Skip to main content

Essential Fatty Acids and Visual Development in Infants

  • Chapter
Handbook of Nutrition and Ophthalmology

Part of the book series: Nutrition and Health ((NH))

Abstract

The essential fatty acids, linoleic acid and α-linolenic acid, serve as precursors for longchain polyunsaturated fatty acids (LC-PUFAs) and as precursors for prostaglandins and thromboxanes. The brain, retina, and other neural tissues are especially rich in LC-PUFAs, especially docosahexaenoic acid (DHA) and arachidonic acid (AA). Essential fatty acids cannot be synthesized de novo in the human body, and consequently humans must rely on an adequate amount of essential fatty acids in the diet. Essential fatty acids and their long-chain derivatives are available in the fetal period via transport across the placenta and in the neonatal period through breast milk or infant formula. The specific essential fatty acid intake from formula depends on the composition of oils used in the formula. Early infancy may be critical time when visual and brain development of infants are susceptible to the effects of inadequate stores or deficient intake of essential fatty acids. Recent clinical trials suggest that supplemental DHA has a beneficial effect on visual acuity in the first months of life, especially for preterm infants, and a recent effort has been made to reach a consensus about the dietary requirements for DHA for infants and pregnant women (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simopoulos AP, Leaf A, Salem N Jr. Workshop statement on the essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Prostagl Leukotrienes Essential Fatty Acids 2000;63:119–121.

    CAS  Google Scholar 

  2. World Health Organization. Maternal anthropometry and pregnancy outcomes: WHO Collaborative Study. Bull WHO 1995;73(suppl):1–98.

    Google Scholar 

  3. Uauy E, Hoffman DR. Essential fat requirements of preterm infants. Am J Clin Nutr 2000;71:245–250.

    Google Scholar 

  4. Koo WWK. Efficacy and safety of docosahexaenoic acid and arachidonic acid addition to infant formulas: can one buy better vision and intelligence? J Am Coll Nutr 2003;22:101–107.

    CAS  Google Scholar 

  5. Chevreul ME. Recherches chimiques sur les corps gras d’origine animale. Paris, F. G. Levrault, 1823.

    Google Scholar 

  6. Evans HM, Burr GO. A new dietary deficiency with highly purified diets. Proc Soc Exp Biol Med 1927;24:740–743.

    CAS  Google Scholar 

  7. Evans HM, Burr GO. New dietary deficiency with highly purified diets. II. Supplementary requirement of diet of pure casein, sucrose, and salt. Proc Soc Exp Biol Med 1927;25:41–48.

    CAS  Google Scholar 

  8. Evans HM, Burr GO. A new dietary deficiency with highly purified diets. III. The beneficial effect of fat in the diet. Proc Soc Exp Biol Med 1928;25:390–397.

    Google Scholar 

  9. McAmis AJ, Anderson WE, Mendel LB. Growth of rats on “fat-free” diets. J Biol Chem 1929;82:247–262.

    CAS  Google Scholar 

  10. Burr GO, Burr MM. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem 1929;82:345–367.

    CAS  Google Scholar 

  11. Holman RT. George O. Burr and the discovery of essential fatty acids. J Nutr 1988;118:535–540.

    CAS  Google Scholar 

  12. Hansen AE. Serum lipid changes and therapeutic effect of various oils in infantile eczema. Proc Soc Exp Biol Med 1933;31:160–161.

    Google Scholar 

  13. Cornbleet T. Use of maize oil (unsaturated fatty acids) in the treatment of eczema. Preliminary report. Arch Dermat Syphilol 1935;31:224–226.

    CAS  Google Scholar 

  14. Wiese HF, Gibbs RH, Hansen AE. Essential fatty acids and human nutrition. I. Serum level for unsaturated fatty acids in healthy children. J Nutr 1954;52:355–365.

    CAS  Google Scholar 

  15. Hansen AE, Wiese HF. Essential fatty acids and human nutrition. II. Serum level for unsaturated fatty acids in poorly-nourished infants and children. J Nutr 1954;52:367–374.

    CAS  Google Scholar 

  16. Hallberg D, Schuberth O, Wretlind A. Experimental and clinical studies with fat emulsion for intravenous nutrition. Nutra Dieta Eur Rev Nutr Diet 1966;8:245–281.

    CAS  Google Scholar 

  17. Collins FD, Sinclair AJ, Royle JP, Coats DA, Maynard AT, Leonard RF. Plasma lipids in human linoleic acid deficiency. Nutr Metab 1971;13:150–167.

    CAS  Google Scholar 

  18. Paulsrud JR, Pensler L, Whitten CF, Stewart S, Holman RT. Essential fatty acid deficiency in infants induced by fat-free intravenous feeding. Am J Clin Nutr 1972;25:897–904.

    CAS  Google Scholar 

  19. Richardson TJ, Sgoutas D. Essential fatty acid deficiency in four adult patients during total parenteral nutrition. Am J Clin Nutr 1975;28:258–263.

    CAS  Google Scholar 

  20. Wolfram G, Eckart J, Walther B, Zollner N. Factors influencing essential fatty acid requirement in total parenteral nutrition (TPN). J Parenteral Enteral Nutr 1978;2:634–639.

    CAS  Google Scholar 

  21. Holman RT, Johnson SB, Hatch TF. A case of human linolenic acid deficiency involving neurological abnormalities. Am J Clin Nutr 1982;35:617–623.

    CAS  Google Scholar 

  22. Dupont JL. Essential fatty acids. In: Kiple KF, Ornelas KC, (eds). The Cambridge World History of Food. Vol. 1. Cambridge, Cambridge University Press: 2000; pp. 876–882.

    Google Scholar 

  23. Innis SM. Essential fatty acids in growth and development. Prog Lipid Res 1991;30:39–103.

    CAS  Google Scholar 

  24. Dutta-Roy AK. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am J Clin Nutr 2000;71(suppl):315S–322S.

    CAS  Google Scholar 

  25. Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, Chance GW. Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum Dev 1980;4:121–129.

    CAS  Google Scholar 

  26. Clandinin MT, Chappell JE, Heim T, Swyer PR, Chance GW. Fatty acid accretion in fetal and neonatal liver: implications for fatty acid requirements. Early Hum Dev 1981;5:7–14.

    CAS  Google Scholar 

  27. Greiner RCS, Winter J, Nathanielsz PW, Brenna JT. Brain docosahexaenoate accretion in fetal baboons: bioequivalence of dietary α-linolenic acid and docosahexaenoic acids. Pediatr Res 1997;42:826–834.

    CAS  Google Scholar 

  28. Al MDM, van Houwelingen AC, Kester ADM, Hasaart THM, de Jong AEP, Hornstra G. Maternal essential fatty acid patterns during normal pregnancy and its relationship to the neonatal essential fatty acid status. Brit J Nutr 1995;74:55–68.

    CAS  Google Scholar 

  29. Al MDM, van Houwelingen AC, Hornstra G. Relation between birth order and the maternal and neonatal docosahexaenoic acid status. Eur J Clin Nutr 1997;51:548–553.

    CAS  Google Scholar 

  30. Makrides M, Gibson RA. Long-chain polyunsaturated fatty acid requirements during pregnancy and lactation. Am J Clin Nutr 2000;71:307–311.

    Google Scholar 

  31. Foreman-Van Drongelen MMHP, Al MDM, von Houwelingen AC, Blanco CE, Hornstra G. Comparison between the essential fatty acid status of preterm and full-term infants, measured in umbilical vessel walls. Early Hum Dev 1995;42:241–251.

    CAS  Google Scholar 

  32. Clandinin MT, Chappell JE, Heim T, Swyer PR, Chance GW. Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum Dev 1981;5:355–366.

    CAS  Google Scholar 

  33. Carnielli VP, Wattimena DJL, Luijendijk IHT, Boerlage A, Degenhart HJ, Sauer PJJ. The very low birthweight premature infant is capable of synthesizing arachidonic and docosahexaenoic acids from linoleic and linolenic acids. Pediatr Res 1996;40:169–174.

    CAS  Google Scholar 

  34. Salem N Jr, Wegher B, Mena P, Uauy R. Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc Natl Acad Sci USA 1996;93:49–54.

    CAS  Google Scholar 

  35. Szitanyi P, Koletzko B, Mydlilova A, Demmelmair H. Metabolism of 13C-labelled linoleic acid in newborn infants during the first week of life. Pediatr Res 1999;45:669–673.

    CAS  Google Scholar 

  36. Huang MC, Brenna JT. On the relative efficacy of α-linolenic acid and preformed docosahexaenoic acid as substrates for tissue docosahexaenoate during perinatal development. In: Mostofsky D, Yehuda S, Salem N Jr (eds). Fatty Acids: Physiological and Behavioral Functions. Totowa, NJ, Humana: 2001; pp. 99–113.

    Google Scholar 

  37. Jensen RG. The lipids in human milk. Prog Lipid Res 1996;35:53–92.

    CAS  Google Scholar 

  38. Koletzko B, Thiel I, Abiodun PO. The fatty acid composition of human milk in Europe and Africa. J Pediatr 1992;120:S62–S70.

    CAS  Google Scholar 

  39. Agostoni C, Marangoni F, Bernardo L, Lammardo AM, Galli C, Riva E. Long-chain polyunsaturated fatty acids in human milk. Acta Paediatr Suppl 1999;430:68–71.

    Google Scholar 

  40. Xiang M, Lei S, Li T, Zetterström R. Composition of long chain polyunsaturated fatty acids in human milk and growth of young infants in rural areas of northern China. Acta Paediatr 1999;88:126–131.

    CAS  Google Scholar 

  41. Sauerwald TU, Demmelmair H, Koletzko B. Polyunsaturated fatty acid supply with human milk. Lipids 2001;36:991–996.

    CAS  Google Scholar 

  42. Smit EN, Oelen EA, Seerat E, Muskiet FAJ, Boersma ER. Breast milk docosahexaenoic acid (DHA) correlates with DHA status of malnourished infants. Arch Dis Child 2000;82:493–494.

    CAS  Google Scholar 

  43. Innis SM. Essential fatty acids in infant nutrition: lessons and limitations from animal studies in relation to studies on infant fatty acid requirements. Am J Clin Nutr 2000;71:238–244.

    Google Scholar 

  44. Nettleton JA. Omega-3 fatty acids: comparison of plant and seafood sources in human nutrition. J Am Diet Assoc 1991;91:331–337.

    CAS  Google Scholar 

  45. Hepburn FN, Exler J, Weihrauch JL. Provisional tables on the content of omega-3 fatty acids and other fat components of selected foods. J Am Diet Assoc 1986;86:788–793.

    CAS  Google Scholar 

  46. Fulco AJ, Mead JF. Metabolism of essential fatty acids. VIII. Origins of 5,8,11-eicosatrienoic acid in the fat-deficient rat. J Biol Chem 1959;234:1411–1416.

    CAS  Google Scholar 

  47. Neuringer M, Conner WE, Lin DS, Barstad L, Luck S. Biochemical and functional effects of prenatal and postnatal omega-3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci USA 1986;83:4021–4025.

    CAS  Google Scholar 

  48. Holman RT. Function and biologic activities of essential fatty acids in man. In: Meng HC, Wilmore DW (eds). Fat Emulsions in Parenteral Nutrition. American Medical Association, Chicago: 1976; pp. 5–14.

    Google Scholar 

  49. Siguel EN, Chee KM, Gong J, Schaefer EJ. Criteria for essential fatty acid deficiency in plasma as assessed by capillary column gas-liquid chromatography. Clin Chem 1987;33:1869–1873.

    CAS  Google Scholar 

  50. Hornstra G. Essential fatty acids in mothers and their neonates. Am J Clin Nutr 2000;71:1262S–1269S.

    CAS  Google Scholar 

  51. Wolff JA, Margolis S, Bujdoso-Wolff K, Matusick E, McLean WC Jr. Plasma and red blood cell fatty acid composition in children with protein-calorie malnutrition. Pediatr Res 1984;18:162–167.

    CAS  Google Scholar 

  52. Lands WEM. Long-term fat intake and biomarkers. Am J Clin Nutr 1995;61(suppl):721S–725S.

    CAS  Google Scholar 

  53. Chandna A. Natural history of the development of visual acuity in infants. Eye 1991;5:20–26.

    Google Scholar 

  54. Friendly DS. Development of vision in infants and young children. Pediatr Clin North Am 1993;40:693–703.

    CAS  Google Scholar 

  55. Hendrickson AE, Yuodelis C. The morphological development of the human fovea. Ophthalmology 1984;91:603–612.

    CAS  Google Scholar 

  56. Magoon EH, Robb RM. Development of myelin in human optic nerve and tract. A light and electron microscopic study. Arch Ophthalmol 1981;99:655–659.

    CAS  Google Scholar 

  57. Yakovlev PL, Lecours A. The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed). Regional Development of Brain in Early Life. Oxford, Blackwell: 1967; pp. 3–70.

    Google Scholar 

  58. Hickey TL. Postnatal development of the human lateral geniculate nucleus: relationship to a critical period for the visual system. Science 1977;198:836–838.

    CAS  Google Scholar 

  59. Huttenlocher PR, de Courten C, Garey LJ, Van der Loos H. Synaptogenesis in human visual cortex—Evidence for synapse elimination during normal development. Neurosci Lett 1982;33:247–252.

    CAS  Google Scholar 

  60. Fulton AB, Hansen RM, Manning KA. Measuring visual acuity in infants. Surv Ophthalmol 1981;25:325–332.

    CAS  Google Scholar 

  61. Fliesler SJ, Anderson RE. Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 1983;22:79–131.

    CAS  Google Scholar 

  62. Wiegand RD, Koutz CA, Stinson AM, Anderson RE. Conservation of docosahexaenoic acid in rod outer segments of rat retina during n-3 and n-6 fatty acid deficiency. J Neurochem 1991;57:1690–1699.

    CAS  Google Scholar 

  63. Stinson AM, Wiegand RD, Anderson RE. Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J Lipid Res 1991;32:2009–2017.

    CAS  Google Scholar 

  64. Anderson RE, O’Brien PJ, Wiegand RD, Koutz CA, Stinson AM. Conservation of docosahexaenoic acid in the retina. Adv Exp Med Biol 1992;318:285–294.

    CAS  Google Scholar 

  65. Bazan NG, Gordon WC, Rodriguez de Turco EB. Docosahexaenoic acid uptake and metabolism in photoreceptors: retinal conservation by an efficient retinal pigmental epithelial cell-mediated recycling process. Adv Exp Med Biol 1992;318:295–306.

    CAS  Google Scholar 

  66. Jeffrey BG, Weisinger HS, Neuringer M, Mitchell DC. The role of docosahexaenoic acid in retinal function. Lipids 2001;36:859–871.

    CAS  Google Scholar 

  67. Neuringer M. Infant vision and retinal function in studies of dietary long-chain polyunsaturated fatty acids: methods, results, and implications. Am J Clin Nutr 2000;71:256–267.

    Google Scholar 

  68. Dratz EA, Hargrave PA. The structure of rhodopsin and the rod outer segment disk membrane. Trends Biochem Science 1983;8:128–131.

    CAS  Google Scholar 

  69. Benolken RM, Anderson RE, Wheeler TG. Membrane fatty acids associated with the electrical response in visual excitation. Science 1973;182:1253–1254.

    CAS  Google Scholar 

  70. Wheeler TG, Benolken RM, Anderson RE. Visual membranes: specificity of fatty acid precursors for the electrical response to illumination. Science 1975;188:1312–1314.

    CAS  Google Scholar 

  71. Weisinger HS, Vingrys AJ, Sinclair AJ. The effect of docosahexaenoic acid on the ERG of the guinea pig. Lipids 1996;31:65–70.

    CAS  Google Scholar 

  72. Neuringer M, Connor WE, Van Petten C, Barstad L. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J Clin Invest 1984;73:272–276.

    CAS  Google Scholar 

  73. Anderson GJ, Neuringer M, Lin DS, Connor WE. Can prenatal N-3 fatty acid deficiency be completely reversed after birth? Effects on retinal and brain biochemistry and visual function in rhesus monkeys. Pediatr Res 2005;58:865–872.

    CAS  Google Scholar 

  74. Chen Y, Saari JC, Noy N. Interactions of all-trans-retinol and long-chain fatty acids with interphotoreceptor retinoid-binding protein. Biochemistry 1993;32:11311–11318.

    CAS  Google Scholar 

  75. Chen Y, Houghton LA, Brenna JT, Noy N. Docosahexaenoic acid modulates the interactions of the interphotoreceptor retinoid-binding protein with 11-cis retinal. J Biol Chem 1996;271:20507–20515.

    CAS  Google Scholar 

  76. Brown MF. Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 1994;73:159–180.

    CAS  Google Scholar 

  77. Dratz EA, Holte LL. The molecular spring model for the function of docosahexaenoic acid (22:6ω-3) in biological membranes. In: Sinclair A, Gibson R (eds). The Third International Congress on Essential Fatty Acids and Eicosanoids, Adelaide, Australia, March 1–5, 1992. Champaign, IL, American Oil Chemists’ Society: 1992; pp. 122–127.

    Google Scholar 

  78. Litman BJ, Mitchell DC. A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids 1996;31:S193–S197.

    CAS  Google Scholar 

  79. Watanabe I, Aonuma H, Kaneko S, Okuyama H. Effect of a high linoleate and a high α-linolenate diets on size distribution of phagosomes in retinal pigment epithelium. In: Yasugi T, Nakamura H, Soma M (eds). Advances in Polyunsaturated Fatty Acid Research. Amsterdam, Excerpta Medica: 1993; pp. 269–272.

    Google Scholar 

  80. Bush RA, Malnoe A, Reme CE, et al. Dietary deficiency of n-3 fatty acids alters rhodopsin content and function in the rat retina. Invest Ophthalmol Vis Sci 1994;35:91–100.

    CAS  Google Scholar 

  81. Politi L, Rotstein N, Carri N. Effects of docosahexaenoic acid on retinal development: cellular and molecular aspects. Lipids 2001;36:927–935.

    CAS  Google Scholar 

  82. Neuringer M, Reisbick S, Janowsky J. The role of n-3 fatty acids in visual and cognitive development: current evidence and methods of assessment. J Pediatr 1994;125:39–47.

    Google Scholar 

  83. Marmor MF, Arden GB, Nilsson SEG, Zrenner E. Standard for clinical electroretinography. Arch Ophthalmol 1989;107:816–819.

    Google Scholar 

  84. Taylor MJ, McCulloch DL. Visual evoked potentials in infants and children. J Clin Neurophysiol 1992;9:357–372.

    CAS  Google Scholar 

  85. Fielder AR, Dobson V, Moseley MJ, Mayer DL. Preferential looking—clinical lessons. Ophthalmic Paediatr Genet 1992;13:101–110.

    CAS  Google Scholar 

  86. Teller DY, McDonald MA, Preston K, Sebris SL, Dobson V. Assessment of visual acuity in infants and children: the acuity card procedure. Dev Med Child Neurol 1986;28:779–789.

    CAS  Google Scholar 

  87. Makrides M, Simmer K, Goggin M, Gibson RA. Erythrocyte docosahexaenoic acid correlates the with visual response of healthy, term infants. Pediatr Res 1993;33:425–427.

    CAS  Google Scholar 

  88. Jørgensen MH, Hernell O, Lund P, Hølmer G, Michaelsen KF. Visual acuity and erythrocyte docosahexaenoic acid status in breast-fed and formula-fed term infants during the first four months of life. Lipids 1996;31:99–105.

    Google Scholar 

  89. Innis SM, Nelson CM, Rioux MF, King DJ. Development of visual acuity in relation to plasma and erythrocyte omega-6 and omega-3 fatty acids in healthy term gestation infants. Am J Clin Nutr 1994;60:347–352.

    CAS  Google Scholar 

  90. Innis SM, Nelson CM, Lwanga D, Rioux FM, Waslen P. Feeding formula without arachidonic acid and docosahexaenoic acid has no effect on preferential looking acuity or recognition memory in healthy full-term infants at 9 mo of age. Am J Clin Nutr 1996;64:40–46.

    CAS  Google Scholar 

  91. Innis SM, Akrabawi SS, Diersen-Schade DA, Dobson MV, Guy DG. Visual acuity and blood lipids in term infants fed human milk or formulae. Lipids 1997;32:63–72.

    CAS  Google Scholar 

  92. Bakker EC, van Houwelingen AC, Hornstra G. Early nutrition, essential fatty acid status and visual acuity of term infants at 7 months of age. Eur J Clin Nutr 1999;53:872–879.

    CAS  Google Scholar 

  93. Leaf A, Gosbell A, McKenzie L, Sinclair A, Favilla I. Long chain polyunsaturated fatty acids and visual function in preterm infants. Early Hum Dev 1996;45:35–53.

    CAS  Google Scholar 

  94. Makrides M, Neumann MA, Gibson RA. Perinatal characteristics may influence the outcome of visual acuity. Lipids 2001;36:897–900.

    CAS  Google Scholar 

  95. Gibson RA, Chen W, Makrides M. Randomized trials with polyunsaturated fatty acid interventions in preterm and term infants: functional and clinical outcomes. Lipids 2001;36:873–883.

    CAS  Google Scholar 

  96. Uauy RD, Birch DG, Birch EE, Tyson JE, Hoffman DR. Effect of dietary omega-3 fatty acids on retinal function of very-low-birth-weight neonates. Pediatr Res 1990;28:485–492.

    CAS  Google Scholar 

  97. Birch EE, Birch DG, Hoffman DR, Uauy R. Dietary essential fatty acid supply and visual acuity development. Invest Ophthalmol Vis Sci 1992;33:3242–3253.

    CAS  Google Scholar 

  98. Birch DG, Birch EE, Hoffman DR, Uauy RD. Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids. Invest Ophthalmol Vis Sci 1992;33:2365–2376.

    CAS  Google Scholar 

  99. Birch E, Birch D, Hoffman D, Hale L, Everett M, Uauy R. Breast feeding and optimal visual development. J Pediatr Ophthalmol Strabismus 1993;30:33–38.

    CAS  Google Scholar 

  100. Uauy R, Hoffman DR, Birch EE, Birch DG, Jameson DM, Tyson J. Safety and efficacy of omega-3 fatty acids in the nutrition of very low birth weight infants: soy oil and marine oil supplementation of formula. J Pediatr 1994;124:612–620.

    CAS  Google Scholar 

  101. Carlson SE, Cooke RJ, Werkman SH, Tolley EA. First year growth of preterm infants fed standard compared to marine oil n-3 supplemented formula. Lipids 1992;27:901–907.

    CAS  Google Scholar 

  102. Carlson SE, Werkman SH, Rhodes PG, Tolley EA. Visual-acuity development in healthy preterm infants: effect of marine-oil supplementation. Am J Clin Nutr 1993;58:35–42.

    CAS  Google Scholar 

  103. Carlson SE, Werkman SH, Peeples JM, Wilson WM. Long-chain fatty acids and early visual and cognitive development of preterm infants. Eur J Clin Nutr 1994;48(suppl 2):S27–S30.

    Google Scholar 

  104. Werkman SH, Carlson SE. A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until nine months. Lipids 1996;31:91–97.

    CAS  Google Scholar 

  105. Carlson SE, Werkman SH. A randomized trial of visual attention of preterm infants fed docosahexaenoic acid until two months. Lipids 1996;31:85–90.

    CAS  Google Scholar 

  106. Carlson SE, Werkman SH, Tolley EA. Effect of long-chain n-3 fatty acid supplementation on visual acuity and growth of preterm infants with and without bronchopulmonary dysplasia. Am J Clin Nutr 1996;63:687–697.

    CAS  Google Scholar 

  107. Faldella G, Govoni M, Alessandroni R, et al. Visual evoked potentials and dietary long chain polyunsaturated fatty acids in preterm infants. Arch Dis Child 1996;75:F108–F112.

    CAS  Google Scholar 

  108. Bouglé D, Denise P, Vimard F, Nouvelot A, Penneillo MJ, Guillois B. Early neurological and neuropsychological development of the pretern infant and polyunsaturated fatty acids supply. Clin Neurophysiol 1999;110:1363–1370.

    Google Scholar 

  109. Uauy R, Hoffman DR, Peirano P, Birch DG, Birch EE. Essential fatty acids in visual and brain development. Lipids 2001;36:885–895.

    CAS  Google Scholar 

  110. San Giovanni JP, Parra-Cabrera S, Colditz GA, Berkey CS, Dwyer JT. Meta-analysis of dietary essential fatty acids and long-chain polyunsaturated fatty acids as they relate to visual resolution acuity in healthy preterm infants. Pediatrics 2000;105:1292–1298.

    CAS  Google Scholar 

  111. Makrides M, Neumann M, Simmer K, Pater J, Gibson R. Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet 1995;345:1463–1468.

    CAS  Google Scholar 

  112. Carlson SE, Ford AJ, Werkman SH, Peeples JM, Koo WWK. Visual acuity and fatty acid status of term infants fed human milk and formulas with and without docosahexaenoate and arachidonate from egg yolk lecithin. Pediatr Res 1996;39:882–888.

    CAS  Google Scholar 

  113. Auestad N, Montalto MB, Hall RT, et al. Visual acuity, erythrocyte fatty acid composition, and growth in term infants fed formulas with long chain polyunsaturated fatty acids for one year. Pediatr Res 1997;41:1–10.

    CAS  Google Scholar 

  114. Agostoni C, Trojan S, Bellù R, Riva E, Giovannini M. Neurodevelopmental quotient of healthy term infants at 4 months and feeding practice: the role of long-chain polyunsaturated fatty acids. Pediatr Res 1995;38:262–266.

    CAS  Google Scholar 

  115. Agostoni C, Trojan S, Bellù R, Riva E, Bruzzese MG, Giovannini M. Developmental quotient at 24 months and fatty acid composition of diet in early infancy: a follow up study. Arch Dis Child 1997;76:421–424.

    CAS  Google Scholar 

  116. Jørgensen MH, Hølmer G, Lund P, Hernell O, Michaelsen KF. Effect of formula supplemented with docosahexaenoic acid and γ-linolenic acid on fatty acid status and visual acuity in term infants. J Pediatr Gastroenterol Nutr 1998;26:412–421.

    Google Scholar 

  117. Birch EE, Hoffman DR, Uauy R, Birch DG, Prestidge C. Visual acuity and the essentiality of docosahexaenoic acid and arachidonic acid in the diet of term infants. Pediatr Res 1998;44:201–209.

    CAS  Google Scholar 

  118. Willatts P, Forsyth JS, DiModugno MK, Varma S, Colvin M. Influence of long-chain polyunsaturated fatty acids on infant cognitive function. Lipids 1998;33:973–980.

    CAS  Google Scholar 

  119. Willatts P, Forsyth JS, DiModugno MK, Varma S, Colvin M. Effect of long-chain polyunsaturated fatty acids in infant formula on problem solving at 10 months of age. Lancet 1998;352:688–691.

    CAS  Google Scholar 

  120. Lucas A, Stafford M, Morley R, et al. Efficacy and safety of long-chain polyunsaturated fatty acid supplementation of infant-formula milk: a randomised trial. Lancet 1999;354:1948–1954.

    CAS  Google Scholar 

  121. Makrides M, Neumann MA, Simmer K, Gibson RA. Dietary long-chain polyunsaturated fatty acids do not influence growth of term infants: a randomized clinical trial. Pediatrics 1999;104:468–475.

    CAS  Google Scholar 

  122. Makrides M, Neumann MA, Simmer K, Gibson RA. A critical appraisal of the role of dietary long-chain polyunsaturated fatty acids on neural indices of term infants: a randomized, controlled trial. Pediatrics 2000;105:32–38.

    CAS  Google Scholar 

  123. Birch EE, Castañeda YS, Wheaton DH, Birch DG, Uauy RD, Hoffman DR. Visual maturation of term infants fed long-chain polyunsaturated fatty-acid supplemented or control formula for 12 mo. Am J Clin Nutr 2005;81:871–879.

    CAS  Google Scholar 

  124. Auestad N, Scott DT, Janowsky JS, et al. Visual, cognitive, and language assessments at 39 months: a follow-up study of children fed formulas containing long-chain polyunsaturated fatty acids to 1 year of age. Pediatrics 2003;112:e177–e183.

    Google Scholar 

  125. San Giovanni JP, Berkey CS, Dwyer JT, Colditz GA. Dietary essential fatty acids, long-chain polyunsaturated fatty acids, and visual resolution acuity in health fullterm infants: a systematic review. Early Hum Dev 2000;57:165–188.

    CAS  Google Scholar 

  126. Uauy R, Hoffman DR, Mena P, Llanos A, Birch EE. Term infants studies of DHA and AA supplementation on neurodevelopment: results of randomized controlled trials. J Pediatr 2003;143:S17–S25.

    CAS  Google Scholar 

  127. Morley R. Nutrition and cognitive development. Nutrition 1998;14:752–754.

    CAS  Google Scholar 

  128. Gore SM. Statistical considerations in infant nutrition trials. Lipids 1999;34:185–197.

    CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

(2007). Essential Fatty Acids and Visual Development in Infants. In: Handbook of Nutrition and Ophthalmology. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-59259-979-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-979-0_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-196-7

  • Online ISBN: 978-1-59259-979-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics