Skip to main content

The Role of DCT/TYRP2 in Resistance of Melanoma Cells to Drugs and Radiation

  • Chapter
Book cover From Melanocytes to Melanoma

Abstract

Intrinsic resistance to both chemotherapy and radiotherapy remains a major obstacle in the clinical treatment of malignant melanoma. Recent advances in cancer research have provided new insights into the molecular mechanisms governing their intrinsic resistance. We have recently demonstrated that DOPAchrome tautomerase (DCT), an enzyme that is well characterized for its function in melanin synthesis, is highly expressed in human melanoma cells that are resistant to both drug and radiation treatments. Conversely, melanoma cells expressing very low levels of DCT are highly susceptible to either type of treatment. Overexpression of DCT in melanoma cells by transfection could confer both radioresistance and chemoresistance. This review will summarize our findings, as well as discuss the possible mechanisms by which DCT overexpression contributes to intrinsic resistance of human malignant melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fink D, Aebi S, Howell SB. The role of DNA mismatch repair in drug resistance. Clin Cancer Res 1998;4(1):1–6.

    PubMed  CAS  Google Scholar 

  2. Dumontet C, Sikic BI. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol 1999;17(3):1061–1070.

    PubMed  CAS  Google Scholar 

  3. Kinsella AR, Smith D. Tumor resistance to antimetabolites. Gen Pharmacol 1998;30(5):623–626.

    PubMed  CAS  Google Scholar 

  4. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 2001;27(3):247–254.

    Article  PubMed  CAS  Google Scholar 

  5. Kavallaris M. The role of multidrug resistance-associated protein (MRP) expression in multidrug resistance. Anticancer Drugs 1997;8(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  6. Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene 2003;22(47):7537–7552.

    Article  PubMed  CAS  Google Scholar 

  7. Izquierdo MA, Scheffer GL, Flens MJ, Shoemaker RH, Rome LH, Scheper RJ. Relationship of LRP-human major vault protein to in vitro and clinical resistance to anticancer drugs. Cytotechnology 1996;19(3):191–197.

    Article  PubMed  CAS  Google Scholar 

  8. Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003;22(47):7340–7358.

    Article  PubMed  CAS  Google Scholar 

  9. Barret JM, Hill BT. DNA repair mechanisms associated with cellular resistance to antitumor drugs: potential novel targets. Anticancer Drugs 1998;9(2):105–123.

    Article  PubMed  CAS  Google Scholar 

  10. Cline SD, Hanawalt PC. Who’s on first in the cellular response to DNA damage? Nat Rev Mol Cell Biol 2003;4(5):361–372.

    Article  PubMed  CAS  Google Scholar 

  11. Soengas MS, Lowe SW. Apoptosis and melanoma chemoresistance. Oncogene 2003;22(20):3138–3151.

    Article  PubMed  CAS  Google Scholar 

  12. Serrone L, Hersey P. The chemoresistance of human malignant melanoma: an update. Melanoma Res 1999;9(1):51–58.

    Article  PubMed  CAS  Google Scholar 

  13. Volkenandt M, Schlegel U, Nanus DM, Albino AP. Mutational analysis of the human p53 gene in malignant melanoma. Pigment Cell Res 1991;4:35–40.

    Article  PubMed  CAS  Google Scholar 

  14. Weiss J, Schwechheimer K, Cavanee WK, Herlyn M, Arden KC. Mutation and expression of the p53 gene in malignant melanoma cell lines. Int J Cancer 1993;54:693–699.

    Article  PubMed  CAS  Google Scholar 

  15. Weiss J, Heine M, Korner B, Pilch H, Jung EG. Expression of p53 protein in malignant melanoma: clinicopathological and prognostic implications. Br J Dermatol 1995;133(1):23–31.

    Article  PubMed  CAS  Google Scholar 

  16. Albino AP, Vidal MJ, McNutt NS, et al. Mutation and expression of the p53 gene in human malignant melanoma. Melanoma Res 1994;4(1):35–45.

    Article  PubMed  CAS  Google Scholar 

  17. Florenes VA, Oyjord T, Holm R, et al. TP53 allele loss, mutations and expression in malignant melanoma. Br J Cancer 1994;69(2):253–259.

    PubMed  CAS  Google Scholar 

  18. Lubbe J, Reichel M, Burg G, Kleihues P. Absence of p53 gene mutations in cutaneous melanoma. J Invest Dermatol 1994;102(5):819–821.

    Article  PubMed  CAS  Google Scholar 

  19. Montano X, Shamsher M, Whitehead P, Dawson K, Newton J. Analysis of p53 in human cutaneous melanoma cell lines. Oncogene 1994;9(5):1455–1459.

    PubMed  CAS  Google Scholar 

  20. Plettenberg A, Ballaun C, Pammer J, et al. Human melanocytes and melanoma cells constitutively express the Bcl-2 proto-oncogene in situ and in cell culture. Am J Pathol 1995;146(3):651–659.

    PubMed  CAS  Google Scholar 

  21. Cerroni L, Soyer HP, Kerl H. bcl-2 protein expression in cutaneous malignant melanoma and benign melanocytic nevi. Am J Dermatopathol 1995;17(1):7–11.

    Article  PubMed  CAS  Google Scholar 

  22. Morales-Ducret CR, van de RM, LeBrun DP, Smoller BR. bcl-2 expression in primary malignancies of the skin. Arch Dermatol 1995;131(8):909–912.

    Article  PubMed  CAS  Google Scholar 

  23. Tron VA, Krajewski S, Klein-Parker H, Li G, Ho VC, Reed JC. Immunohistochemical analysis of Bcl-2 protein regulation in cutaneous melanoma. Am J Pathol 1995;146(3):643–650.

    PubMed  CAS  Google Scholar 

  24. Grover R, Wilson GD. Bcl-2 expression in malignant melanoma and its prognostic significance. Eur J Surg Oncol 1996;22(4):347–349.

    Article  PubMed  CAS  Google Scholar 

  25. Jansen B, Schlagbauer-Wadl H, Brown BD, et al. bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 1998;4(2):232–234.

    Article  PubMed  CAS  Google Scholar 

  26. Wacheck V, Losert D, Gunsberg P, et al. Small interfering RNA targeting bcl-2 sensitizes malignant melanoma. Oligonucleotides 2003;13(5):393–400.

    Article  PubMed  CAS  Google Scholar 

  27. Yin JQ, Gao J, Shao R, Tian WN, Wang J, Wan Y. siRNA agents inhibit oncogene expression and attenuate human tumor cell growth. J Exp Ther Oncol 2003;3(4):194–204.

    Article  PubMed  CAS  Google Scholar 

  28. Thallinger C, Wolschek MF, Wacheck V, et al. Mcl-1 antisense therapy chemosensitizes human melanoma in a SCID mouse xenotransplantation model. J Invest Dermatol 2003;120(6):1081–1086.

    Article  PubMed  CAS  Google Scholar 

  29. Gautschi O, Tschopp S, Olie RA, et al. Activity of a novel bcl-2/bcl-xL-bispecific antisense oligonucleotide against tumors of diverse histologic origins. J Natl Cancer Inst 2001;93(6):463–471.

    Article  PubMed  CAS  Google Scholar 

  30. Olie RA, Hafner C, Kuttel R, et al. Bcl-2 and bcl-xL antisense oligonucleotides induce apoptosis in melanoma cells of different clinical stages. J Invest Dermatol 2002;118(3):505–512.

    Article  PubMed  CAS  Google Scholar 

  31. Strasberg RM, Zangemeister-Wittke U, Rieber M. p53-Independent induction of apoptosis in human melanoma cells by a bcl-2/bcl-xL bispecific antisense oligonucleotide. Clin Cancer Res 2001;7(5):1446–1451.

    Google Scholar 

  32. Lu S, Man S, Bani MR, et al. Retroviral insertional mutagenesis as a strategy for the identification of genes associated with cis-diamminedichloroplatinum (II) resistance. Cancer Res 1995;55:1139–1145.

    PubMed  CAS  Google Scholar 

  33. Ben-David Y, Giddens EB, Bernstein A. Identification and mapping of a common proviral integration site Fli-1 in erythroleukemia cells induced by Friend murine leukemia virus. Proc Natl Acad Sci USA 1990;87:1332–1336.

    Article  PubMed  CAS  Google Scholar 

  34. Ben-David Y, Giddens EG, Letwin K, Bernstein A. Erythroleukemia induction by Friend murine leukemia virus: Insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes Dev 1991;5:908–918.

    Article  PubMed  CAS  Google Scholar 

  35. Moreau-Gachelin F, Tavitian A, Tambourin P. Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 1988;331:277–280.

    Article  PubMed  CAS  Google Scholar 

  36. Ben-David Y, Prideaux VR, Chow V, Benchimol S, Bernstein A. Inactivation of the p53 oncogene by internal deletion or retroviral integration in erythroleukemic cell lines induced by Friend leukemia virus. Oncogene 1988;3:179–185.

    PubMed  CAS  Google Scholar 

  37. Lu SJ, Rowan S, Bani MR, Ben-David Y. Retroviral integration within the FLi-2 locus results in inactivation of the erythroid transcription factor NF-E2 in Friend erythroleukemias: evidence that NF-E2 is essential for globin expression. Proc Natl Acad Sci USA 1994;91:8398–8402.

    Article  PubMed  CAS  Google Scholar 

  38. Lu S, Man S, Bani MR, et al. Retroviral insertional mutagenesis as a strategy for the identification of genes associated with cis-diamminedichloroplatinum (II) resistance. Cancer Res 1995;55:1139–1145.

    PubMed  CAS  Google Scholar 

  39. Markowitz D, Goff S, Bank A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J Virol 1988;62:1120–1124.

    PubMed  CAS  Google Scholar 

  40. Sola B, Simon D, Mattei MG, et al. Fim-1, Fim-2/c-fms, and Fim-3, three common integration sites of Friend murine leukemia virus in myeloblastic leukemias, map to mouse chromosomes 13, 18, and 3, respectively. J Virol 1988;62(11):3973–3978.

    PubMed  CAS  Google Scholar 

  41. Chu W, Pak BJ, Bani MR, et al. Tyrosinase-related protein 2 as a mediator of melanoma specific resistance to cis-diamminedichloroplatinum(II): therapeutic implications. Oncogene 2000;19(3):395–402.

    Article  PubMed  CAS  Google Scholar 

  42. Pak BJ, Li Q, Kerbel RS, Ben-David Y. TYRP2-mediated resistance to cis-diamminedichloroplatinum (II) in human melanoma cells is independent of tyrosinase and TYRP1 expression and melanin content. Melanoma Res 2000;10(5):499–505.

    Article  PubMed  CAS  Google Scholar 

  43. Riley PA. Melanin. Int J Biochem Cell Biol 1997;29(11):1235–1239.

    Article  PubMed  CAS  Google Scholar 

  44. Hearing VJ, Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J 1991;5(14):2902–2909.

    PubMed  CAS  Google Scholar 

  45. Land EJ, Ramsden CA, Riley PA. Tyrosinase autoactivation and the chemistry of ortho-quinone amines. Acc Chem Res 2003;36(5):300–308.

    Article  PubMed  CAS  Google Scholar 

  46. Tripathi RK, Hearing VJ, Urabe K, Aroca P, Spritz RA. Mutational mapping of the catalytic activities of human tyrosinase. J Biol Chem 1992;267(33):23,707–23,712.

    PubMed  CAS  Google Scholar 

  47. Barton DE, Kwon BS, Francke U. Human tyrosinase gene, mapped to chromosome 11 (q14-q21), defines second region of homology with mouse chromosome 7. Genomics 1988;3(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  48. Sturm RA, O’Sullivan BJ, Box NF, et al. Chromosomal structure of the human TYRP1 and TYRP2 loci and comparison of the tyrosinase-related protein gene family. Genomics 1995;29(1):24–34.

    Article  PubMed  CAS  Google Scholar 

  49. Jimenez M, Kameyama K, Maloy WL, Tomita Y, Hearing VJ. Mammalian tyrosinase: biosynthesis, processing, and modulation by melanocyte-stimulating hormone. Proc Natl Acad Sci USA 1988;85(11):3830–3834.

    Article  PubMed  CAS  Google Scholar 

  50. Kobayashi T, Urabe K, Winder A, et al. Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J 1994;13(24):5818–5825.

    PubMed  CAS  Google Scholar 

  51. Boissy RE, Sakai C, Zhao H, Kobayashi T, Hearing VJ. Human tyrosinase related protein-1 (TRP-1) does not function as a DHICA oxidase activity in contrast to murine TRP-1. Exp Dermatol 1998;7(4):198–204.

    Article  PubMed  CAS  Google Scholar 

  52. Tsukamoto K, Jackson IJ, Urabe K, Montague PM, Hearing VJ. A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J 1992;11(2):519–526.

    PubMed  CAS  Google Scholar 

  53. Leonard LJ, Townsend D, King RA. Function of dopachrome oxidoreductase and metal ions in dopachrome conversion in the eumelanin pathway. Biochemistry 1988;27(16):6156–6159.

    Article  PubMed  CAS  Google Scholar 

  54. Kroumpouzos G, Urabe K, Kobayashi T, Sakai C, Hearing VJ. Functional analysis of the slaty gene product (TRP2) as dopachrome tautomerase and the effect of a point mutation on its catalytic function. Biochem Biophys Res Commun 1994;202(2):1060–1068.

    Article  PubMed  CAS  Google Scholar 

  55. Budd PS, Jackson IJ. Structure of the mouse tyrosinase-related protein-2/dopachrome tautomerase (Tyrp2/Dct) gene and sequence of two novel slaty alleles. Genomics 1995;29(1):35–43.

    Article  PubMed  CAS  Google Scholar 

  56. Guyonneau L, Murisier F, Rossier A, Moulin A, Beermann F. Melanocytes and pigmentation are affected in dopachrome tautomerase knockout mice. Mol Cell Biol 2004;24(8):3396–3403.

    Article  PubMed  CAS  Google Scholar 

  57. Takeda K, Yokoyama S, Yasumoto K, et al. OTX2 regulates expression of DOPAchrome tautomerase in human retinal pigment epithelium. Biochem Biophys Res Commun 2003;300(4):908–914.

    Article  PubMed  CAS  Google Scholar 

  58. Udono T, Takahashi K, Yasumoto K, et al. Expression of tyrosinase-related protein 2/DOPAchrome tautomerase in the retinoblastoma. Exp Eye Res 2001;72(3):225–234.

    Article  PubMed  CAS  Google Scholar 

  59. Chi DD, Merchant RE, Rand R, et al. Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas. Am J Pathol 1997;150(6):2143–2152.

    PubMed  CAS  Google Scholar 

  60. Suzuki H, Takahashi K, Yasumoto K, et al. Role of neurofibromin in modulation of expression of the tyrosinase-related protein 2 gene. J Biochem (Tokyo) 1998;124(5):992–998.

    CAS  Google Scholar 

  61. Orlow SJ, Hearing VJ, Sakai C, et al. Changes in expression of putative antigens encoded by pigment genes in mouse melanomas at different stages of malignant progression. Proc Natl Acad Sci USA 1995;92(22):10,152–10,156.

    Article  PubMed  CAS  Google Scholar 

  62. Quaglino P, Savoia P, Fierro MT, Osella-Abate S, Bernengo MG. Clinical significance of sequential tyrosinase expression in the peripheral blood of disease-free melanoma patients: a review of literature data. Melanoma Res 2004;14(2):S17–S19.

    Article  PubMed  CAS  Google Scholar 

  63. Pak BJ, Lee J, Thai BL, et al. Radiation resistance of human melanoma analysed by retroviral insertional mutagenesis reveals a possible role for dopachrome tautomerase. Oncogene 2004;23(1):30–38.

    Article  PubMed  CAS  Google Scholar 

  64. Nishioka E, Funasaka Y, Kondoh H, Chakraborty AK, Mishima Y, Ichihashi M. Expression of tyrosinase, TRP-1 and TRP-2 in ultraviolet-irradiated human melanomas and melanocytes: TRP-2 protects melanoma cells from ultraviolet B induced apoptosis. Melanoma Res 1999;9(5):433–443.

    Article  PubMed  CAS  Google Scholar 

  65. Steitz J, Bruck J, Steinbrink K, Enk A, Knop J, Tuting T. Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma. Int J Cancer 2000;86(1):89–94.

    Article  PubMed  CAS  Google Scholar 

  66. Steitz J, Bruck J, Gambotto A, Knop J, Tuting T. Genetic immunization with a melanocytic selfantigen linked to foreign helper sequences breaks tolerance and induces autoimmunity and tumor immunity. Gene Ther 2002;9(3):208–213.

    Article  PubMed  CAS  Google Scholar 

  67. Tanaka M, Kaneda Y, Fujii S, et al. Induction of a systemic immune response by a polyvalent melanoma-associated antigen DNA vaccine for prevention and treatment of malignant melanoma. Mol Ther 2002;5(3):291–299.

    Article  PubMed  CAS  Google Scholar 

  68. O I, Blaszczyk-Thurin M, Shen CT, Ertl HC. A DNA vaccine expressing tyrosinase-related protein-2 induces T-cell-mediated protection against mouse glioblastoma. Cancer Gene Ther 2003;10(9):678–688.

    Article  PubMed  CAS  Google Scholar 

  69. Prins RM, Odesa SK, Liau LM. Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 2003;63(23):8487–8491.

    PubMed  CAS  Google Scholar 

  70. Liu G, Khong HT, Wheeler CJ, Yu JS, Black KL, Ying H. Molecular and functional analysis of tyrosinase-related protein (TRP)-2 as a cytotoxic T lymphocyte target in patients with malignant glioma. J Immunother 2003;26(4):301–312.

    Article  PubMed  CAS  Google Scholar 

  71. Negroiu G, Dwek RA, Petrescu SM. The inhibition of early N-glycan processing targets TRP-2 to degradation in B16 melanoma cells. J Biol Chem 2003;278(29):27,035–27,042.

    Article  PubMed  CAS  Google Scholar 

  72. Novellino L, d’Ischia M, Prota G. Nitric oxide-induced oxidation of 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid under aerobic conditions: non-enzymatic route to melanin pigments of potential relevance to skin (photo)protection. Biochim Biophys Acta 1998;1425(1):27–35.

    PubMed  CAS  Google Scholar 

  73. D’Acquisto F, Carnuccio R, d’Ischia M, Misuraca G. 5,6-Dihydroxyindole-2-carboxylic acid, a diffusible melanin precursor, is a potent stimulator of lipopolysaccharide-induced production of nitric oxide by J774 macrophages. Life Sci 1995;57(26):L401–L406.

    Article  Google Scholar 

  74. Memoli S, Napolitano A, d’Ischia M, Misuraca G, Palumbo A, Prota G. Diffusible melanin-related metabolites are potent inhibitors of lipid peroxidation. Biochim Biophys Acta 1997;1346(1):61–68.

    PubMed  Google Scholar 

  75. Dent P, Yacoub A, Contessa J, et al. Stress and radiation-induced activation of multiple intracellular signaling pathways. Radiat Res 2003;159(3):283–300.

    Article  PubMed  CAS  Google Scholar 

  76. Zanke BW, Boudreau K, Rubie E, et al. The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr Biol 1996;6(5):606–613.

    Article  PubMed  CAS  Google Scholar 

  77. Storz P, Toker A. NF-kappaB signaling—an alternate pathway for oxidative stress responses. Cell Cycle 2003;2(1):9–10.

    PubMed  CAS  Google Scholar 

  78. Raingeaud J, Gupta S, Rogers JS, et al. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 1995;270(13):7420–7426.

    Article  PubMed  CAS  Google Scholar 

  79. Zhang Y, Chen F. Reactive oxygen species (ROS), troublemakers between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK). Cancer Res 2004;64(6):1902–1905.

    Article  PubMed  CAS  Google Scholar 

  80. Legrand-Poels S, Bours V, Piret B, et al. Transcription factor NF-kappa B is activated by photosensitization generating oxidative DNA damages. J Biol Chem 1995;270(12):6925–6934.

    Article  PubMed  CAS  Google Scholar 

  81. Natoli G, Costanzo A, Ianni A, et al. Activation of SAPK/JNK by TNF receptor 1 through a noncytotoxic TRAF2-dependent pathway. Science 1997;275(5297):200–203.

    Article  PubMed  CAS  Google Scholar 

  82. Subjeck JR, Sciandra JJ, Johnson RJ. Heat shock proteins and thermotolerance; a comparison of induction kinetics. Br J Radiol 1982;55(656):579–584.

    Article  PubMed  CAS  Google Scholar 

  83. Li GC, Werb Z. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci USA 1982;79(10):3218–3222.

    Article  PubMed  CAS  Google Scholar 

  84. Rosengren E, Rorsman H. Reducing compounds initiate the TRP2-catalyzed conversion of L-dopachrome to DHICA. Melanoma Res 1998;8(5):469–470.

    Article  PubMed  CAS  Google Scholar 

  85. Mandic A, Viktorsson K, Heiden T, Hansson J, Shoshan MC. The MEK1 inhibitor PD98059 sensitizes C8161 melanoma cells to cisplatin-induced apoptosis. Melanoma Res 2001;11(1):11–19.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, N.J.

About this chapter

Cite this chapter

Pak, B.J., Ben-David, Y. (2006). The Role of DCT/TYRP2 in Resistance of Melanoma Cells to Drugs and Radiation. In: Hearing, V.J., Leong, S.P.L. (eds) From Melanocytes to Melanoma. Humana Press. https://doi.org/10.1007/978-1-59259-994-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-994-3_32

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-459-3

  • Online ISBN: 978-1-59259-994-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics