Studies into Using Manure in a Biorefinery Concept

  • S. Chen
  • Z. Wen
  • W. Liao
  • C. Liu
  • R. L. Kincaid
  • J. H. Harrison
  • D. C. Elliott
  • M. D. Brown
  • D. J. Stevens
Part of the ABAB Symposium book series (ABAB)

Abstract

Animal manure is an underutilized biomass resource containing a large amount of organic carbon that is often wasted with the existing manure disposal practices. A research project funded by the US Department of Energy explored the feasibility of using manure via the sugar platform in a biorefinery, converting the carbon from fiber to biochemicals. The results showed that (1) fiber was the major component of manure dry material making up approx 50%, 40%, and 36% of the dry dairy, swine, and poultry manure material, respectively; within dairy manure, more than 56% of the dry matter was in particles larger than 1.680 mm; (2) in addition to being a carbon source, manure could provide a variety of nutrient for fungi T. reesei and A. phoenicis to produce cellulase; (3) the hemicellulose component in the manure fiber could be readily converted to sugar through acid hydrolysis; while concentrated acid decrystallization treatment was most effective in manure cellulose hydrolysis; (4) purification and separation was necessary for further chemical conversion of the manure hydrolysate to polyols through hydrogenation; and (5) the manure utilization strategy studied in this work is currently not profitable.

Index Entries

Biorefinery manure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Council for Agricultural Science and Technology. (1995), Task Force Rpt. No. 124. CAST, 4420 West Lincoln Way, Ames IA.Google Scholar
  2. 2.
    Sutton, A. L., Nelson, D. W., Kelly, D. T., and Hill, D. L. (1986), J. Environ. Quality 15, 370–375.CrossRefGoogle Scholar
  3. 3.
    Dewes, T. L., Schmitt, U. V., and Ahrens, E. (1990), Biological Wastes 31, 241–250.CrossRefGoogle Scholar
  4. 4.
    Paul, J. W, Beauchamp. E. G., and Zhang, X. (1993), Can. J. Soil Sci. 73, 539–553.Google Scholar
  5. 5.
    Mandel, M. and Weber, J. (1969) Adv. Chem. Ser. 95, 391–414.CrossRefGoogle Scholar
  6. 6.
    Lowry O. H., Rosebrough N. J., Farr, A. L, and Randall R. J. (1951), J. Biol. Chem. 193, 65–275.Google Scholar
  7. 7.
    Elliott, D. C., Peterson, K. L., Muzatko, D. S., Alderson, E. V., Hart, T. R., and Neuenschwander, G. G. (2004), Appl. Biochem. Biotechnol. 113–116, 807–825.PubMedCrossRefGoogle Scholar
  8. 8.
    APHA (1998), Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.Google Scholar
  9. 9.
    Association of Official Analytical Chemists (1990), Official Methods of Analysis 15th ed. Arlington, VA, Vol 1.Google Scholar
  10. 10.
    Goering, H. K. and Van Soest, P. J. (1970), Agricultural Handbook No. 379, Agricultural Research Service-United State Department of Agriculture, Washington DC, pp. 1–20.Google Scholar
  11. 11.
    Ghose, T. K. (1987), Pure Appl. Chem. 59, 257–268.CrossRefGoogle Scholar
  12. 12.
    Wen, Z., Liao, W., and Chen, S. (2004), Biores. Technol. 91, 31–39.CrossRefGoogle Scholar
  13. 13.
    Chen, S., Liao, W., Liu, C., et al. (2003), Project report submitted to the US Department of Energy (Contract DE-AC06-76RL01830), WA. http://www.pnl.gov/biobased/com-pleted.stm.
  14. 14.
    Duff, S. J. B. and Murray, W. D. (1996), Biores. Technol. 55, 1–33.CrossRefGoogle Scholar
  15. 15.
    Wen Z., Liao, W., and Chen, S. (2005), Biores. Technol. 96, 491–499.CrossRefGoogle Scholar
  16. 16.
    Reinertsen, S. A., Elliot, L. F., Cochran, V. L, and Campbell, G. S. (1984), Soil Biol. Biochem. 16, 459–464.CrossRefGoogle Scholar
  17. 17.
    Committee on Animal Nutrition Board on Agriculture National Research Council (1983), Underutilized resources as animal feedstuffs—National Academy Press, Washington DC.Google Scholar
  18. 18.
    Fennema, O. R. (1996), Food chemistry, 3rd ed. Marcel Dekker, New York.Google Scholar
  19. 19.
    Collins, P. and Ferrier, R. (1995), Monosaccharides. J Wiley, New York.Google Scholar
  20. 20.
    Liao, W., Liu, Y, Liu, C., and Chen, S. (2004), Biores. Technol. 94, 33–41.CrossRefGoogle Scholar
  21. 21.
    Nguyen, Q. (1998), Milestone completion report: evaluation of a two-stage dilute sulfuric acid hydrolysis process. Internal Report, National Renewable Energy laboratory, Golden, CO.Google Scholar
  22. 22.
    Choi, C. H. and Mathews, A. P. (1996), Biores. Technol. 58, 101–106.CrossRefGoogle Scholar
  23. 23.
    Zerbe, J. I. and Baker, A. J. (1987), Investigation of fundamentals of two-stage, dilute sulfuric acid hydrolysis of wood. In Energy from Biomass and Wastes, Institute of Gas Technology. Chicago,. IL, pp. 927–947.Google Scholar
  24. 24.
    Sun, Y and Cheng, J. (2002), Biores. Technol. 83, 1–11.CrossRefGoogle Scholar
  25. 25.
    Harris, E. E. (1949), Adv. Carbohydrate Chem. 4, 150–188.Google Scholar
  26. 26.
    Grahmann, K., Torget, R., and Himmel, M. (1985), Biotechnol. Bioeng. Symp. 15, 59–80.Google Scholar

Copyright information

© Humana Press Inc. 2005

Authors and Affiliations

  • S. Chen
    • 1
  • Z. Wen
    • 1
  • W. Liao
    • 1
  • C. Liu
    • 1
  • R. L. Kincaid
    • 2
  • J. H. Harrison
    • 2
  • D. C. Elliott
    • 3
  • M. D. Brown
    • 3
  • D. J. Stevens
    • 3
  1. 1.Department of Biological Systems EngineeringWashington State UniversityPullman
  2. 2.Department of Animal ScienceWashington State UniversityPullman
  3. 3.Pacific Northwest National LaboratoryRichland

Personalised recommendations