Advertisement

Pretreatment of Corn Stover by Soaking in Aqueous Ammonia

  • Tae Hyun Kim
  • Y. Y. Lee
Part of the ABAB Symposium book series (ABAB)

Abstract

Soaking in aqueous ammonia (SAA) was investigated as a pretreatment method for corn stover. In this method, the feedstock was soaked in aqueous ammonia over an extended period (10–60 d) at room temperature. It was done without agitation at atmospheric pressure. SAA treatment removed 55–74% of the lignin, but retained nearly 100% of the glucan and 85% of the xylan. The xylan remaining in the corn stover after SAA treatment was hydrolyzed along with the glucan by xylanase present in the Spezyme CP enzyme. In the simultaneous saccharification and fermentation (SSF) test of SAA-treated corn stover, using S. cerevisiae (D5A), an ethanol yield of 73% of theoretical maximum was obtained on the basis of the glucan content in the treated corn stover. The accumulation of xylose in the SSF appears to inhibit the cellulase activity on glucan hydrolysis, which limits the yield of ethanol. In the simultaneous saccharification and co-fermentation (SSCF) test, using recombinant E. coli (KO11), both the glucan and xylose were effectively utilized, resulting in on overall ethanol yield of 77% based on the glucan and xylan content of the substrate. When the SSCF process is used, the fact that the xylan fraction is retained during pretreatment is a desirable feature since the overall bioconversion can be carried out in a single step without separate recovery of xylose from the pretreatment liquid.

Index Entries

Corn stover pretreatment soaking ammonia simultaneous saccharification and fermentation (SSF) SSCF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chang, V.S. and Holtzapple, M.T. (2000) Appl. Biochem. Biotechnol. 84/86, 5–37.CrossRefGoogle Scholar
  2. 2.
    Cowling, E.B. and Kirk, T.K. (1976) Biotechnol. Bioeng. Symp. 6, 95–123.PubMedGoogle Scholar
  3. 3.
    Dulap, C.E., Thomson, J., and Chiang, L.C. (1976) AIChE. Symp. Ser. 72, 158, 58.Google Scholar
  4. 4.
    Lee, D., Yu, A.H.C., and Saddler, J.N. (1995) Biotechnol. Bioeng. 45, 328–336.CrossRefPubMedGoogle Scholar
  5. 5.
    Mooney, C.A., Mansfield, S.D., Touhy, M.G., and Saddler, J.N. (1998) Bioresou. Technol. 64, 113–119.CrossRefGoogle Scholar
  6. 6.
    Schwald, W., Brownell, H.H., and Saddler, J.N. (1988) J. Wood Chem. Tech. 8, 543–560.CrossRefGoogle Scholar
  7. 7.
    Björling, T. and Lindman, B. (1989) Enzyme Microb. Technol. 11, 240–246.CrossRefGoogle Scholar
  8. 8.
    Fein, J.E., Tallim, S.R., and Lawford, G.R. (2004) Can. J. Microbiol. 30, 682–690.CrossRefGoogle Scholar
  9. 9.
    Hahn-Hägerdal, B., Jeppsson, H., Olsson, L., and Mohagheghi, A. (1994) Appl. Microbiol Biotechnol. 41, 62–72.Google Scholar
  10. 10.
    Sanchez, B. and Bautista, J. (1988) Enzyme Microb. Technol 10, 315–318.CrossRefGoogle Scholar
  11. 11.
    Tran, A.V. and Chambers, R.P. (1986) Enzyme Microb. Technol. 8, 439–444.CrossRefGoogle Scholar
  12. 12.
    Van Zyl, C, Prior, B.A., and du Preez, J.C. (1991) Enzyme Microb. Technol. 13, 82–86.CrossRefGoogle Scholar
  13. 13.
    Watson, N.E., Prior, B.A., Lategan, P.M., and Lussi, M. (1984) Enzyme Microb. Technol. 6, 451–456.CrossRefGoogle Scholar
  14. 14.
    Kim, T.H., Kim, J.S., Sunwoo, C, and Lee, Y.Y. (2003) Bioresou. Technol. 90, 39–47.CrossRefGoogle Scholar
  15. 15.
    Iyer, P.V., Wu, Z.W., Kim, S.B., and Lee, Y.Y. (1996) Appl. Biochem. Biotechnol. 57/58, 121–132.Google Scholar
  16. 16.
    Kim, S.B. and Lee, Y.Y. (1996) Appl. Biochem. Biotechnol. 57/58, 147–156.CrossRefGoogle Scholar
  17. 17.
    Morris, PJ. and Mowat, D.N. (1980) Can. J. Animal Sci. 60, 327–336.CrossRefGoogle Scholar
  18. 18.
    Qji, U.I., Mowat, D.N., and Winch, J.E. (1977) J. Animal Sci. 44, 798–802.Google Scholar
  19. 19.
    Streeter, C.L. and Horn, G.W. (1982) Animal Feed Sci. Technol. 7, 325–329.CrossRefGoogle Scholar
  20. 20.
    Dien, B.S., Hespell, R.B., Wyckoff, H.A., and Bothast, R.J. (1998) Enzyme Microb. Technol. 23, 366–371.CrossRefGoogle Scholar
  21. 21.
    Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T., and Ingram, L.O. (2004) Appl. Environ. Microbiol. 57, 893–900.Google Scholar
  22. 22.
    NREL (1996) Chemical Analysis and Testing Laboratory Analytical Procedures (CAT), National Renewable Energy Laboratory, Golden, CO.Google Scholar
  23. 23.
    Xial, Z., Zhang, X., Gregg, D.J., and Saddler, J.N. (2004) Appl. Biochem. Biotechnol. 113/116, 1115–1126.Google Scholar
  24. 24.
    Nigam, P. and Prabhu, K.A. (1991) J. Basic Microb. 31, 279–283.CrossRefGoogle Scholar
  25. 25.
    Todorovic, R. and Grujic, S. (1987) Microbios Lett., 34, 71–78.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • Tae Hyun Kim
    • 1
  • Y. Y. Lee
    • 1
  1. 1.Department of Chemical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations