Terpenoids As Therapeutic Drugs and Pharmaceutical Agents



Terpenoids, also referred to as terpenes, are the largest group of natural compounds. Many terpenes have biological activities and are used for the treatment of human diseases. The worldwide sales of terpene-based pharmaceuticals in 2002 were approximately US $12 billion. Among these pharmaceuticals, the anticancer drug Taxol® and the antimalarial drug Artimesinin are two of the most renowned terpene-based drugs. All terpenoids are synthesized from two five-carbon building blocks. Based on the number of the building blocks, terpenoids are commonly classified as monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), and sesterterpenes (C25). These terpenoids display a wide range of biological activities against cancer, malaria, inflammation, and a variety of infectious diseases (viral and bacterial). In last two decades, natural-product bioprospecting from the marine environment has resulted in hundreds of terpenoids with novel structures and interesting bioactivities, with more to be discovered in the future. The problem of supply is a serious obstacle to the development of most terpenoid compounds with interesting pharmaceutical properties. Although total chemical synthesis plays a less important role in the production of some terpenoid drugs, it has contributed significantly to the development of terpenoid compounds and terpene-based drugs by providing critical information on structure-activity relationships (SAR) and chiral centers as well as generating analog libraries. Semisynthesis, on the other hand, has played a major role in the development and production of terpenoid-derived drugs. Metabolic engineering as an integrated bioengineering approach has made considerable progress to produce some terpenoids in plants and fermentable hosts. Cell culture and aquaculture will provide a solution for the supply issue of some valuable terpenes from terrestrial and marine environments, respectively. Recent advances in environmental genomics and other “-omics” technologies will facilitate isolation and discovery of new terpenoids from natural environments. There is no doubt that more terpenoid-based clinical drugs will become available and will play a more significant role in human disease treatment in the near future.

Key Words

Natural products bioactive terpenoids biosynthesis chemical synthesis drug discovery and development sustainable production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery. Nat Prod Rep 2000;17(3):215–234.PubMedGoogle Scholar
  2. 2.
    Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981-2002. J Nat Prod 2003;66(7):1022–1037.PubMedGoogle Scholar
  3. 3.
    Hill RA. Terpenoids. In: Thomson RH (ed), The Chemistry of Natural Products. Chapman & Hall, Blackie Academic & Professional, New York:;, 1993.Google Scholar
  4. 4.
    Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A. The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 1998;5(9):R221–R233.PubMedGoogle Scholar
  5. 5.
    Lindel T, Jensen PR, Fenical W, et al. Eleutherobin, a new cytotoxin that mimics paclitaxel (taxol) by stabilizing microtubules. J Am Chem Soc 1997;119(37):8744–8745.Google Scholar
  6. 6.
    D’Ambrosio M, Guerriero A, Pietra F. Sarcodictyin a and sarcodictyin b novel diterpenoidic alcohols esterified by e-n1 methylurocanic acid isolation from the mediterranean stolonifer sarcodictyon-roseum. Helv Chim Acta 1987;70(8):2019–2027.Google Scholar
  7. 7.
    D’Ambrosio M, Guerriero A, Pietra F. Isolation from the mediterranean stoloniferan coral sarcodictyon-roseum of sarcodictyin c d e and f novel diterpenoidic alcohols esterified by e or z-n1 methylurocanic acid failure of the carbon-skeleton type as a classification criterion. Helv Chim Acta 1988;71(5):964–976.Google Scholar
  8. 8.
    Dubey VS, Bhalla R, Luthra R. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 2003;28(5):637–646.PubMedGoogle Scholar
  9. 9.
    Kuzuyama T, Seto H. Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 2003;20(2):171–183.PubMedGoogle Scholar
  10. 10.
    Buchanan SG. Structural genomics: bridging functional genomics and structure-based drug design. Curr Opin Drug Discov Dev 2002;5(3):367–381.Google Scholar
  11. 11.
    Kuzuyama T. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem 2002;66(8):1619–1627.PubMedGoogle Scholar
  12. 12.
    Dewick PM. The biosynthesis of C-5-C-25 terpenoid compounds. Nat Prod Rep 2002;19(2): 181–222.PubMedGoogle Scholar
  13. 13.
    Dewick PM. The mevalonate and deoxyxylulose phosphate pathways: terpenoids and steroids. In: Dewick PM (ed), Medicinal Natural Products. John Wiley & Sons, Ltd., 2002.Google Scholar
  14. 14.
    Rohdich F, Kis K, Bacher A, Eisenreich W. The non-mevalonate pathway of isoprenoids: genes, enzymes and intermediates. Curr Opin Chem Biol 2001;5(5):535–540.PubMedGoogle Scholar
  15. 15.
    Wanke M, Skorupinska-Tudek K, Swiezewska E. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. Acta Biochim Pol 2001;48(3):663–672.PubMedGoogle Scholar
  16. 16.
    Moore BS. Biosynthesis of marine natural products: microorganisms and macroalgae. Nat Prod Rep 1999;16(6):653–674.PubMedGoogle Scholar
  17. 17.
    Lichtenthaler HK. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Molec Biol 1999;50:47–65.Google Scholar
  18. 18.
    Ogura K, Koyama T. Enzymatic aspects of isoprenoid chain elongation. Chem Rev 1998; 98(N4):1263–1276.PubMedGoogle Scholar
  19. 19.
    Wang KC, Ohnuma S-i. Isoprenyl diphosphate synthases. Biochim Biophys Acta 2000;1529(1-3):33–48.PubMedGoogle Scholar
  20. 20.
    Poulter CD, and Rilling, H. C. In: Spurgeon SL, and Port JW (eds), Biosynthesis of Isoprenoid Compounds. John Wiley & Sons, New York: 1981; pp. 161–224.Google Scholar
  21. 21.
    Heide L, Berger U. Partial purification and properties of geranyl pyrophosphate synthase from Lithospermum erythrorhizon cell cultures. Arch Biochem Biophys 1989;273(2):331–338.PubMedGoogle Scholar
  22. 22.
    Ohnuma S-I, Hirooka K, Tsuruoka N, et al. A pathway where polyprenyl diphosphate elongates in prenyltransferase: Insight into a common mechanism of chain length determination of prenyltransferases. J Biol Chem 1998;273(41):26,705–26,713.PubMedGoogle Scholar
  23. 23.
    Tachibana A, Yano Y, Otani S, Nomura N, Sako Y, Taniguchi M. Novel prenyltransferase gene encoding farnesylgeranyl diphosphate synthase from a hyperthermophilic archaeon Aeropyrum pernix—molecular evolution with alteration in product specificity. Eur J Biochem 2000;267(2): 321–328.PubMedGoogle Scholar
  24. 24.
    Tachibana A. A novel prenyltransferase, farnesylgeranyl diphosphate synthase, from the haloalkaliphilic archaeon, Natronobacterium-pharaonis. FEBS Lett 1994;341(2-3):291–294.PubMedGoogle Scholar
  25. 25.
    Caruthers JM, Kang I, Rynkiewicz MJ, Cane DE, Christianson DW. Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti. J Biol Chem 2000;275(33):25,533–25,539.PubMedGoogle Scholar
  26. 26.
    Lesburg CA, Zhai GZ, Cane DE, Christianson DW. Crystal structure of pentalenene synthase— mechanistic insights on terpenoid cyclization reactions in biology. Science 1997;277(5333): 1820–1824.PubMedGoogle Scholar
  27. 27.
    Lesburg CA, Caruthers JM, Paschall CM, Christianson DW. Managing and manipulating carbocations in biology: terpenoid cyclase structure and mechanism. Curr Opin Struct Biol 1998;8(6):695–703.PubMedGoogle Scholar
  28. 28.
    Abe I RM, Prestwich G. D. Enzymatic cyclization of squalene and squalene oxide to sterols and triterpenes. Chem Rev 1993;93:2189–2206.Google Scholar
  29. 29.
    Cane DE. Enzymatic formation of sesquiterpenes. Chem Rev 1990;90:1089–1103.Google Scholar
  30. 30.
    Rising KA, Starks CM, Noel JP, Chappell J. Demonstration of germacrene A as an intermediate in 5-epi-aristolochene synthase catalysis. J Am Chem Soc 2000;122(9):1861–1866.Google Scholar
  31. 31.
    Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 1999;16(5):565–574.PubMedGoogle Scholar
  32. 32.
    Wagner KH, Elmadfa I. Biological relevance of terpenoids—overview focusing on mono-, diand tetraterpenes. Ann Nutr Metab 2003;47(3–4):95–106.PubMedGoogle Scholar
  33. 33.
    Kuroda C, Suzuki H. Synthesis of odd-membered rings by the reaction of beta-carbonylallylsilane or its derivative as a carbon 1,3-dipole. Curr Org Chem 2003;7(2):115–131.Google Scholar
  34. 34.
    Ridley RG. Medical need, scientific opportunity and the drive for antimalarial drugs. Nature 2002;415(6872):686–693.PubMedGoogle Scholar
  35. 35.
    Abdin MZ, Israr M, Rehman RU, Jain SK. Artemisinin, a novel antimalarial drug: Biochemical and molecular approaches for enhanced production. Planta Med 2003;69(4):289–299.PubMedGoogle Scholar
  36. 36.
    Abebe W. Herbal medication: potential for adverse interactions with analgesic drugs. J Clin Pharm Ther 2002;27(6):391–401.PubMedGoogle Scholar
  37. 37.
    Altaha R, Fojo T, Reed E, Abraham J. Epothilones: a novel class of non-taxane microtubulestabilizing agents. Curr Pharm Design 2002;8(19):1707–1712.Google Scholar
  38. 38.
    Altmann KH. Microtubule-stabilizing agents: a growing class of important anticancer drugs. Curr Opin Chem Biol 2001;5(4):424–431.PubMedGoogle Scholar
  39. 39.
    Bez G, Kalita B, Sarmah P, Barua NC, Dutta DK. Recent developments with 1,2,4-trioxanetype artemisinin analogues. Curr Org Chem 2003;7(12):1231–1255.Google Scholar
  40. 40.
    Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep 2003;20(1):1–48.PubMedGoogle Scholar
  41. 41.
    Bongiorni L, Pietra F. Marine natural products for industrial applications. Chem Indus 1996(2):54–58.Google Scholar
  42. 42.
    Borzilleri RM, Vite GD. Epothilones: new tubulin polymerization agents in preclinical and clinical development. Drug Future 2002;27(12):1149–1163.Google Scholar
  43. 43.
    Burkhart CG, Burkhart CN, Burkhart KM. An assessment of topical and oral prescription and over-the-counter treatments for head lice. J Am Acad Derm 1998;38(6 Part 1):979–982.PubMedGoogle Scholar
  44. 44.
    Caniato R, Puricelli L. Review: natural antimalarial agents (1995–2001). Crit Rev Plant Sci 2003;22(1):79–105.Google Scholar
  45. 45.
    Cantrell CL, Franzblau SG, Fischer NH. Antimycobacterial plant terpenoids. Planta Med 2001;67(8):685–694.PubMedGoogle Scholar
  46. 46.
    Carte BK. Biomedical potential of marine natural products. Bioscience 1996;46(4):271–86.Google Scholar
  47. 47.
    Chakraborty Tushar K, Das S. Chemistry of potent anti-cancer compounds, amphidinolides. Curr Med Chem Anticancer Agents 2001;1(2):131–149.Google Scholar
  48. 48.
    De Clercq E. Current lead natural products for the chemotherapy of human immunodefiency virus (HIV) infection. Med Res Rev 2000;20(5):323–349.PubMedGoogle Scholar
  49. 49.
    Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 2003;3(6):338–348.PubMedGoogle Scholar
  50. 50.
    El Sayed KA, Bartyzel P, Shen XY, Perry TL, Kjawiony JK, Hamann MT. Marine natural products as antituberculosis agents. Tetrahedron 2000;56(7):949–953.Google Scholar
  51. 51.
    Frederich M, Dogne JM, Angenot L, De Mol P. New trends in anti-malarial agents. Curr Med Chem 2002;9(15):1435–1456.PubMedGoogle Scholar
  52. 52.
    Fujiki H, Suganuma M, Yatsunami J, et al. Significant marine natural products in cancer research. Gaz Chim Ital 1993;123(6):309–316.Google Scholar
  53. 53.
    Gochfeld DJ, El Sayed KA, Yousaf M, et al. Marine natural products as lead anti-HIV agents. Minni Rev Med Chem 2003;3(5):401–424.Google Scholar
  54. 54.
    Gogas H, Fountzilas G. The role of taxanes as a component of neoadjuvant chemotherapy for breast cancer. Ann Oncol 2003;14(5):667–674.PubMedGoogle Scholar
  55. 55.
    Haefner B. Drugs from the deep: marine natural products as drug candidates. Drug Discov Today 2003;8(12):536–544.PubMedGoogle Scholar
  56. 56.
    Haynes RK. Artemisinin and derivatives: the future for malaria treatment? Curr Opin Infect Dis 2001;14(6):719–726.PubMedGoogle Scholar
  57. 57.
    Heras BDL, Rodriguez B, Bosca L, Villar AM. Terpenoids: sources, structure elucidation and therapeutic potential in inflammation. Curr Topics Med Chem 2003;3:171–185.Google Scholar
  58. 58.
    Heym B, Cole ST. Multidrug resistance in Mycobacterium tuberculosis. Int J Antimicrob Agents 1997;8(1):61–70.PubMedGoogle Scholar
  59. 59.
    Ireland Chris M. Mining the world’s oceans for medicinals. Cancer Epidem Biomark Prevention 2002;11(10 Part 2).Google Scholar
  60. 60.
    Itokawa H, Takeya K, Hitotsuyanagi Y, Morita H. Antitumor compounds isolated from higher plants. Yakugaku Zasshi 1999;119(8):529–583.PubMedGoogle Scholar
  61. 61.
    Jefford CW. Why artemisinin and certain synthetic peroxides are potent antimalarials. Implications for the mode of action. Curr Med Chem 2001;8(15):1803–1826.PubMedGoogle Scholar
  62. 62.
    Jung M, Lee S, Kim H, Kim H. Recent studies on natural products as anti-HIV agents. Curr Med Chem 2000;7(6):649–661.PubMedGoogle Scholar
  63. 63.
    Kavallaris M, Verrills NM, Hill BT. Anticancer therapy with novel tubulin-interacting drugs. Drug Resist Update 2001;4(6):392–401.Google Scholar
  64. 64.
    Koenig Gabriele M, Wright Anthony D, Franzblau Scott G. Assessment of antimycobacterial activity of a series of mainly marine derived natural products. Planta Med 2000;66(4):337–342.Google Scholar
  65. 65.
    Kris-Etherton PM, Hecker KD, Bonanome A, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 2002;113(Suppl 9B):71–88.Google Scholar
  66. 66.
    Lloyd AW. Marine natural products as therapeutic agents. Drug Discov Today 2000;5(1):34.Google Scholar
  67. 67.
    Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Revs Cancer 2002;2(2):143–148.Google Scholar
  68. 68.
    Mayer Alejandro MS, Gustafson Kirk R. Marine pharmacology in 2000: Antitumor and cytotoxic compounds. Int J Cancer 2003;105(3):291–299.PubMedGoogle Scholar
  69. 69.
    Mayer Alejandro MS, Lehmann Virginia KB. Marine pharmacology in 1999: antitumor and cytotoxic compounds. Anticancer Res 2001;21(4A):2489–2500.Google Scholar
  70. 70.
    Proksch P, Edrada RA, Ebel R. Drugs from the seas—current status and microbiological implications. Appl Microbiol Biotechnol 2002;59(2-3):125–134.PubMedGoogle Scholar
  71. 71.
    Wylie Bryan L, Ernst Nadia B, Grace Krista JS, Jacobs Robert S. Marine natural products as phospholipase A-2 inhibitors. Progress in Surgery Uhl, W 1997;24:146–152.Google Scholar
  72. 72.
    Loza-Tavera H. Monoterpenes in essential oils-biosynthesis and properties. Adv Exp Med Biol 1999;464:49–62.PubMedGoogle Scholar
  73. 73.
    Little DB, Croteau R. Biochemistry of essential oil plants: a thirty year overview. In: Teranishi R, Wick EL, Hornstein I (eds), Flavor Chemistry: Thirty years of Progress: Kluwer Academic/ Plenum, 1999.Google Scholar
  74. 74.
    Niinemets U, Hauff K, Bertin N, Tenhunen JD, Steinbrecher R, Seufert G. Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species. New Phytol 2002;153(2):243–256.Google Scholar
  75. 75.
    Sharkey TD, Yeh SS. Isoprene emission from plants. Annu Rev Plant Physiol Plant Molec Biol 2001;52:407–436.Google Scholar
  76. 76.
    Davis EM, Croteau R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Biosynth Arom Polyket Isopren Alkal 2000;209:53–95.Google Scholar
  77. 77.
    Crowell PL. Prevention and therapy of cancer by dietary monoterpenes. J Nutr 1999;129(3): 775S–778S.PubMedGoogle Scholar
  78. 78.
    Duetz WA, Fjallman AHM, Ren SY, Jourdat C, Witholt B. Biotransformation of D-limonene to (+) trans-carveol by toluene-grown Rhodococcus opacus PWD4 cells. Appl Environ Microbiol 2001;67(6):2829–2832.PubMedGoogle Scholar
  79. 79.
    Fabian CJ. Breast cancer chemoprevention: beyond tamoxifen. Breast Cancer Res 2001;3(2): 99–103.PubMedGoogle Scholar
  80. 80.
    Wattenberg LW, Sparnins VL, Barany G. Inhibition of N nitrosodiethylamine carcinogenesis in mice by naturally occurring organosulfur compounds and monoterpenes. Cancer Res 1989;49(10):2689–2692.PubMedGoogle Scholar
  81. 81.
    Crowell PL, Kennan WS, Vedejs E, Gould MN. Chemoprevention of mammary carcinogenesis by hydroxylated metabolites of limonene. In: 81st Annual Meeting of the American Association for Cancer Research, Washington, DC, USA, May 23–26, 1990. Proc Am Assoc Cancer Res Annu Meet 1990.Google Scholar
  82. 82.
    Mills JJ, Chari RS, Boyer IJ, Gould MN, Jirtle RL. Induction of apoptosis in liver tumors by the monoterpene perillyl alcohol. Cancer Res 1995;55(5):979–983.PubMedGoogle Scholar
  83. 83.
    Haag JD, Gould MN. Mammary carcinoma regression induced by perillyl alcohol, a hydroxylated analog of limonene. Cancer Chem Pharm 1994;34(6):477–483.Google Scholar
  84. 84.
    Stark MJ, Burke YD, McKinzie JH, Ayoubi AS, Crowell PL. Chemotherapy of pancreatic cancer with the monoterpene perillyl alcohol. Cancer Lett 1995;96(1):15–21.PubMedGoogle Scholar
  85. 85.
    McNamee D. Limonene trial in cancer. Lancet 1993;342(8874):801.Google Scholar
  86. 86.
    Phillips LR, Malspeis L, Supko JG. Pharmacokinetics of active drug metabolites after oral administration of perillyl alcohol, an investigational antineoplastic agent, to the dog. Drug Metab Disposi 1995;23(7):676–680.Google Scholar
  87. 87.
    Liu G, Oettel K, Bailey H, et al. Phase II trial of perillyl alcohol (NSC 641066) administered daily in patients with metastatic androgen independent prostate cancer. Invest New Drugs 2003;21(3):367–372.PubMedGoogle Scholar
  88. 88.
    Ariazi EA, Satomi Y, Ellis MJ, et al. Activation of the transforming growth factor beta signaling pathway and induction of cytostasis and apoptosis in mammary carcinomas treated with the anticancer agent perillyl alcohol. Cancer Res 1999;59(8):1917–1928.PubMedGoogle Scholar
  89. 89.
    Crowell PL, Chang RR, Ren Z, Elson CE, Gould MN. Selective inhibition of isoprenylation of 21-26-Kda proteins by the anticarcinogen D-limonene and its metabolites. J Biol Chem 1991;266(26):17,679–17,685.PubMedGoogle Scholar
  90. 90.
    Hitmi A, Coudret A, Barthomeuf C. The production of pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Crit Rev Biochem Mol Biol 2000;35(5):317–337.PubMedGoogle Scholar
  91. 91.
    George J, Bais HP, Ravishankar GA. Biotechnological production of plant-based insecticides. Crit Rev Biotechnol 2000;20(1):49–77.PubMedGoogle Scholar
  92. 92.
    Jones KN, English JC. Review of common therapeutic options in the United States for the treatment of Pediculosis capitis. Clin Infect Dis 2003;36(11):1355–1361.PubMedGoogle Scholar
  93. 93.
    Pollack RJ, Kiszewski A, Armstrong P, et al. Differential permethrin susceptibility of head lice sampled in the United States and Borneo. Arch Pediatr Adolesc Med 1999;153(9):969–73.PubMedGoogle Scholar
  94. 94.
    Fuller RW, Cardellina JH, Jurek J, et al. Isolation and structure activity features of halomonrelated antitumor monoterpenes from the red alga Portieria hornemannii. J Med Chem 1994;37(25):4407–4411.PubMedGoogle Scholar
  95. 95.
    Egorin MJ, Rosen DM, Benjamin SE, Callery PS, Sentz DL, Eiseman JL. In vitro metabolism by mouse and human liver preparations of halomon, an antitumor halogenated monoterpene. Cancer Chem Pharm 1997;41(1):9–14.Google Scholar
  96. 96.
    Sotokawa T, Noda T, Pi S, Hirama M. A three-step synthesis of halomon. Angew Chem 2000;39(19):3430–3432.Google Scholar
  97. 97.
    Rajab MS, Cantrell CL, Franzblau SG, Fischer NH. Antimycobacterial activity of (e)-phytol and derivatives—a preliminary structure-activity study. Planta Med 1998;64(1):2–4.PubMedGoogle Scholar
  98. 98.
    Abraham WR. Bioactive sesquiterpenes produced by fungi: are they useful for humans as well? Curr Med Chem 2001;8(6):583–606.PubMedGoogle Scholar
  99. 99.
    Asakawa Y, Toyota M, Nagashima F, Hashimoto T, El Hassane L. Sesquiterpene lactones and acetogenin lactones from the Hepaticae and chemosystematics of the liverworts Frullania, Plagiochila and Porella. Heterocycles 2001;54(2):1057∓.Google Scholar
  100. 100.
    Tayler VE. The honest herbal—a sensible guide to the use of herbs and related remedies. Third ed. New York: The Haworth Press, 1993.Google Scholar
  101. 101.
    Smolinski AT, Pestka JJ. Modulation of lipopolysaccharide-induced proinflammatory cytokine production in vitro and in vivo by the herbal constituents apigenin (chamomile), ginsenoside Rb-1 (ginseng) and parthenolide (feverfew). Food Chem Toxicol 2003;41(10): 1381–1390.PubMedGoogle Scholar
  102. 102.
    Schinella GR, Giner RM, Recio MD, De Buschiazzo PM, Rios JL, Manez S. Anti-inflammatory effects of South American Tanacetum vulgare. J Pharm Pharmacol 1998;50(9):1069–1074.PubMedGoogle Scholar
  103. 103.
    Jain NK, Kulkarni SK. Antinociceptive and anti-inflammatory effects of Tanacetum parthenium L. extract in mice and rats. J Ethnopharmacol 1999;68(1-3):251–259.PubMedGoogle Scholar
  104. 104.
    Williams CA, Harborne JB, Geiger H, Robin J, Hoult S. The flavonoids of Tanacetum parthenium and T. vulgare and their anti-inflammatory properties. Phytochemistry 1999;51(3): 417–423.PubMedGoogle Scholar
  105. 105.
    Sheehan M, Wong HR, Hake PW, Zingarelli B. Parthenolide improves systemic hemodynamics and decreases tissue leukosequestration in rats with polymicrobial sepsis. Crit Care Med 2003;31(9):2263–2270.PubMedGoogle Scholar
  106. 106.
    Brossi A, Venugopalan B, Gerpe LD, et al. Arteether, a new antimalarial drug: synthesis and antimalarial properties. J Med Chem 1988;31(3):645–650.PubMedGoogle Scholar
  107. 107.
    Robert A, Dechy-Cabaret O, Cazelles J, Meunier B. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. Accounts Chem Res 2002;35(3):167–174.Google Scholar
  108. 108.
    Delabays N, Simonnet X, Gaudin M. The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars. Curr Med Chem 2001;8(15):1795–1801.PubMedGoogle Scholar
  109. 109.
    Safayhi H, Sabieraj J, Sailer ER, Ammon HPT. Chamazulene—an antioxidant-type inhibitor of leukotriene B-4 formation. Planta Med 1994;60(5):410–413.PubMedGoogle Scholar
  110. 110.
    Konig GM, Wright AD, Franzblau SG. Assessment of antimycobacterial activity of a series of mainly marine derived natural products. Planta Med 2000;66(4):337–342.PubMedGoogle Scholar
  111. 111.
    Hamann MT, Scheuer PJ, Kellyborges M. Biogenetically diverse, bioactive constituents of a sponge, order verongida—bromotyramines and sesquiterpene-shikimate derived metabolites. J Org Chem 1993;58(24):6565–6569.Google Scholar
  112. 112.
    Nasu SS, Yeung BKS, Hamann MT, Scheuer PJ, Kellyborges M, Goins K. Puupehenone-related metabolites from two hawaiian sponges Hyrtios spp. J Org Chem 1995;60(22):7290–7292.Google Scholar
  113. 113.
    Zjawiony JK, Bartyzel P, Hamann MT. Chemistry of puupehenone: 1,6-conjugate addition to its quinone-methide system. J Nat Prod 1998;61(12):1502–1508.PubMedGoogle Scholar
  114. 114.
    Capon RJ. Marine sesquiterpene/quinone. In: Atta-ur-Rahaman (ed), Studies in Natural Products. Elsevier, New York: 1995; pp. 289–326.Google Scholar
  115. 115.
    Rodriguez J, Quinoa E, Riguera R, Peters BM, Abrell LM, Crews P. The structures and stereochemistry of cytotoxic sesquiterpene quinones from Dactylospongia elegans. Tetrahedron 1992;48(32):6667–6680.Google Scholar
  116. 116.
    Alvi KA, Diaz Maria C, Crews P, Slate DL, Lee RH, Moretti R. Evaluation of new sesquiterpene quinones from two Dysidea sponge species as inhibitors of protein tyrosine kinase. J Org Chem 1992;57(24):6604–6607.Google Scholar
  117. 117.
    Deguzman FS, Copp BR, Mayne CL, et al. Bolinaquinone—a novel cytotoxic sesquiterpene hydroxyquinone from a Philippine Dysidea sponge. J Org Chem 1998;63(22):8042–8044.Google Scholar
  118. 118.
    Giannini C, Debitus C, Posadas I, Paya M, D’Auria MV. Dysidotronic acid, a new and selective human phospholipase A(2) inhibitor from the sponge Dysidea sp. Tetrahedron Lett 2000;41(17):3257–3260.Google Scholar
  119. 119.
    Giannini C, Debitus C, Lucas R, et al. New sesquiterpene derivatives from the sponge Dysidea species with a selective inhibitor profile against human phospholipase A(2) and other leukocyte functions. J Nat Prod 2001;64(5):612–615.PubMedGoogle Scholar
  120. 120.
    Lucas R, Giannini C, D’Auria MV, Paya M. Modulatory effect of bolinaquinone, a marine sesquiterpenoid, on acute and chronic inflammatory processes. J Pharmacol Exp Ther 2003;304(3):1172–1180.PubMedGoogle Scholar
  121. 121.
    Loya S, Hizi A. The inhibition of human immunodeficiency virus type-1 reverse transcriptase by avarol and avarone derivatives. FEBS Lett 1990;269(1):131–134.PubMedGoogle Scholar
  122. 122.
    Ling TT, Xiang AX, Theodorakis EA. Enantioselective total synthesis of avarol and avarone. Angew Chem 1999;38(20):3089–3091.Google Scholar
  123. 123.
    Loya S, Tal R, Kashman Y, Hizi A. Illimaquinone a selective inhibitor of the RNAase H activity of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemotherapy 1990;34(10):2009–2012.Google Scholar
  124. 124.
    Ling T, Poupon E, Rueden EJ, Theodorakis EA. Synthesis of (-)-ilimaquinone via a radical decarboxylation and quinone addition reaction. Org Lett 2002;4(5):819–822.PubMedGoogle Scholar
  125. 125.
    McMorris TC, Yu J, Lira R, et al. Structure-activity studies of antitumor agent irofulven (hydroxymethylacylfulvene) and analogues. J Org Chem 2001;66(18):6158–6163.PubMedGoogle Scholar
  126. 126.
    McMorris TC, Kashinatham A, Lira R, et al. Sesquiterpenes from Omphalotus illudens. Phytochemistry 2002;61(4):395–398.PubMedGoogle Scholar
  127. 127.
    McMorris TC, Lira R, Gantzel PK, Kelner MJ, Dawe R. Sesquiterpenes from the basidiomycete Omphalotus illudens. J Nat Prod 2000;63(11):1557–1559.PubMedGoogle Scholar
  128. 128.
    Kelner MJ, McMorris TC, Montoya MA, et al. Characterization of cellular accumulation and toxicity of illudin S in sensitive and nonsensitive tumor cells. Cancer Chem Pharm 1997;40(1):65–71.Google Scholar
  129. 129.
    Herzig MCS, Arnett B, MacDonald JR, Woynarowski JM. Drug uptake and cellular targets of hydroxymethylacylfulvene (HMAF). Biochem Pharmcol 1999;58(2):217–225.Google Scholar
  130. 130.
    Woynarowski JM, Napier C, Koester SK, et al. Effects on dna integrity and apoptosis induction by a novel antitumor sesquiterpene drug, 6-hydroxymethylacylfulvene (hmaf, mgi 114). Biochem Pharmcol 1997;54(11):1181–1193.Google Scholar
  131. 131.
    Izbicka E, Davidson K, Lawrence R, Cote R, MacDonald JR, Von Hoff DD. Cytotoxic effects of MGI 114 are independent of tumor p53 or p21 expression. Anticancer Res 1999;19(2A): 1299–1307.PubMedGoogle Scholar
  132. 132.
    Woynarowska BA, Woynarowski JM, Herzig MCS, Roberts K, Higdon AL, MacDonald JR. Differential cytotoxicity and induction of apoptosis in tumor and normal cells by hydroxymethylacylfulvene (HMAF). Biochem Pharmcol 2000;59(10):1217–1226.Google Scholar
  133. 133.
    Jaspers NGJ, Raams A, Kelner MJ, et al. Anti-tumour compounds illudin S and Irofulven induce DNA lesions ignored by global repair and exclusively processed by transcription-and replication-coupled repair pathways. DNA Repair 2002;1(12):1027–1038.PubMedGoogle Scholar
  134. 134.
    Hanson JR. Diterpenoids. Nat Prod Rep 2003;20(1):70–78.PubMedGoogle Scholar
  135. 135.
    Sung PJ, Chen MC. The heterocyclic natural products of gorgonian corals of genus Briareum exclusive of briarane-type diterpenoids. Heterocycles 2002;57(9):1705–1715.Google Scholar
  136. 136.
    Bruno M, Piozzi F, Rosselli S. Natural and hemisynthetic neoclerodane diterpenoids from Scutellaria and their antifeedant activity. Nat Prod Rep 2002;19(3):357–378.PubMedGoogle Scholar
  137. 137.
    Hanson JR. Diterpenoids. Nat Prod Rep 2002;19(2):125–132.PubMedGoogle Scholar
  138. 138.
    Sung PJ, Sheu JH, Xu JP. Survey of briarane-type diterpenoids of marine origin. Heterocycles 2002;57(3):535–579.CrossRefGoogle Scholar
  139. 139.
    Hanson JR. Diterpenoids. Nat Prod Rep 2001;18(1):88–94.PubMedGoogle Scholar
  140. 140.
    Hanson JR. Diterpenoids. Nat Prod Rep 2000;17(2):165–174.PubMedGoogle Scholar
  141. 141.
    Baloglu E, Kingston DGI. The taxane diterpenoids. J Nat Prod 1999;62(10):1448–1472.PubMedGoogle Scholar
  142. 142.
    Hanson JR. Diterpenoids. Nat Prod Rep 1999;16(2):209–219.Google Scholar
  143. 143.
    Hanson JR. Diterpenoids. Nat Prod Rep 1998;15(1):93–106.Google Scholar
  144. 144.
    Hanson JR. Diterpenoids. Nat Prod Rep 1997;14(3):245–258.Google Scholar
  145. 145.
    Hanson JR. Diterpenoids. Nat Prod Rep 1996;13(1):59–71.PubMedGoogle Scholar
  146. 146.
    Hanson JR. Diterpenoids. Nat Prod Rep 1995;12(2):207–218.Google Scholar
  147. 147.
    Rontani JF, Volkman JK. Phytol degradation products as biogeochemical tracers in aquatic environments. Org Geochem 2003;34(1):1–35.Google Scholar
  148. 148.
    Broker LE, Glaccone G. The role of new agents in the treatment of non-small cell lung cancer. Eur J Cancer 2002;38(18):2347–2361.PubMedGoogle Scholar
  149. 149.
    Myles DC. Emerging microtubule stabilizing agents for cancer chemotherapy. Ann Rep Med Chem 2002;37(37):125–132.CrossRefGoogle Scholar
  150. 150.
    Mollinedo F, Gajate C. Microtubules, microtubule-interfering agents and apoptosis. Apoptosis 2003;8(5):413–450.PubMedGoogle Scholar
  151. 151.
    Rowinsky EK. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Ann Rev Med 1997;48:353–374.PubMedGoogle Scholar
  152. 152.
    Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant anti-tumor agents part 6: the isolation and structure of taxol a novel anti leukemic and anti tumor agent from Taxus brevifolia. J Am Chem Soc 1971;93(9):2325–2327.PubMedGoogle Scholar
  153. 153.
    Schiff PB, Horwitz SB. Taxol stabilizes micro tubules in mouse fibroblast cells. Proc Natl Acad Sci USA 1980;77(3):1561–1565.PubMedGoogle Scholar
  154. 154.
    Wang TH, Popp DM, Wang HS, et al. Microtubule dysfunction induced by paclitaxel initiates apoptosis through both c-Jun N-terminal kinase (JNK)-dependent and-independent pathways in ovarian cancer cells. J Biol Chem 1999;274(12):8208–8216.PubMedGoogle Scholar
  155. 155.
    Rowinsky EK, Eisenhauer EA, Chaudhry V, Arbuck SG, Donehower RC. Clinical toxicities encountered with paclitaxel. Semin Oncol 1993;20(4 Suppl 3):1–15.PubMedGoogle Scholar
  156. 156.
    Hofle GH, Bedorf N, Steinmetz H, Schomburg D, Gerth K, Reichenbach H. Epothilone A and B-novel 16-membered macrolides with cytotoxic activity—isolation, crystal structure, and conformation in solution. Angew Chem 1996;35(13-14):1567–1569.Google Scholar
  157. 157.
    Winkler JD, Quinn KJ, MacKinnon CH, Hiscock SD, McLaughlin EC. Tandem Diels-Alder fragmentation approach to the synthesis of eleutherobin. Org Lett 2003;5(10):1805–1808.PubMedGoogle Scholar
  158. 158.
    Scalabrino G, Sun XW, Mann J, Baron A. A convergent approach to the marine natural product eleutherobin: synthesis of key intermediates and attempts to produce the basic skeleton. Org Biomol Chem 2003;1(2):318–327.PubMedGoogle Scholar
  159. 159.
    Chen XT, Bhattacharya SK, Zhou BS, Gutteridge CE, Pettus TRR, Danishefsky SJ. The total synthesis of eleutherobin. J Am Chem Soc 1999;121(28):6563–6579.Google Scholar
  160. 160.
    Nicolaou KC, Xu JY, Kim S, et al. Total synthesis of sarcodictyins A and B. J Am Chem Soc 1998;120(34):8661–8673.Google Scholar
  161. 161.
    Britton R, de Silva ED, Bigg CM, McHardy LM, Roberge M, Andersen RJ. Synthetic transformations of eleutherobin reveal new features of its microtubule-stabilizing pharmacophore. J Am Chem Soc 2001;123(35):8632–8633.PubMedGoogle Scholar
  162. 162.
    Britton R, Roberge M, Berisch H, Andersen RJ. Antimitotic diterpenoids from Erythropodium caribaeorum: isolation artifacts and putative biosynthetic intermediates. Tetrahedron Lett 2001;42(16):2953–2956.Google Scholar
  163. 163.
    Cinel B, Patrick BO, Roberge M, Andersen RJ. Solid-state and solution conformations of eleutherobin obtained from X-ray diffraction analysis and solution NOE data. Tetrahedron Lett 2000;41(16):2811–2815.Google Scholar
  164. 164.
    Taglialatela-Scafati O, Deo-Jangra U, Campbell M, Roberge M, Andersen RJ. Diterpenolds from cultured Erythropodium caribaeorum. Org Lett 2002;4(23):4085–4088.PubMedGoogle Scholar
  165. 165.
    Ketzinel S, Rudi A, Schleyer M, Benayahu Y, Kashman Y. Sarcodictyin a and two novel diterpenoid glycosides, eleuthosides a and b, from the soft coral Eleutherobia aurea. J Nat Prod 1996;59(9):873–875.Google Scholar
  166. 166.
    Ciomei M, Albanese C, Pastori W, et al. Sarcodictyins: a new class of marine derivatives with mode of action similar to taxol. Proc Am Assoc Cancer Res Annu Meet 1997;38(0):5.Google Scholar
  167. 167.
    Cinel B, Roberge M, Behrisch H, van Ofwegen L, Castro CB, Andersen RJ. Antimitotic diterpenes from Erythropodium caribaeorum test pharmacophore models for microtubule stabilization. Org Lett 2000;2(3):257–260.PubMedGoogle Scholar
  168. 168.
    Nicolaou KC, Kim SH, Pfefferkorn J, et al. Synthesis and biological activity of sarcodictyins. Angew Chem 1998;37(10):1418–1421.Google Scholar
  169. 169.
    Ata A, Kerr RG, Moya CE, Jacobs RS. Identification of anti-inflammatory diterpenes from the marine gorgonian Pseudopterogorgia elisabethae. Tetrahedron 2003;59(23):4215–4222.Google Scholar
  170. 170.
    Haimes HB, Jimenez PA. Use of pseudopterosins for promoting wound healing. Official Gazette of the United States Patent & Trademark Office Patents 1997;1194(4):2589.Google Scholar
  171. 171.
    Rodriguez AD, Ramirez C. Serrulatane diterpenes with antimycobacterial activity isolated from the West Indian sea whip Pseudopterogorgia elisabethae. J Nat Prod 2001;64(1):100–102.PubMedGoogle Scholar
  172. 172.
    Rodriguez AD, Ramirez C, Rodriguez, II, Gonzalez E. Novel antimycobacterial benzoxazole alkaloids, from the West Indian sea whip Pseudopterogorgia elisabethae. Org Lett 1999;1(3): 527–530.PubMedGoogle Scholar
  173. 173.
    Etahiri S, Bultel-Ponce V, Caux C, Guyot M. New bromoditerpenes from the red alga Sphaerococcus coronopifolius. J Nat Prod 2001;64(8):1024–1027.PubMedGoogle Scholar
  174. 174.
    Cafieri F, De Napoli L, Fattorusso E, Santacroce C. Diterpenes from the red alga Sphaerococcus coronopifolius. Phytochemistry 1987;26(2):471–474.Google Scholar
  175. 175.
    Konig GM, Wright AD, Angerhofer CK. Novel potent antimalarial diterpene isocyanates, isothiocyanates, and isonitriles from the tropical marine sponge Cymbastela hooperi. J Org Chem 1996;61(10):3259–3267.Google Scholar
  176. 176.
    Groweiss A, Look SA, Fenical W. Solenolides new antiinflammatory and antiviral diterpenoids from a marine octocoral of the genus Solenopodium. J Org Chem 1988;53(11):2401–2406.Google Scholar
  177. 177.
    Sakemi S, Higa T, Jefford CW, Bernardinelli G. Venustatriol a new anti-viral triterpene tetracyclic ether from Laurencia venusta. Tetrahedron Lett 1986;27(36):4287–4290.Google Scholar
  178. 178.
    Komoto S, McConnell OJ, Cross SS. Antiviral Furanoditerpenoids. US Patent-4801607. January 31 1989. Official Gazette of the United States Patent & Trademark Office Patents 1989;1098(5):2452.Google Scholar
  179. 179.
    Potts BCM, Faulkner DJ, De Carvalho MS, Jacobs RS. Chemical mechanism of inactivation of bee venom phospholipase A-2 by the marine natural products manoalide luffariellolide and scalaradial. J Am Chem Soc 1992;114(13):5093–5100.Google Scholar
  180. 180.
    Puliti R, De Rosa S, Mattia CA, Mazzarella L. Structure and stereochemistry of an acetate derivative of cacospongionolide a new antitumoral sesterterpenoid from marine sponge Cacospongia mollior. Acta Crystallog C Crystal Struct Comm 1990;46(8):1533–1536.Google Scholar
  181. 181.
    De Silva ED, Scheuer PJ. Manoalide an antibiotic sester terpenoid from the marine sponge Luffariella variabilis. Tetrahedron Lett 1980;21(17):1611–1614.Google Scholar
  182. 182.
    Pommier A, Stepanenko V, Jarowicki K, Kocienski PJ. Synthesis of (+)-manoalide via a copper(I)-mediated 1,2-metalate rearrangement. J Org Chem 2003;68(10):4008–4013.PubMedGoogle Scholar
  183. 183.
    Soriente A, De Rosa M, Scettri A, et al. Manoalide. Curr Med Chem 1999;6(5):415–431.PubMedGoogle Scholar
  184. 184.
    Glaser KB, De Carvalho MS, Jacobs RS, Kernan MR, Faulkner DJ. Manoalide structureactivity studies and definition of the pharmacophore for phospholipase A(2) inactivation. Mol Pharmacol 1989;36(5):782–788.PubMedGoogle Scholar
  185. 185.
    Reynolds LJ, Morgan BP, Hite GA, Mihelich ED, Dennis EA. Phospholipase A-2 inhibition and modification by manoalogue. J Am Chem Soc 1988;110(15):5172–5177.Google Scholar
  186. 186.
    Randazzo A, Debitus C, Minale L, et al. Petrosaspongiolides M-R—new potent and selective phospholipase A(2) inhibitors from the new caledonian marine sponge Petrosaspongia nigra. J Nat Prod 1998;61(5):571–575.PubMedGoogle Scholar
  187. 187.
    Kernan MR, Faulkner DJ, Jacobs RS. The luffariellins novel antiinflammatory sesterterpenes of chemotaxonomic importance from the marine sponge Luffariella variabilis. J Org Chem 1987;52(14):3081–3083.Google Scholar
  188. 188.
    Kernan MR, Faulkner DJ, Parkanyi L, Clardy J, De Carvalho MS, Jacobs RS. Luffolide, a novel anti-inflammatory terpene from the sponge Luffariella sp. Experientia 1989;45(4):388–390.PubMedGoogle Scholar
  189. 189.
    De Rosa S, De Stefano S, Zavodnik N. Cacospongionolide: a new antitumoral sesterterpene from the marine sponge Cacospongia mollior. J Org Chem 1988;53(21):5020–5023.Google Scholar
  190. 190.
    De Rosa S, Puliti R, Crispino A, De Giulio A, Mattia CA, Mazzarella L. A new scalarane sesterterpenoid from the marine sponge Cacospongia mollior. J Nat Prod 1994;57(2):256–262.PubMedGoogle Scholar
  191. 191.
    De Silva ED, Scheuer PJ. 3 New sester terpenoid antibiotics from the marine sponge Luffariella variabilis. Tetrahedron Lett 1981;22(33):3147–3150.Google Scholar
  192. 192.
    Albizati KF, Holman T, Faulkner DJ, Glaser KB, Jacobs RS. Luffariellolide: an anti-inflammatory sesterterpene from the marine sponge Luffariella sp. Experientia 1987;43(8):949–950.Google Scholar
  193. 193.
    Posadas I, De Rosa S, Terencio MC, Paya M, Alcaraz MJ. Cacospongionolide B suppresses the expression of inflammatory enzymes and tumour necrosis factor-alpha by inhibiting nuclear factor-kappa B activation. Br J Pharmacol 2003;138(8):1571–1579.PubMedGoogle Scholar
  194. 194.
    Posadas I, Terencio MC, Randazzo A, Gomez-Paloma L, Paya M, Alcaraz MJ. Inhibition of the NF-kappa B signaling pathway mediates the anti-inflammatory effects of petrosaspongiolide M. Biochem Pharmcol 2003;65(5):887–895.Google Scholar
  195. 195.
    Garcia-Pastor P, Randazzo A, Gomez-Paloma L, Alcaraz MJ, Paya M. Effects of petrosaspongiolide M, a novel phospholipase A(2) inhibitor, on acute and chronic inflammation. J Pharmacol Exper Ther 1999;289(1):166–172.Google Scholar
  196. 196.
    Dal Piaz F, Casapullo A, Randazzo A, et al. Molecular basis of phospholipase A(2) inhibition by petrosaspongiolide M. Chembiochem 2002;3(7):664–671.Google Scholar
  197. 197.
    Youssef DTA, Yamaki RK, Kelly M, Scheuer PJ. Salmahyrtisol A, a novel cytotoxic sesterterpene from the Red Sea sponge Hyrtios erecta. J Nat Prod 2002;65(1):2–6.PubMedGoogle Scholar
  198. 198.
    Chinworrungsee M, Kittakoop P, Isaka M, Rungrod A, Tanticharoen M, Thebtaranonth Y. Antimalarial halorosellinic acid from the marine fungus Halorosellinia oceanica. Bioorg Med Chem Lett 2001;11(15):1965–1969.PubMedGoogle Scholar
  199. 199.
    Renner MK, Jensen PR, Fenical W. Mangicols: structures and biosynthesis of a new class of sesterterpene polyols from a marine fungus of the genus Fusarium. J Org Chem 2000;65(16): 4843–4852.PubMedGoogle Scholar
  200. 200.
    Nicolaou KC, Sorensen EJ (eds), Classics in Total Synthesis. Weinheim, Germany: VCH, 1996.Google Scholar
  201. 201.
    Nicolaou KC, Vourloumis D, Winssinger N, Baran PS. The art and science of total synthesis at the dawn of the twenty-first century. Angew Chem Int Ed 2000;39(1):44–122.Google Scholar
  202. 202.
    Kingston DGI, Jagtap PG, Yuan H, Samala L. The chemistry of Taxol and related taxoids. Prog Chem Org Nat Prod 2002;84:53–225.Google Scholar
  203. 203.
    Holton RA, Kim HB, Somoza C, et al. First total synthesis of Taxol. 2. Completion of the C and D rings. J Am Chem Soc 1994;116(4):1599–1600.Google Scholar
  204. 204.
    Holton RA, Somoza C, Kim HB, et al. First total synthesis of Taxol. 1. Functionalization of the B ring. J Am Chem Soc 1994;116(4):1597–1598.Google Scholar
  205. 205.
    Nicolaou KC, Yang Z, Liu JJ, et al. Total synthesis of Taxol. Nature 1994;367(6464):630–634.PubMedGoogle Scholar
  206. 206.
    Masters JJ, Link JT, Snyder LB, Young WB, Danishefsky SJ. A total synthesis of Taxol. Angew Chem Int Ed 1995;34(16):1723–1726.Google Scholar
  207. 207.
    Nicolaou KC, Ueno H, Liu JJ, et al. Total synthesis of Taxol. 4. The final stages and completion of the synthesis. J Am Chem Soc 1995;117(2):653–659.Google Scholar
  208. 208.
    Nicolaou KC, Nantermet PG, Ueno H, Guy RK, Couladouros EA, Sorensen EJ. Total Synthesis of Taxol. 1. Retrosynthesis, degradation, and reconstitution. J Am Chem Soc 1995;117(2): 624–633.Google Scholar
  209. 209.
    Danishefsky SJ, Masters JJ, Young WB, et al. Total synthesis of baccatin III and Taxol. J Am Chem Soc 1996;118(12):2843–2859.Google Scholar
  210. 210.
    Wender PA, Badham NF, Conway SP, et al. The pinene path to taxanes. 5. Stereocontrolled synthesis of a versatile taxane precursor. J Am Chem Soc 1997;119(11):2755–2756.Google Scholar
  211. 211.
    Wender PA, Badham NF, Conway SP, et al. The pinene path to taxanes. 6. A concise stereocontrolled synthesis of Taxol. J Am Chem Soc 1997;119(11):2757–2758.Google Scholar
  212. 212.
    Morihira K, Hara R, Kawahara S, et al. Enantioselective total synthesis of Taxol. J Am Chem Soc 1998;120(49):12,980–12,981.Google Scholar
  213. 213.
    Nicolaou KC, Ohshima T, Hosokawa S, et al. Total synthesis of eleutherobin and eleuthosides A and B. J Am Chem Soc 1998;120(34):8674–880.Google Scholar
  214. 214.
    Shiina I, Saitoh K, Frechard-Ortuno I, Mukaiyama T. Total asymmetric synthesis of Taxol by dehydration condensation between 7-TES baccatin III and protected N-benzoylphenylisoserines prepared by enantioselective aldol reaction. Chem Lett 1998(1):3–4.Google Scholar
  215. 215.
    Mukaiyama T, Shiina I, Iwadare H, et al. Asymmetric total synthesis of Taxol. Chem-Euro J 1999;5(1):121–161.Google Scholar
  216. 216.
    Kusama H, Hara R, Kawahara S, et al. Enantioselective total synthesis of (-)-Taxol. J Am Chem Soc 2000;122(16):3811–3820.Google Scholar
  217. 217.
    Jung M, ElSohly HN, Croom EM, McPhail AT, McPhail DR. Practical conversion of artemisinic acid in desoxyartemisinin. J Org Chem 1986;51(26):5417–5419.Google Scholar
  218. 218.
    Roth RJ, Acton N. A simple conversion of artemisinic acid into artemisinin. J Nat Prod 1989;52(5):1183–1185.PubMedGoogle Scholar
  219. 219.
    Ye B, Wu YL. An efficient synthesis of qinghaosu and deoxoqinghaosu from arteannuic acid. J Chem Soc Chem Comm 1990(10):726–727.Google Scholar
  220. 220.
    Luo XD, Shen CC. The chemistry, pharmacology, and clinical-applications of qinghaosu (artemisinin) and its derivatives. Med Res Rev 1987;7(1):29–52.PubMedGoogle Scholar
  221. 221.
    Schmid G, Hofheinz W. Total synthesis of qinghaosu. J Am Chem Soc 1983;105:624–625.Google Scholar
  222. 222.
    Soriente A, De Rosa M, Scettri A, et al. Manoalide. Curr Med Chem 1999;6(5):415–431.PubMedGoogle Scholar
  223. 223.
    Gueritte F. General and recent aspects of the chemistry and structure-activity relationships of taxoids. Curr Pharm Design 2001;7(13):1229–1249.Google Scholar
  224. 224.
    Chen X-T, Bhattacharya SK, Zhou B, Gutteridge CE, Pettus TRR, Danishefsky SJ. The total synthesis of eleutherobin. J Am Chem Soc 1999;121(28):6563–6579.Google Scholar
  225. 225.
    Chen X-T, Zhou B, Bhattacharya SK, Gutteridge CE, Pettus TRR, Danishefsky SJ. The total synthesis of eleutherobin: a surprise ending. Angew Chem Int Ed 1998;37(6):789–792.Google Scholar
  226. 226.
    Nicolaou KC, van Delft F, Ohshima T, et al. Total synthesis of eleutherobin. Angew Chem Int Ed 1997;36(22):2520–2524.Google Scholar
  227. 227.
    Nicolaou KC, Winssinger N, Vourloumis D, et al. Solid and solution phase synthesis and biological evaluation of combinatorial sarcodictyin libraries. J Am Chem Soc 1998;120(42): 10,814–10,826.Google Scholar
  228. 228.
    Schreiber SL. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 2000;287(5460):1964–1969.PubMedGoogle Scholar
  229. 229.
    Burke MD, Berger EM, Schreiber SL. Generating diverse skeletons of small molecules combinatorially. Science 2003;302(5645):613–618.PubMedGoogle Scholar
  230. 230.
    Appendino G, Tron GC, Jarevng T, Sterner O. Unnatural natural products from the transannular cyclization of lathyrane diterpenes. Org Lett 2001;3(11):1609–1612.PubMedGoogle Scholar
  231. 231.
    Lucker J, Bouwmeester HJ, Schwab W, Blaas J, van der Plas LHW, Verhoeven HA. Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranoside. Plant J 2001;27(4):315–324.PubMedGoogle Scholar
  232. 232.
    Lavy M, Zuker A, Lewinsohn E, et al. Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breed 2002;9(2):103–111.Google Scholar
  233. 233.
    Lewinsohn E, Schalechet F, Wilkinson J, et al. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 2001;127(3):1256–1265.PubMedGoogle Scholar
  234. 234.
    Martin VJJ, Yoshikuni Y, Keasling JD. The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotech Bioeng 2001;75(5):497–503.Google Scholar
  235. 235.
    Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnol 2003.Google Scholar
  236. 236.
    Wang ZY, Zhong JJ. Repeated elicitation enhances taxane production in suspension cultures of Taxus chinensis in bioreactors. Biotechnol Lett 2002;24(6):445–448.Google Scholar
  237. 237.
    Zhong JJ. Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 2002;94(6):591–599.PubMedGoogle Scholar
  238. 238.
    Liu CZ, Guo C, Wang YC, Ouyang F. Comparison of various bioreactors on growth and artemisinin biosynthesis of Artemisia annua L. shoot cultures. Process Biochem 2003;39(1): 45–49.Google Scholar
  239. 239.
    Liu CZ, Guo C, Wang YC, Fan OY. Factors influencing artemisinin production from shoot cultures of Artemisia annua L. World J Microbiol Biotechnol 2003;19(5):535–538.Google Scholar
  240. 240.
    Souret FF, Kim Y, Wysiouzil BE, Wobbe KK, Weathers PJ. Scale-up of Artemisia annua L. hairy root cultures produces complex patterns of terpenoid gene expression. Biotech Bioeng 2003;83(6):653–667.Google Scholar
  241. 241.
    Wang JW, Tan RX. Artemisinin production in Artemisia annua hairy root cultures with improved growth by altering the nitrogen source in the medium. Biotechnol Lett 2002; 24(14):1153–1156.Google Scholar
  242. 242.
    Xie DY, Zou ZR, Ye HC, Li GF, Guo ZC. Selection of hairy root clones of Artemisia annua L. for artemisinin production. Isr J Plant Sci 2001;49(2):129–134.Google Scholar
  243. 243.
    Polzin JP, Rorrer GL. Halogenated monoterpene production by microplantlets of the marine red alga Ochtodes secundiramea within an airlift photobioreactor under nutrient medium perfusion. Biotech Bioeng 2003;82(4):415–428.Google Scholar
  244. 244.
    Barahona LF, Rorrer GL. Isolation of halogenated monoterpenes from bioreactor-cultured microplantlets of the macrophytic red algae Ochtodes secundiramea and Portieria hornemannii. J Nat Prod 2003;66(6):743–751.PubMedGoogle Scholar
  245. 245.
    Huang YM, Rorrer GL. Cultivation of microplantlets derived from the marine red alga Agardhiella subulata in a stirred tank photobioreactor. Biotechnol Prog 2003;19(2):418–427.PubMedGoogle Scholar
  246. 246.
    Huang YM, Rorrer GL. Dynamics of oxygen evolution and biomass production during cultivation of Agardhiella subulata microplantlets in a bubble-column photobioreactor under medium perfusion. Biotechnol Prog 2002;18(1):62–71.PubMedGoogle Scholar
  247. 247.
    Maliakal S, Cheney DP, Rorrer GL. Halogenated monoterpene production in regenerated plantlet cultures of Ochtodes secundiramea (Rhodophyta, Cryptonemiales). J Phycol 2001;37(6):1010–1019.Google Scholar
  248. 248.
    Polzin JJ, Rorrer GL, Cheney DP. Metabolic flux analysis of halogenated monoterpene biosynthesis in microplantlets of the macrophytic red alga Ochtodes secundiramea. Biomol Eng 2003;20(4–6 Special Issue SI):205–215.PubMedGoogle Scholar
  249. 249.
    Mendola D. Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: process developments and economics. Biomol Eng 2003;20(4–6 Special Issue SI):441–458.PubMedGoogle Scholar
  250. 250.
    Ling T, Poupon E, Rueden EJ, Kim SH, Theodorakis EA. Unified synthesis of quinone sesquiterpenes based on a radical decarboxylation and quinone addition reaction. J Am Chem Soc 2002;124(41):12,261–12,267.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  1. 1.Hawaii Natural Energy Institute, Department of Oceanography, School of Ocean and Earth Sciences and TechnologyUniversity of Hawaii at ManoaHonolulu
  2. 2.Department of ChemistryStanford UniversityStanford
  3. 3.Department of Oceanography, School of Ocean and Earth Sciences and TechnologyUniversity of Hawaii at ManoaHonolulu

Personalised recommendations