Production of Antioxidant Compounds by Culture of Panax ginseng C.A. Meyer Hairy Roots

I. Enhanced Production of Secondary Metabolite in Hairy Root Cultures by Elicitation
Part of the ABAB Symposium book series (ABAB)


Ginseng (Panax ginseng C.A. Meyer) hairy root cultures, established by infecting ginseng root discs with Agrobacterium rhizogenes, were used for secondary metabolite production. In this study, several elicitors [salicylic acid (SA), acetylsalicylic acid (ASA), yeast elicitor, and bacterial elicitor] were used to improve the productivity of useful metabolite in P. ginseng hairy root cultures. In SA elicitation, total ginseng saponin content increased slightly at lower elicitor dosages (0.1 to 0.5 mM). Also, the use of ASA as an elicitor resulted in the inhibition of biomass growth and an increase in total ginseng saponin content at every elicitor dosage (0.1 to 1.0 mM) by about 1.1 times. With yeast elicitor addition, hairy root growth was inhibited about 0.8-fold on a dry weight basis compared to the control, but total ginseng saponin content increased by about 1.17 times when compared to the control. The bacterial elicitor showed a slight inhibition of biomass growth, but total ginseng saponin content increased by about 1.23 times upon the addition of 1 mL.

Index Entries

Panax ginseng transformed hairy roots elicitation yeast elicitor ginseng saponin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banthorpe, D. V. (1994) Nat. Prod. Rep. 11, 303–328.PubMedCrossRefGoogle Scholar
  2. 2.
    Park, Y. G., et. al. (2004) Biotechnol. Bioproc. Engineer. 9, 41–46.Google Scholar
  3. 3.
    Jeong, G. T., Park, D. H., Ryu, H. W., Hwang, B., and Woo J. C. (2004) Appl. Biochem. Biotechnol. 116, 1193–1203.CrossRefGoogle Scholar
  4. 4.
    Nobuyuki, V. and Takesh, K. (1994) in Advances in Plant Biotechnology, (Ryu, D.D.Y. and Furusaki, S., eds.). Elsevier, pp. 307–338.Google Scholar
  5. 5.
    Ramachandra, R. S. and Ravishankar, G. A. (2002) Biotechnol. Adv. 20, 101–153.CrossRefGoogle Scholar
  6. 6.
    Akimoto, C, Aoyagi, H., and Tanaka, H. (1999) Appl Microbiol. Biotechnol. 52, 429–436.CrossRefGoogle Scholar
  7. 7.
    Bhagwath, S. G. and Hjorts, M. A. (2000) J. Biotechnol. 80, 159–167.PubMedCrossRefGoogle Scholar
  8. 8.
    Zabetakis, L, Edwards, R., and O’Hagan, D. (1999) Phytochemistry 50, 53–56.CrossRefGoogle Scholar
  9. 9.
    Cho, J. S., Kim, J. Y., Kim, I. H., and Kim, D. I. (2003) Biotech. Bioproc. Engineer. 8, 158–161.Google Scholar
  10. 10.
    Lee, K. T., Hirano, H., Yamakawa, T., Kodama, T., Igarashi, Y. and Shimomura, K. (2001) J. Biosc. Bioengineer. 91, 586–589.CrossRefGoogle Scholar
  11. 11.
    Shetty, P, Atallah, M. T., and Shetty, K. (2003) Process Biochem. 38, 1707–1717.CrossRefGoogle Scholar
  12. 12.
    Mehmetoglu, U. and Curtis, W. R. (1997) Appl. Biochem. Biotechnol. 67, 71–77.CrossRefGoogle Scholar
  13. 13.
    Gregori, G. H. and Victor, M. L. V. (1997), Plant Cell Reports 16, 287–290.Google Scholar
  14. 14.
    Chen, H., Chen, E, Chiu, F. C. K. and Lo, C. M. Y. (2001) Enzyme Microbial. Tech. 28, 100–105.CrossRefGoogle Scholar
  15. 15.
    Jung, H. Y, et al. (2003) Enzyme Microbial Tech. 33, 987–990.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  1. 1.Engineering Research InstituteChonnam National UniversityGwangjuKorea
  2. 2.School of Biological Sciences and TechnologyChonnam National UniversityGwangjuKorea
  3. 3.Institute of Bioindustrial TechnologyChonnam National UniversityGwangjuKorea
  4. 4.Department of Biological SciencesChonnam National UniversityGwangjuKorea
  5. 5.Department of BiologyMokpo National UniversityChonnamKorea
  6. 6.Department of Environmental EngineeringChova UniversityGwangjuKorea

Personalised recommendations