74. Morris JC, Kim CK, Padilla MLK, et al. Conversion of non-iodineconcentrating differentiated thyroid carcinoma metastases into iodine-concentrating foci after anticancer chemotherapy. Thyroid 1997; 7:63–66.

    PubMed  CAS  Google Scholar 

  75. Baudin E, Schlumberger M, Lumbroso J, et al. Octreotide scintigraphy in patients with differentiated thyroid carcinoma: contribution for patients with negative radioiodine scan. J Clin Endocrinol Metab 1996; 81:2541–2544.

    Article  PubMed  CAS  Google Scholar 

  76. Haslinghuis LM, Krenning EP, De Herder WW, et al. Somatostatin receptor scintigraphy in the follow-up of patients with differentiated thyroid cancer. J Endocrinol Invest 2001; 24:415–422.

    PubMed  CAS  Google Scholar 

  77. Stokkel MP, Reigman HI, Verkooijen RB, Smit JW. Indium-11-Octreotide scintigraphy in differentiated thyroid carcinoma metastases that do not respond to treatment with high-dose I-131. J Cancer Res Clin Oncol 2003; 129:287–294.

    PubMed  CAS  Google Scholar 

  78. Sarlis NJ, Gourgiotis L, Guthrie LC, et al. In-111 DTPA-Octreotide scintigraphy for disease detection in metastatic thyroid cancer: Comparison with F-18 FDG PET and extensive conventional radiographic imaging. Clin Nucl Med 2003; 28:208–217.

    Article  PubMed  Google Scholar 

  79. Antonelli A, Miccoli P, Ferdeghini M, et al. Role of neck ultrasonography in the follow-up of patients operated on for thyroid cancer. Thyroid 1995; 5:25–28.

    PubMed  CAS  Google Scholar 

  80. Pacini F, Molinaro E, Castagna MG, et al. Recombinant human thyrotropin-stimulated serum thyroglobulin combined with neck ultrasonography has the highest sensitivity in monitoring differentiated thyroid carcinoma. J Clin Endocrinol Metab 2003; 88:3668–3673.

    Article  PubMed  CAS  Google Scholar 

  81. Alzahrani AS, Raef H, Sultan A, et al. Impact of cervical lymph node dissection on serum TG and the course of disease in TG-positive, radioactive iodine whole body scan-negative recurrent/persistent papillary thyroid cancer. J Endocrinol Invest 2002; 25:526–531.

    PubMed  CAS  Google Scholar 

  82. Karwowski JK, Jeffrey B, McDougall IR, Weigel RJ. Intraoperative ultrasonography improves identification of recurrent thyroid cancer. Surgery 2002; 132:924–929.

    Article  PubMed  Google Scholar 

  83. Schlumberger MJ. Papillary and follicular thyroid carcinoma. N Engl J Med 1998; 338:297–306.

    Article  PubMed  CAS  Google Scholar 

  84. Schlumberger M, Hay ID. Use of radioactive iodine in patients with papillary and follicular thyroid cancer. J Clin Endocrinol Metab 1998; 83:4195–4203.

    Article  PubMed  Google Scholar 

  85. van Tol KM, Jager PL, deVries EG, et al. Outcome in patients with differentiated thyroid cancer with negative diagnostic whole-body scanning and detectable stimulated thyrglobulin. Eur J Endocrinol 2003; 148:589–596.

    Article  PubMed  Google Scholar 

  86. Kabasakal L, Selcuk NA, Shafipour H, et al. Treatment of iodinenegative thyroglobulin-positive thyroid cancer; differences in outcome in patients with macrometastases and patients with micrometastases. Europ J Nucl Med Molec Imaging 2004; 31:1500–1504.

    Article  CAS  Google Scholar 

  87. Kamel N, Corapcioglu D, Sahin M, et al. I-131 therapy for thyroglobulin positive patients without anatomical evidence of persistent disease. J Endocrinol Invest 2004; 27:949–953.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Wartofsky, L. (2006). Management of the Patients with Negative Radioiodine Scan and Elevated Serum Thyroglobulin. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Humana Press. https://doi.org/10.1007/978-1-59259-995-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-995-0_41

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-462-3

  • Online ISBN: 978-1-59259-995-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics