Skip to main content

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

  • 1337 Accesses

Abstract

Electronic activity recording is a noninvasive technique to monitor human movements without direct input from the subject or the need for an observer. One of its main advantages is the ability to monitor persons for long periods of time and in the free-living state. Actigraphy, the main form of activity monitoring, is in commercial use. Actigraphs are small technologically mature devices that perform well in everyday use. Actigraphy is extensively used in psychology and sleep research (1) and is increasingly used in cardiovascular disease research. Although there exist guidelines for its use in sleep research (2–4), there are no standards for its use in cardiovascular-related diseases. The main uses for actigraphy at this time are to estimate the duration and quality of sleep, to determine the extent of daytime activity, and to study circadian cycles of humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tryon WW. Activity Measurement in Psychology and Medicine. Plenum Press, New York, 1991.

    Google Scholar 

  2. An American Sleep Disorders Association report. Practice parameters for the use of actigraphy in the clinical assessment of sleep disorders. Sleep 1995;18:285–287.

    Google Scholar 

  3. Sadeh A, Hauri PJ, Kripke DF, Lavie P. The role of actigraphy in the evaluation of sleep disorders. Sleep 1995;18:288–302.

    PubMed  CAS  Google Scholar 

  4. Littner M, Kushida CA, McDowell Anderson W, et al. Practice parameters for the role of actigraphy in the study of sleep and circadian rhythms: an update for 2002. Sleep 2003;26:337–341

    PubMed  Google Scholar 

  5. Pollack CP, Stokes PE, Wagner DR. Direct comparison of two widely used activity recorders. Sleep 1998;21:207–212.

    Google Scholar 

  6. Benson K, Friedman L, Noda A, Wicks D, Wakabayashi E, Yesavage J. The measurement of sleep by actigraphy: direct comparison of 2 commercially available actigraphs in a nonclinical population. Sleep 2004;27:986–989.

    PubMed  Google Scholar 

  7. Leidy NK, Abbott RD, Fedenko KM. Sensitivity and reproducibility of the dualmode actigraph under controlled levels of activity intensity. Nurs Res 1997;46:5–11.

    Article  PubMed  CAS  Google Scholar 

  8. Sieminski DJ, Gradner AW. The relationship between free-living daily physical activity and the severity of peripheral arterial occlusive disease. Vasc Med 1997;2:286–291.

    PubMed  CAS  Google Scholar 

  9. Verdecchia P, Schillachi G, Guerrieri M, Gatteschi C, Benemio G, Boldrini F. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation 1990;81:528–536.

    PubMed  CAS  Google Scholar 

  10. Shimada K, Kawamoto A, Matsubayashi K, Nishinaga M, Kimura S, Ozawa T. Diurnal blood pressure variations and silent cerebrovascular damage in elderly patients with hypertension. J Hypertens 1992;10:875–878.

    PubMed  CAS  Google Scholar 

  11. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobiogi R, Porcellati C. Nocturnal pressure is the true pressure. Blood Press Monit 1996;1:S81–S85.

    Google Scholar 

  12. Van Egeren LF. Monitoring activity and blood pressure. J Hypertens 1991;9:S25–S27.

    Google Scholar 

  13. Gretler DD, Carlson GF, Montano AV, Murphy MB. Diurnal blood pressure variability and physical activity measured electronically and by diary. Am J Hypertens 1993;6:127–133.

    PubMed  CAS  Google Scholar 

  14. Stewart MJ, Brown H, Padfield PL. Can simultaneous ambulatory blood pressure and activity monitoring improve the definition of blood pressure. Am J Hypertens 1993;6:174S–178S.

    PubMed  CAS  Google Scholar 

  15. Mansoor GA, White WB, McCabe EJ, Giacco S. The relationship of electronically monitored physical activity to blood pressure, heart rate, and the circadian blood pressure profile. Am J Hypertens 2000;13:262–267.

    Article  PubMed  CAS  Google Scholar 

  16. Shapiro D, Goldstein IB. Wrist actigraph measures of physical activity level and ambulatory blood pressure in healthy elderly persons. Psychophysiology 1998;35:305–312.

    Article  PubMed  CAS  Google Scholar 

  17. Kario K, Schwartz JE, Pickering TG. Ambulatory physical activity as a determinant of diurnal blood pressure variation. Hypertension 1999;34:658–691.

    Google Scholar 

  18. Leary Ac, DOnnan PT, MacDonald TM, Murphy MB. Physical activity level is an independent predictor of the diurnal variation in blood pressure. J Hypertens 2000;18:405–410.

    Article  PubMed  CAS  Google Scholar 

  19. Mansoor GA. Sleep actigraphy in hypertensive patients with the ‘non-dipper’ blood pressure profile. J Hum Hypertens 2002;16:237–242

    Article  PubMed  CAS  Google Scholar 

  20. Hermida RC, Calvo C, Ayala DE, Mojon A, Lopez JE. Relationship between physical activity and blood pressure in dipper and non-dipper hypertensive patients. J Hypertens 2002;20(6):1097–1104.

    Article  PubMed  CAS  Google Scholar 

  21. Mann S, Craig MW, Melville DI, Balasubramanian V, Raftery EB. Physical activity and the circadian rhythm of blood pressure. Clin Sci (Lond) 1979;57(Suppl 5):291s–294s.

    Google Scholar 

  22. Muller JE, Stone PH, Turi ZG, et al. Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 1985;313:1315–1322.

    Article  PubMed  CAS  Google Scholar 

  23. Goldberg RJ. Epidemiological aspects of circadian patterns of cardiovascular disease and triggers of acute cardiac events. Cardiol Clin 1996;14:175–184.

    PubMed  CAS  Google Scholar 

  24. Anis Y, White WB. Chronotherapeutics for cardiovascular disease. Drugs 1998;55:631–643.

    Article  Google Scholar 

  25. Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic sleep/wake identification from wrist activity. Sleep 1992;15:461–469.

    PubMed  CAS  Google Scholar 

  26. Sadeh A, Sharkey KM, Carskadon MA. Activity based sleep awake identification. A empirical test of methodological issues. Sleep 1994;17:201–207.

    PubMed  CAS  Google Scholar 

  27. de Souza L, Benedito-Silva AA, Pires ML, Poyares D, Tufik S, Calil HM. Further validation of actigraphy for sleep studies. Sleep 2003;26:81–85.

    PubMed  CAS  Google Scholar 

  28. Peixoto AJ, Mansoor GA, White WB. Effects of actual versus arbitrary awake and sleep times on analyses of 24-h blood pressure. Am J Hypertens 1995;8:676–680.

    Article  Google Scholar 

  29. Va Ittersum FJ, Ijzerman G, Stehouwer CDA, Donker AJM. Analysis of twenty four hour ambulatory blood pressure monitoring: what time period to assess blood pressures during waking and sleeping? J Hypertens 1995;13:1053–1058.

    Article  PubMed  Google Scholar 

  30. Mansoor GA, Peixoto AJ, White WB. Effects of three methods of analysis on ambulatory blood pressure indices and the early morning rise in blood pressure. Blood Press Monit 1996;1:355–360.

    PubMed  Google Scholar 

  31. Robinson T, James M, Ward-Close S, Potter J. What method should be used to define “night” when assessing diurnal systolic blood pressure variation in the elderly. J Hum Hypertens 1995;9:993–999.

    PubMed  CAS  Google Scholar 

  32. Youde JH, Robinson TG, James MA, Ward-Close S, Potter JF. Comparison of diurnal systolic blood pressure change as defined by wrist actigraphy, fixed time periods and cusums. Blood Press 1996;5:216–221.

    PubMed  CAS  Google Scholar 

  33. Eissa MA, Poffenbarger T, Portman RJ. Comparison of the actigraph versus patients’ diary information in defining circadian time periods for analyzing ambulatory blood pressure monitoring data. Blood Press Monit 2001;6:21–25.

    Article  PubMed  CAS  Google Scholar 

  34. White WB, Anders RJ, MacIntyre JM, Black HR, Sica DA, and the Verapamil Study Group. Nocturnal dosing of a novel delivery system of verapamil for systemic hypertension. Am J Cardiol 1995;76:375–380.

    Article  PubMed  CAS  Google Scholar 

  35. Khoury AF, Sunderajan P, Kaplan NM. The early morning rise in blood pressure is related mainly to ambulation. Am J Hypertens 1992;5:339–344.

    PubMed  CAS  Google Scholar 

  36. Redeker NS, Mason DJ, Wykpisz E, Glica B. Effects of age on activity patterns after coronary artery bypass surgery. Heart Lung 1995;24:502–511.

    Article  PubMed  CAS  Google Scholar 

  37. Redeker NS, Mason DJ, Wykpisz E, Glica B. Sleep patterns in women after coronary artery bypass surgery. Appl Nurs Res 1996;9:115–122.

    Article  PubMed  CAS  Google Scholar 

  38. Evangelista LS, Dracup K, Doering L, Moser DK, Kobashigawa J. Physical activity patterns in heart transplant women. J Cardiovasc Nurs 2005;20:334–339.

    PubMed  Google Scholar 

  39. White WB, Berson AS, Robbins C, et al. National standards for measurement of resting and ambulatory blood pressures with automated sphygmomanometers. Hypertension 1993;21:504–509.

    PubMed  CAS  Google Scholar 

  40. O’Brien E, Petrie J, Littler W, et al. An outline of the revised British Hypertension Society protocol for the evaluation of blood pressure measuring devices. J Hypertens 1993;11:677–679.

    Article  PubMed  CAS  Google Scholar 

  41. White WB, Lund-Johansen P, Omvik P. Assessment of four ambulatory blood pressure monitors and measurements by clinicians versus intraarterial blood pressure at rest and during exercise. Am J Cardiol 1990;65:60–66.

    Article  PubMed  CAS  Google Scholar 

  42. O’Shea JC, Murphy MB. Factors confounding assessment of ambulatory blood pressure monitors, studied during formal evaluation of the Tycos Quiet-Trak. Am J Hypertens 1997;10:175–180.

    Article  PubMed  CAS  Google Scholar 

  43. Shepard JW. Hypertension, cardiac arrhythmias, myocardial infarction, and stroke in relation to obstructive sleep apnea. Clin Chest Med 1992;13:437–458.

    PubMed  Google Scholar 

  44. Lund-Johansen P, White WB. Central hemodynamics and 24-hour blood pressure in obstructive sleep apnea syndrome: effects of corrective surgery. Am J Med 1990;88:678–682.

    Article  PubMed  CAS  Google Scholar 

  45. Aubert-Tulkens G, Culee C, Rijckevorsel HV, Rodenstein DO. Ambulatory evaluation of sleep disturbance and therapeutic effects in sleep apnea syndrome by wrist activity monitoring. Am Rev Respir Dis 1987;136:851–856.

    PubMed  CAS  Google Scholar 

  46. Sadeh A, Alster J, Urbach D, Lavie P. Actigraphically based bedtime sleep wake scoring; validity and clinical applications. J Amb Monit 1989;2:209–216.

    Google Scholar 

  47. Middelkoop HAM, Neven AK, Hilten JJ, Ruwhof CW, Kamphuisen HAC. Wrist actigraphic assessment of sleep in 116 community based subjects suspected of obstructive sleep apnea syndrome. Thorax 1995;50:284–289.

    Article  PubMed  CAS  Google Scholar 

  48. Pittman SD, Ayas NT, MacDonald MM, Malhotra A, Fogel RB, White DP. Using a wrist-worn device based on peripheral arterial tonometry to diagnose obstructive sleep apnea: in-laboratory and ambulatory validation. Sleep 2004;27:923–933.

    PubMed  Google Scholar 

  49. Penzel T, Kesper K, Pinnow I, Becker HF, Vogelmeier C. Peripheral arterial tonometry, oximetry and actigraphy for ambulatory recording of sleep apnea. Physiol Meas 2004;25:1025–1036.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this chapter

Cite this chapter

Mansoor, G.A. (2007). Electronic Activity Recording in Cardiovascular Disease. In: White, W.B. (eds) Blood Pressure Monitoring in Cardiovascular Medicine and Therapeutics. Clinical Hypertension and Vascular Diseases. Humana Press. https://doi.org/10.1007/978-1-59259-978-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-978-3_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-512-5

  • Online ISBN: 978-1-59259-978-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics