Skip to main content

Fatty Acids, Cell Signaling, and Cardiovascular Risk

  • Chapter
Hypertension and Hormone Mechanisms

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

Abdominal obesity is linked to increased non-esterified fatty acid (NEFA) concentrations and turnover that are resistant to suppression by insulin (1,2). Similarly, physical activity and maximal oxygen consumption, a marker of physical fitness, are inversely associated with plasma NEFA concentrations measured as the area under-the-curve during a standard 2-h oral glucose tolerance test (3). Familial combined hyperlipidemia, a relatively common autosomal dominant trait, is associated with high plasma NEFAs as well as greater and more prolonged elevation of NEFAs following a fat load (4). Obesity, sedentary lifestyles, and familial combined hyperlipidemia are associated with high blood pressure, abnormal glucose and lipid metabolism, and more cardiovascular events including sudden death (57).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Egan, B. M., Hennes, M. M. I., O’Shaughnessy, I. M., Stepniakowski, K. T., Kissebah, A. H., and Goodfriend, T. L. (1996) Obesity hypertension is more closely related to impairment of insulin’s fatty acid than glucose lowering action. Hypertension 27(2), 723–728.

    CAS  PubMed  Google Scholar 

  2. Jensen, M. D., Haymond, M. W., Rizza, R. A., Cryer, P. E., and Miles, J. M. (1989) Influence of body fat distribution on free fatty acid metabolism in obesity. J. Clin. Investig. 83, 1168–1173.

    CAS  PubMed  Google Scholar 

  3. Franks, P. W., Wong, M.-Y., Luan, J., Mitchell, J., Hennings, S., and Wareham, N. J. (2002) Nonesterified fatty acid levels and physical inactivity: the relative importance of low habitual energy expenditure and cardio-respiratory fitness. Br. J. Nutr. 88, 307–313.

    CAS  PubMed  Google Scholar 

  4. Cabezas, M. C., deBruin, T. W. A., deValk, H. W., Shoulders, C. C., Jansen, H., and Erkelens, D. W. (1993) Impaired fatty acid metabolism in familial combined hyperlipidemia: a mechanism associating hepatic apolipoprotein B overproduction and insulin resistance. J. Clin. Investig. 92, 160–168.

    CAS  Google Scholar 

  5. Quillot, D., Fluckiger, L., Zannad, F., Drouin, P., and Ziegler, O. (2001) Impaired autonomic control of heart rate and blood pressure in obesity: the role of age and of insulin resistance. Clin. Auton. Res. 11, 79–86.

    Google Scholar 

  6. Martinson, B. C., O’Connor, P. J., and Pronk, N. P. (2001) Physical inactivity and short-term all-cause mortality in adults with chronic disease. Arch. Intern. Med. 161, 1173–1180.

    CAS  PubMed  Google Scholar 

  7. Carr, M. C. and Brunzell, J. D. (2004) Abdominal obesity and dyslipidemia in the metabolic syndrome: importance of type 2 diabetes and familial combined hyperlipidemia in coronary artery disease risk. J. Clin. Endo. Metab. 89, 2601–2607.

    CAS  Google Scholar 

  8. Fagot-Campagna, A., Balkau, B., Simon, D., et al. (1998) High free fatty acid concentration: an independent risk factor for hypertension in the Paris prospective study. Internat J. Epidemiol. 27, 808–813.

    CAS  Google Scholar 

  9. Jouven, X., Charles, M. A., Desnos, M., and Ducimetiere, P. (2001) Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation 104, 756–761.

    CAS  PubMed  Google Scholar 

  10. Filipovsky, J., Ducimetière, P., Eschwège, E., Richard, J. L., Rosselin, G., and Claude, J. R. (1996) The relationship of blood pressure with glucose, insulin, heart rate, free fatty acids and plasma cortisol levels according to the degree of obesity. J. Hypertens. 14, 229–235.

    CAS  PubMed  Google Scholar 

  11. Sundström, J., Lind, L., Bessby, B., Andrén, B., Aro, A., and Lithel, H. O. (2001) Dyslipidemia and an unfavorable fatty acid profile predict left ventricular hypertrophy 20 years later. Circulation 103, 836–841.

    PubMed  Google Scholar 

  12. Strömblad, G. and Björntorp, P. (1986) Reduced hepatic insulin clearance in rats with dietaryinduced obesity. Metabolism 35, 323–327.

    PubMed  Google Scholar 

  13. Ferrannini, E., Barrett, E. J., and Bevilacqua, S. (1983) Effect of fatty acids on glucose production and utilization in man. J. Clin. Investig. 72, 1737–1747.

    CAS  PubMed  Google Scholar 

  14. Wang, X., De Leo, D., Guo, W., et al. (2004) Gene and protein kinase expression profiling of reactive oxygen species-associated lipotoxicity in the pancreatic β-cell line MIN6. Diabetes 53, 129–140.

    CAS  PubMed  Google Scholar 

  15. Shimabukuro, M., Zhou, Y.-T., and Unger, R. H. (1998) Fatty acid-induced β cell apoptosis: A link between obesity and diabetes. Proc. Natl Acad. Sci. 95, 2498–2502.

    CAS  PubMed  Google Scholar 

  16. Randle, P. J., Garland, P. B., Hales, C. N., and Newsholme, E. A. (1963) The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789.

    CAS  PubMed  Google Scholar 

  17. Boden, G., Chen, X., Ruiz, J., White, J. V., and Rossetti, L. (1994) Mechanisms of fatty acid-induced inhibition of glucose uptake. J. Clin. Investig. 93, 2438–2446.

    CAS  PubMed  Google Scholar 

  18. Krauss, R. M. (2004) Lipids and lipoproteins in patients with type 2 diabetes. Diab. Care 27, 1496–1504.

    CAS  Google Scholar 

  19. Tasi, W. C., Li, Y. H., Lin, C. C., Chao, T. H., and Chen, J. H. (2004) Effects of oxidative stress on endothelial function after a high-fat meal. Clin. Sci. 106, 315–319.

    Google Scholar 

  20. Hamdy, O., Ledbury, S., Jullooly, C., et al. (2003) Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diab. Care 26, 2119–2125.

    Google Scholar 

  21. Davda, R. K., Stepniakowski, K. T., Lu, G., Ullian, M. E., Goodfriend, T. L., and Egan, B. M. (1995) Oleic acid inhibits endothelial cell nitric oxide synthase by a PKC-independent mechanism. Hypertension 26, 764–770.

    CAS  PubMed  Google Scholar 

  22. Esenabhalu, V. E., Schaeffer, G., and Graier, W. F. (2003) Free fatty acid overload attenuates Ca2+ signaling and NO production in endothelial cells. Antioxid. Redox. Signal 5, 147–153.

    CAS  PubMed  Google Scholar 

  23. Steinberg, H. O., Tarshoby, M., Monestel, R., et al. (1997) Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J. Clin. Investig. 100, 1230–1239.

    CAS  PubMed  Google Scholar 

  24. Park, J.-Y., Kim, Y. M., Son, H. S., et al. (2003) Oleic acid induces endothelin-1 expression through activation of protein kinase C and NF-κB. Biochem. Biophys. Res. Commun. 303, 891–895.

    CAS  PubMed  Google Scholar 

  25. Ye, P., Hu, X., and Zhao, Y. (2002) The increase in plasminogen activator inhibitor type-1 expression by stimulation of activators for peroxisome proliferators-activated receptors in human endothelial cells. Chin. Med. Sci. J. 17, 112–116.

    CAS  PubMed  Google Scholar 

  26. Egan, B., Panis, R., Hinderliter, A., Schork, N., and Julius, S. (1987) Mechanism of increased α-adrenergic vasoconstriction in human essential hypertension. J. Clin. Investig. 80, 812–817.

    CAS  PubMed  Google Scholar 

  27. Egan, B. M., Schork, N. J., and Weder, A. B. (1989) Regional hemodynamic abnormalities in overweight men: focus on alpha-adrenergic vascular responses. Am. J. Hypertens. 2, 428–434.

    CAS  PubMed  Google Scholar 

  28. Stepniakowski, K. T., Goodfriend, T. L., and Egan, B. M. (1995) Fatty acids enhance vascular α-adrenergic sensitivity. Hypertension 25(2), 774–778.

    CAS  PubMed  Google Scholar 

  29. Stepniakowski, K. T., Sallee, R. F., Goodfriend, T. L., Zhang, Z., and Egan, B. M. (1996) Fatty acids enhance neurovascular reflex responses by effects on α1-adrenoceptors. Am. J. Physiol. 270, R1240–R1346.

    Google Scholar 

  30. Haastrup, A., Stepniakowski, K. T., Goodfriend, T. L., and Egan, B. M. (1998) Lipids enhance α1-adrenergic receptor mediator pressor reactivity. Hypertension 32, 693–698.

    CAS  PubMed  Google Scholar 

  31. Gadegbeku, C. A., Shrayyef, M. Z., LaPorte, F. B., and Egan, B. M. (2004) Lipids enhance alpha1-adrenoceptor pressor sensitivity in patients with chronic kidney disease. Am. J. Kid. Dis. 44, 446–454.

    CAS  PubMed  Google Scholar 

  32. Stepniakowski, K. T., Lu, G., Davda, R. K., and Egan, B. M. (1997) Fatty acids enhance endotheliumdependent dilation in hand veins by a cyclo-oxygenase dependent mechanism. Hypertension 30, 1634–1639.

    CAS  PubMed  Google Scholar 

  33. Stojiljkovic, M. P., Zhang, D., Lopes, H. F., Lee, C. G., Goodfriend, T. L., and Egan, B. M. (2001) Hemodynamic effects of lipids in humans. Am. J. Physiol. R280, 1674–1679.

    Google Scholar 

  34. Palisso, G., Manzella, D., Rizzo, M. R., et al. (2000) Elevated plasma fatty acid concentrations stimulate the cardiac autonomic nervous system in healthy subjects. Clin. Nutr. 72, 723–730.

    Google Scholar 

  35. Andersson, B., Wikstrand, J., Ljung, T., Bjork, S., Wennmalm, A., and Bjorntorp, P. (1998) Urinary albumin excretion and heart rate variability in obese women. Int. J. Obes. Relat. Metab. Disord. 22, 399–405.

    CAS  PubMed  Google Scholar 

  36. Egan, B., Fitzpatrick, M. A., and Julius, S. (1987) The heart and the regulation of renin. Circulation 75(Suppl 5), S103–S107.

    Google Scholar 

  37. Fields, L. E., Burt, V. L., Cutler, J. A., Hugher, J., Roccella, E. J., and Sorlie, P. (2004) The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertension 44, 398–404.

    CAS  PubMed  Google Scholar 

  38. Stern, M. and Haffner, S. (1986) Body fat distribution and hyperinsulinemia as risk factors for diabetes and cardiovascular disease. Arteriosclerosis 6, 123–129.

    CAS  PubMed  Google Scholar 

  39. Peiris, A., Sothmann, M., Hoffmann, R., et al. (1989) Adiposity, fat distribution and cardiovascular risk. Ann. Int. Med. 110, 867–872.

    CAS  PubMed  Google Scholar 

  40. Chen, Y.-D. I., Golay, A., Swislocki, A. L. M., and Reaven, G. M. (1987) Resistance to insulin suppression of plasma free fatty acid concentrations and insulin stimulation of glucose uptake in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 64, 17–21.

    CAS  PubMed  Google Scholar 

  41. Roust, L. R. and Jensen, M. D. (1993) Postprandial free fatty acid kinetics are abnormal in upper body obesity. Diabetes 42, 1567–1573.

    CAS  PubMed  Google Scholar 

  42. Reaven, G. M., Hollenbeck, C., Jeng, C. Y., Wu, M. S., and Chen, Y. D. I. (1988) Measurement of plasma glucose, free fatty acids, lactate, and insulin for 24 hours in patients with NIDDM. Diabetes 37, 1020–1024.

    CAS  PubMed  Google Scholar 

  43. Hennes, M. M., O’Shaugnessy, I. M., Kelly, T. M., Labelle, P., Egan, B. M., and Kissebah, A. H. (1996) Insulin resistant lipolysis in abdominally obese hypertensives: role of the renin-angiotensin system. Hypertension 28, 120–126.

    CAS  PubMed  Google Scholar 

  44. Williams, R. R., Hunt, S. C., Hopkins, P. N., et al. (1988) Familial dylipidemic hypertension: evidence from 58 Utah families for a syndrome present in ≈12% of patients with essential hypertension. JAMA 259, 3579–3586.

    CAS  PubMed  Google Scholar 

  45. Bülow, J., Madsen, J., and Hojgaard, L. (1990) Reversibility of the effects on local circulation of high lipid concentrations in blood. Scand. J. Clin. Lab. Investig. 50, 291–296.

    Google Scholar 

  46. Lu, G., Morinelli, T. A., Meier, K. A., Rosenzweig, S. A., and Egan, B. M. (1996) Oleic acid-induced mitogenic signaling in vascular smooth muscle cells a role for protein kinase C. Circ. Res. 79, 611–618.

    CAS  PubMed  Google Scholar 

  47. Arici, M., Brown, J., Williams, M., Harris, K. P. G., Walls, J., and Brunskill, N. J. (2002) Fatty acids carried on albumin modulate proximal tubular cell fibronectin production: a role for protein kinase C. Nephrol. Dial. Trnasplant. 17, 1751–1757.

    CAS  Google Scholar 

  48. Gadegbeku, C. A., Dhandayuthapani, A., Sadler, Z. E., and Egan, B. M. (2002) Raising lipids acutely reduces baroreflex sensitivity. Am. J. Hypertens. 15, 479–485.

    CAS  PubMed  Google Scholar 

  49. Stojiljkovic, M. P., Lopes, H. F., Zhang, D., Morrow, J. D., Goodfriend, T. L., and Egan, B. M. (2002) Raising fatty acids increases plasma and urine F2-isoprostanes in humans. J. Hypertens. 20, 1–7.

    Google Scholar 

  50. Granger, J. P., Alexander, B. T., Llinas, M. T., Bennett, W. A., and Khalil, R. A. (2001) Pathophysiology of hypertension during preeclampsia linking placental ischemia with endothelial dysfunction. Hypertension 38(2), 718–722.

    CAS  PubMed  Google Scholar 

  51. Grekin, R. J., Dumont, C. J., Vollmer, A. P., Watts, S. W., and Webb, R. C. (1997) Mechanisms in the pressor effects of hepatic portal venous fatty acid infusion. Am. J. Physiol. 273, R324–R330.

    CAS  PubMed  Google Scholar 

  52. Rocchini, A. P., Moorehead, C. P., DeRemer, S., and Blondi, D. (1989) Pathogenesis of weight related changes of blood pressure in dogs. Hypertension 13, 922–928.

    CAS  PubMed  Google Scholar 

  53. Hall, J. E., Brands, M. W., Dixon, W. N., and Smith, M. J. Jr. (1993) Obesity-induced hypertension: renal function and systemic hemodynamics. Hypertension 22, 292–299.

    CAS  PubMed  Google Scholar 

  54. Sowers, J. R., Nyby, M., Stern, N., et al. (1982) Blood pressure and hormone changes associated with weight reduction in the obese. Hypertension 4, 686–691.

    CAS  PubMed  Google Scholar 

  55. Lauresen, J. B., Rajagopalan, S., Galis, Z., Tarpey, M., Freeman, B. A., and Harrison, D. G. (1997) Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95, 588–593.

    Google Scholar 

  56. Lopes, H. F., Morrow, J. D., Stojiljkovic, M. P., Goodfriend, T. L., and Egan, B. M. (2003) Acute hyperlipidemia increases oxidative stress more in African Americans than in Caucasian Americans. Am. J. Hypertens. 16, 331–336.

    CAS  PubMed  Google Scholar 

  57. Hardy, S., Langelier, Y., and Prentki, M. (2000) Oleate activates phophatidylinositol 3-kinase and promotes proliferation and reduces apoptosis of MDA-MS-231 breast cancer cells, whereas palmitate has opposite effects. Cancer Res. 61, 6353–6358.

    Google Scholar 

  58. Palmantier, R., George, M. D., Akiyama, S. K., Wolber, F. M., Olden, K., and Roberts, J. D. (2001) Cis-unsaturated fatty acids stimulate beta1 integrin-mediated adhesion of human breast carcinoma cells to type IV collagen by activating protein kinase C-epsilon and-mu. Cancer Res. 61, 2445–2452.

    CAS  PubMed  Google Scholar 

  59. Yoshida, M., Okamura, S., Kodaki, T., Mori, M., and Yamashita, S. (1998) Enhanced levels of oleate-dependent and Arf-dependent phospholipase D isoforms in experimental colon cancer. Oncol. Res. 10, 399–406.

    CAS  PubMed  Google Scholar 

  60. Garfinkel, L. (1985) Overweight and cancer. Ann. Int. Med. 103(6), 1034–1036.

    CAS  PubMed  Google Scholar 

  61. Bianchini, F., Kaaks, R., and Vainio, H. (2002) Overweight, obesity, and cancer risk. Lancet Oncol. 3, 545–574.

    Google Scholar 

  62. Jun, R. T. (1997) Obesity as a disease. Br. Med. Bull. 53, 307–321.

    Google Scholar 

  63. Ordway, R. W., Singer, J. J., and Walsh, J. V. (1991) Direct regulation of ion channels by fatty acids. Trends Neurosci. 14, 96–100.

    CAS  PubMed  Google Scholar 

  64. Perez, F. R., Casabiell, X., Camina, J. P., Zugaza, J. L., and Casaneuva, F. F. (1997) Cis-unsaturated free fatty acids block growth hormone and prolactin secretion in thyrotropin-releasing hormonestimulated GH3 cells by perturbing the function of plasma membrane integral proteins. Endocrinology 138, 264–272.

    CAS  PubMed  Google Scholar 

  65. Haastrup, A., Gadegbeku, C. A., Zhang, D., et al. (2001) Intralipid stimulates the production of 6-keto-PGF in human dorsal hand veins. Hypertension 38, 858–861.

    CAS  PubMed  Google Scholar 

  66. Nomura, T., Nishizaki, T., Enomoto, T., and Itoh, H. (2001) A long-lasting facilitation of hippocampal neurotransmission via a phspholipase A2 signaling pathway. Life Sci. 68, 2885–2891.

    CAS  PubMed  Google Scholar 

  67. Verlengia, R., Gorjao, R., Kanunfre, C. C., et al. (2003) Genes regulated by arachidonic and oleic acids in Raji cells. Lipids 38, 1157–1165.

    CAS  PubMed  Google Scholar 

  68. Rottensteiner, H., Palmier, L., Hartig, A., et al. (2002) The peroxisomal transporter gene ANT2 is regulated by a deviant oleate response element (ORE): characterization of the signal for fatty acid induction. Biochem. J. 365(1), 109–117.

    CAS  PubMed  Google Scholar 

  69. Jump, D. B. (2004) Fatty acid regulation of gene transcription. Crit. Rev. Clin. Lab. Sci. 41, 41–78.

    CAS  PubMed  Google Scholar 

  70. Lu, G., Meier, K. E., Jaffa, A. A., Rosenzweig, S. A., and Egan, B. M. (1998) Oleic acid and angiotensin induce a synergistic mitogenic response. Hypertension 31, 978–985.

    CAS  PubMed  Google Scholar 

  71. Engelman, J. A., Chu, C., Lin, A., et al. (1998) Caveolin-meidated regulatoin of signaling along the P42/44 MAP kinase cascade in vivo: a role for the caveolin-scaffolding domain. FEBS Lett. 428, 205–211.

    CAS  PubMed  Google Scholar 

  72. Touny, S. E., Khan, W., and Hannun, Y. (1990) Regulation of platelet protein kinase C by oleic acid. J. Biol. Chem. 265, 16,437–16,443.

    PubMed  Google Scholar 

  73. Khan, W. A., Blobe, G., Halpern, A., et al. (1993) Selective regulation of protein kinase C isozymes by oleic acid in human platelets. J. Biol. Chem. 268, 5063–5068.

    CAS  PubMed  Google Scholar 

  74. Egan, B. M., Lu, G., and Greene, E. L. (1999) Vascular effects of non-esterified fatty acids: implications for the cardiovascular risk factor cluster. Prostagl. Leukotr. Essen. Fatty Acids 60, 411–420.

    CAS  Google Scholar 

  75. Kowluru, A. (2004) Differential regulation by fatty acids of protein histidine phosphorylation in rat pancreatic islets. Mol. Cell. Biochem. 266, 175–182.

    CAS  PubMed  Google Scholar 

  76. Garcia-Webb, P., Bonser, A. M., Pelham, J., and Whiting, D. (1982) Basal insulin secretion increases with the onset of non-insulin dependent diabetes. Pathology 14, 323–325.

    CAS  PubMed  Google Scholar 

  77. Haupt, E., Haupt, A., Herrmann, R., Benecke-Timp, A., Vogel, H., and Walter, C. (1999) The KID study V: the natural history of type 2 diabetes in younger patients still practicing a profession. Heterogeneity of basal and reactive C-peptide levels in relation to BMI, duration of disease, age and HbA1. Exp. Clin. Endo. Diab. 107, 236–243.

    CAS  Google Scholar 

  78. Cox, J. A., Jeng, A. Y., Sharkey, N. A., Blumberg, P. M., and Tauber, A. I. (1985) Activation of the human neutrophil nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by protein kinase C. J. Clin. Investig. 76, 1932–1938.

    CAS  PubMed  Google Scholar 

  79. Myers, M. A., McPhail, L. C., and Snyderman, R. (1985) Redistribution of protein kinase C activity in human monocytes: correlation with activation of the respiratory burst. J. Immunol. 135, 3411–3416.

    CAS  PubMed  Google Scholar 

  80. McPhail, L. C., Clayton, C. C., and Snyderman, R. (1984) A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science 224, 622–625.

    CAS  PubMed  Google Scholar 

  81. Fiorani, M., Cantoni, O., Tasinato, A., Boscoboinik, D., and Azzi, A. (1995) Hydrogen peroxide and fetal bovine serum-induced DNA synthesis in vascular smooth muscle cells: positive and negative regulation by protein kinase C isoforms. Biochim. Biophys. Acta 1269, 98–104.

    PubMed  Google Scholar 

  82. Lu, G., Greene, E. L., Toshi, J. I., and Egan, B. M. (1998) Reactive oxygen species are critical in the oleic acid-mediated mitogenic signaling pathway in vascular smooth muscle cells. Hypertension 32, 1003–1010.

    CAS  PubMed  Google Scholar 

  83. Osol, G., Laher, I., and Cipolla, M. (1991) Protein kinase C modulates basal myogenic tone in resistance arteries from the cerebral circulation. Circ. Res. 68, 359–367.

    CAS  PubMed  Google Scholar 

  84. Dzau, V. J. and Gibbons, G. H. (1991) Endothelium and growth factors in vascular remodeling in hypertension. Hypertension 18(Suppl), III115–III121.

    CAS  PubMed  Google Scholar 

  85. Morrison, K. J. and Pollock, D. (1990) Impairment of relaxation to acetylcholine and nitric oxide by a phorbol ester in rat isolated aorta. Br. J. Pharmacol. 101, 432–436.

    CAS  PubMed  Google Scholar 

  86. Doctrow, S. R. and Folkman, J. (1987) Protein kinase C activators suppress stimulation of capillary endothelial cell growth by angiogenic endothelial mitogens. J. Cell. Biol. 104, 679–687.

    CAS  PubMed  Google Scholar 

  87. Heydrick, S. J., Ruderman, N. B., Kurowski, T. G., et al. (1991) Enhanced stimulation of diacylglycerol and lipid synthesis by insulin in denervated muscle: altered PKC activity and possible link to insulin resistance. Diabetes 40, 1707–1711.

    CAS  PubMed  Google Scholar 

  88. Nair, S. C., Toshkov, I. A., Yaktine, A. L., Barnett, T. D., Chaney, W. G., and Birt, D. F. (1994) Dietary energy restriction-induced modulation of protein kinase ζ isozyme in the hamster pancreas. Mol. Carcinol. 14, 10–15.

    Google Scholar 

  89. Considine, R. V., Nyce, M. R., Allen, L. E., et al. (1995) Protein kinase C ζ is increased in the liver of humans and rats with non-insulin-dependent diabetes mellitus. An alteration not due to hyperglycemia. J. Clin. Investig. 95, 2938–2944.

    CAS  PubMed  Google Scholar 

  90. Nakanishi, H. and Exton, J. H. (1992) Purfication and characterization of the ζ isoform of protein kinase C from bovine kidney. J. Biol. Chem. 267, 16,347–16,354.

    CAS  PubMed  Google Scholar 

  91. Liao, D.-F., Monia, B., Dean, N., and Berk, B. C. (1997) Protein kinase C-ζ mediates angiotensin II activation of ERK-1 and-2 in vascular smooth muscle cells. J. Biol. Chem. 272, 6146–6150.

    CAS  PubMed  Google Scholar 

  92. Berra, E., Dioa-Meco, M. T., Dominguez, I., et al. (1993) Protein kinase C ζ is critical for mitogenic signal transduction. Cell 74, 555–563.

    CAS  PubMed  Google Scholar 

  93. Ward, N. E., Pierce, D. S., Chung, S. E., Gravitt, K. R., and O’Brian, C. A. (1998) Irreversible inactivation of protein kinase C by glutathione. J. Biol. Chem. 273, 12,558–12,566.

    CAS  PubMed  Google Scholar 

  94. Nosratola, D., Vaziri, D., Wang, X. Q., Oveisi, F., and Rad, B. (2000) Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension 36, 142–146.

    Google Scholar 

  95. Gumusel, B., Tel, B. C., Demirdamar, R., and Sahin-Erdemli, I. (1996) Reactive oxygen speciesinduced impairment of endothelium-dependent relaxation in rat aortic rings: protection by L-arginine. Eur. J. Pharmacol. 306, 107–112.

    CAS  PubMed  Google Scholar 

  96. Galis, Z. S., Sukhova, G., Lark, M. W., and Libby, P. (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Investig. 94, 2493–2503.

    CAS  PubMed  Google Scholar 

  97. Rajagopalan, S., Meng, X. P., Ramasamy, S., Harrison, D. G., and Galis, Z. S. (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J. Clin. Investig. 98, 2572–2579.

    CAS  PubMed  Google Scholar 

  98. Rajagopalan, S., Meng, X. P., Ramasamy, S., et al. (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of matrix metalloproteinases. J. Clin. Investig. 98, 2572–2579.

    CAS  PubMed  Google Scholar 

  99. Ushio-Fukai, M., Zafari, A. M., Fukui, T., Ishizaka, N., and Griendling, K. K. (1996) p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J. Biol. Chem. 271, 23,317–23,321.

    CAS  PubMed  Google Scholar 

  100. Puri, P. L., Avantaggiati, M. L., Burgio, V. L., et al. (1995) Reactive oxygen intermediates mediate angiotensin II-induced c-jun/c-fos heterodimer DNA binding activity and proliferative hypertrophic responses in myogenic cells. J. Biol. Chem. 270, 22,129–22,134.

    CAS  PubMed  Google Scholar 

  101. Rajagopalan, S., Kurz, S., Munzel, T., et al. (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. J. Clin. Investig. 97, 1916–1923.

    CAS  PubMed  Google Scholar 

  102. Ushio-Fukai, M., Alexander, R. W., Akers, M., and Griendling, K. K. (1998) p38 mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. J. Biol. Chem. 273, 15,022–15,029.

    CAS  PubMed  Google Scholar 

  103. Liao, D. F., Monia, B., Dean, N., and Berk, B. C. (1997) Protein kinase C-zeta mediates angiotensin II activation of ERK1/2 in vascular smooth muscle cells. J. Biol. Chem. 272, 6146–6150.

    CAS  PubMed  Google Scholar 

  104. Ferdinandy, P. and Schulz, R. (2003) Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br. J. Pharmacol. 138, 532–543.

    CAS  PubMed  Google Scholar 

  105. Rudich, A., Kozlovsky, N., Patashnik, R., and Bashan, N. (1997) Oxidant stress reduces insulin responsiveness in 3T3-L1 adipocytes. Am. J. Physiol. 272, E935–E940.

    CAS  PubMed  Google Scholar 

  106. Paolisso, G., D’Amopre, A., Volpe, C., et al. (1994) Evidence for a relationship between oxidative stress and insulin action in non-insulin-dependent (type II) diabetic patients. Metabol. Clin. Exp. 43, 1426–1429.

    CAS  Google Scholar 

  107. Sano, T., Umeda, F., Hashimoto, T., Nawata, H., and Utsumi, H. (1998) Oxidative stress measurement by in vivo electron spin resonance spectroscopy in rats with streptozotocin-induced diabetes. Diabetologia 41, 1355–1360.

    CAS  PubMed  Google Scholar 

  108. Jain, S. K., McVie, R., Jaramillo, J. J., Palmer, M., and Smith, T. (1996) Effect of modest vitamin E supplementation on blood glycated hemoglobin and triglyceride levels and red cell indices in type 1 diabetic patients. J. Am. Coll. Nutr. 15, 458–461.

    CAS  PubMed  Google Scholar 

  109. Yusuf, S., Dagenais, G., Pogue, J., Bosch, J., and Sleight, P. (2000) Vitamin E supplementation and cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study. N. Engl. J. Med. 342, 154–160.

    CAS  PubMed  Google Scholar 

  110. Keli, S. O., Hertog, M. G. L., Feskens, E. J. M., and Kromhout, D. (1996) Dietary flavonoids, antioxidant vitamins and incidence of stroke. Arch. Intern. Med. 154, 637–642.

    Google Scholar 

  111. Geleijnse, J. M., Launer, L. J., Hofman, A., Pols, H. A. P., and Witteman, J. C. M. Tea flavonoids may protect against atherosclerosis. The Rotterdam study. Arch. Intern. Med. 159, 2170–2174.

    Google Scholar 

  112. Joshipura, K. J., Ascherio, A., Manson, J. E., et al. (1999) Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 282, 1233–1239.

    CAS  PubMed  Google Scholar 

  113. Ascherio, A., Rimm, E. B., Hernan, M. A., et al. (1999) Relation of consumption of vitamin E, vitamin C, and carotenoids to risk for stroke among men in the United States. Ann. Int. Med. 130, 963–970.

    CAS  PubMed  Google Scholar 

  114. Appel, L. J., Moore, T. J., Obarzanek, E., et al. (1997) A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 336, 1117–1124.

    CAS  PubMed  Google Scholar 

  115. Whelton, P. K., Kumanyika, S. K., Cook, N. R., et al. (1997) Efficacy of nonpharmacologic interventions in adults with high-normal blood pressure: results from phase 1 of the trials of hypertension prevention. Trials of hypertension prevention collaborative group. Am. J. Clin. Nutr. 65(2 Suppl), 652S–660S.

    CAS  PubMed  Google Scholar 

  116. Lopes, H. F., Martin, K. L., Nashar, K., Morrow, J. D., Goodfriend, T. L., and Egan, B. M. (2003) Effects of the DASH diet on blood pressure, antioxidant capacity and acute lipid-induced oxidative stress. Hypertension 41, 422–430.

    CAS  PubMed  Google Scholar 

  117. Massora, M., Carluccio, M. A., and Caterina, R. D. (1999) Direct vascular antiatherogenic effects of oleic acid: a clue to the cardioprotective effects of the Mediterranean diet. Cardiologia 44, 507–513.

    Google Scholar 

  118. de Lorgeril, M., Salen, P., Martin, J. L., Monjaud, I., Boucher, P., and Mamelle, N. (1998) Mediterranean dietary pattern in a randomized trial: prolonged survival and possible reduced cancer rate. Arch. Int. Med. 158, 1181–1187.

    Google Scholar 

  119. Raatz, S. K., Bibus, D., Thomas, W., and Kris-Ehterton, P. (2001) Total fat intake modifies plasma fatty acid composition in humans. J. Nutr. 131, 231–234.

    CAS  PubMed  Google Scholar 

  120. Chajes, V., Elmstahl, S., Martinez-Garcia, C., Van Kappel, A. L., Bianchini, F., Kaaks, R., and Riboli, E. (2001) Comparison of fatty acid profile in plasma phospholipids in women from Granada (southern Spain) and Malmo (southern Sweden). Int. J. Vit. Nutr. Res. 71, 237–242.

    CAS  Google Scholar 

  121. Hudgins, L. C., Hellerstein, M., Seidman, C., Neese, R., Diakun, J., and Hirsch, J. (1996) Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J. Clin. Investig. 97, 2081–2091.

    CAS  PubMed  Google Scholar 

  122. Cahscione, C., Elwyn, D. H., Davila, M., Gil, K. M., Askanazi, J., and Kinney, J. M. (1987) Effect of carbohydrate intake on de novo lipogenesis in human adipose tissue. Am. J. Physiol. 253(6), E664–E669.

    Google Scholar 

  123. Nakamura, M. T. and Nara, T. Y. (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Ann. Rev. Nutr. 24, 345–376.

    CAS  Google Scholar 

  124. Rao, G. N., Alexander, R. W., and Runge, M. S. (1995) Linoleic acid and its metabolites, hydroperoxyoctadecadeienoic acids, stimulate c-fos, c-jun, c-myc mRNA expression, mitrogen-activated protein kinase activation and growth in rat aortic smooth muscle cells. J. Clin. Investig. 96, 842–847.

    CAS  PubMed  Google Scholar 

  125. Nie, D. and Honn, K. V. (2004) Eicosanoid regulation of angiogenesis in tumors. Sem. Thromb. Hemo. 30, 119–125.

    CAS  Google Scholar 

  126. Hunnicutt, J. W., Hardy, R. W., Williford, J., and McDonald, J. M. (1994) Saturated fatty acidinduced insulin resistance in rat adipocytes. Diabetes 43, 540–545.

    CAS  PubMed  Google Scholar 

  127. Kummerow, F. A., Zhou, Q., Mahfouz, M. M., Smiricky, M. R., Grieshop, C. M., and Schaeffer, D. J. (2004) Trans fatty acids in hydrogenated fat inhibited the synthesis of polyunsaturated fatty acids in the phospholipids of arterial cells. Life Sci. 74, 2707–2723.

    CAS  PubMed  Google Scholar 

  128. Yamauchi, S., Takeishi, Y., Minamihaba, O., et al. (2003) Angiotensin converting enzyme inhibition improves cardiac fatty acid metabolism in patients with congestive heart failure. Nucl. Med. Commun. 24, 901–906.

    CAS  PubMed  Google Scholar 

  129. Natali, A., Baldeweg, S., Toschi, E., et al. (2004) Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes. Diab. Care 27, 1349–1357.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Egan, B.M. (2007). Fatty Acids, Cell Signaling, and Cardiovascular Risk. In: Carey, R.M. (eds) Hypertension and Hormone Mechanisms. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-59259-987-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-987-5_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-408-1

  • Online ISBN: 978-1-59259-987-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics