Skip to main content

Lipase Production by Solid-State Fermentation

Cultivation Conditions and Operation of Tray and Packed-Bed Bioreactors

  • Chapter
Book cover Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals

Abstract

The production of lipase by Penicillium simplicissimum in solid-state fermentation was studied using babassu cake as the basal medium. Tray-type and packed-bed bioreactors were employed. In the former, the influence of temperature; content of the medium, and medium supplementation with olive oil, sugarcane molasses, corn steep liquor, and yeast hydrolysate was studied. For all combinations of supplements, a temperature of 30°C, a moisture content of 70%, and a concentration of carbon source of 6.25% (m/m, dry basis) provided optimum conditions for lipase production. When used as single supplements olive oil and molasses also were able to provide high lipase activities (20 U/g). Using packed-bed bioreactors and molasses-supplemented medium, optimum conditions for enzyme production were air superficial velocities above 55 cm/min and temperatures below 28°C. The lower temperature optimum found for these reactors is probably related to radial heat gradient formation inside the packed bed. Maximum lipase activities obtained in these bioreactors (26.4 U/g) were 30% higher than in tray-type reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sharma, R., Chisti, Y., and Banerjee, U. C. (2001), Biotechnol. Adv. 19, 627–662.

    Article  PubMed  CAS  Google Scholar 

  2. Pandey, A., Soccol, C. R., and Mitchell, D. A. (2000), Process Biochem. 35, 1153–1169.

    Article  CAS  Google Scholar 

  3. Ashley, V. M, Mitchell, D. A., and Howes, T. (1999), Biochem. Eng. J. 3, 141–150.

    Article  CAS  Google Scholar 

  4. Mitchell, D. A., Pandey, A., Penjit, S., and Krieger, N. (1999), Process Biochem. 35, 167–178.

    Article  CAS  Google Scholar 

  5. Couto, S. R., Moldes, D., Libébanas, A., and Sanromán, A. (2003), Biochem. Eng. J. 15, 21–26.

    Article  CAS  Google Scholar 

  6. Freire, D. M. G. (1996), PhD thesis, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

    Google Scholar 

  7. Gutarra, M. L. E. (2003), MSc thesis, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

    Google Scholar 

  8. Gombert, A. K, Lopes, A. P., Castilho, L. R., and Freire, D. M. G. (1999), Process Biochem. 35, 85–90.

    Article  CAS  Google Scholar 

  9. Freire, D. M. G., Teles, E. M. F., Bon, E. P. S., and Sant’Anna Jr. G. L. (1997a), Appl. Biochem. Biotechnol. 63, 409–421.

    Article  PubMed  Google Scholar 

  10. Freire, D. M. G., Gomes, P. M., Bon, E. P. S., and Sant’Anna Jr. G. L. (1997b), Braz. J. Microbiol. (Rev. Microbiol.) 28, 6–12.

    Google Scholar 

  11. Mahadik, N. D., Puntambekar, U. S., Bastawde, K. B., Khire, J. M., and Gokhale, D. V. (2002), Process Biochem. 38, 715–721.

    Article  CAS  Google Scholar 

  12. Ul-Haq, I., Idrees, S., and Rajoka, M. I. (2002), Process Biochem. 37, 637–641.

    Article  CAS  Google Scholar 

  13. Sato, K. and Sudo, S. (1999), Manual of Industrial Microbiology and Biotechnology, Demain, A. L. and Davies, J. E., eds., ASM Press, Washington DC, pp 61–79.

    Google Scholar 

  14. Kamini, N. R., Mala, J. G. S., and Puvanakrishnan, R. (1998), Process Biochem. 33, 505–511.

    Article  CAS  Google Scholar 

  15. Mitchell, D. A., Berovic, M., and Krieger, N. (2002), Biotechnol. Ann. Rev. 8, 183–225.

    CAS  Google Scholar 

  16. Saucedo-Castañeda, G., Gutiérrez-Rojas, M., Bacquet, G., Raimbault, M., and Viniegra-González, G. (1990), Biotechnol. Bioeng. 35, 802–808.

    Article  PubMed  Google Scholar 

  17. Mitchell, D. A., Meien, O. F. V., and Krieger, N. (2003), Biochem. Eng. J. 13, 137–147.

    Article  CAS  Google Scholar 

  18. Sztajer, H., Lünsdorf, H., Erdmann, H., Menge, U., and Schmid, R. (1992), Biochim. Biophy. Acta. 1124, 253–261.

    CAS  Google Scholar 

  19. Rao, P. V., Jayaraman, K., and Lakshmanan, CM. (1993), Process. Biochem. 28, 391–395.

    Article  CAS  Google Scholar 

  20. Cordova, J., Nemmaoui, M., Ismaïli-Alaoui, M., Morin, A., Roussos, S., Raimbault, M., and Benjilali, B. (1998), J. Mol. Catal. B Enzyme 5, 75–78.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this chapter

Cite this chapter

Gutarra, M.L.E., Cavalcanti, E.D.C., Castilho, L.R., Freire, D.M.G., Sant’Anna, G.L. (2005). Lipase Production by Solid-State Fermentation. In: Davison, B.H., Evans, B.R., Finkelstein, M., McMillan, J.D. (eds) Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. ABAB Symposium. Humana Press. https://doi.org/10.1007/978-1-59259-991-2_10

Download citation

Publish with us

Policies and ethics