Skip to main content

The Discovery of Anticancer Drugs From Natural Sources

  • Chapter

Abstract

Since the early 1940s, the search for agents that may treat or ameliorate the scourge of cancer has involved all aspects of chemistry and pharmacology. Throughout these years, natural products have played an extremely important role as first the major source of drugs used for direct treatment, as scaffolds upon which chemists would practice their skill, and now as modulators of specific cellular pathways in the tumor cell. Even today, over 60% of the 140 plus agents currently available in Western medicine can trace their provenance to a natural-product source.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kleeff J, Kornmann M, Sawhney H, Korc M. Actinomycin D induces apoptosis and inhibits growth of pancreatic cancer cells. Int J Cancer 2000;86:399–407.

    PubMed  CAS  Google Scholar 

  2. Zisman A, Ng C-P, Pantuck AJ, Bonavida B, Belldegrun AS. Actinomycin D and gemcitabine synergistically sensitize androgen-independent prostate cancer cells to apo2l/trail-mediated apoptosis. J Immunotherapy 2001;24:459–471.

    CAS  Google Scholar 

  3. Bock J, Sazabo I, Jekle A, Gulbins E. Actinomycin D-induced apoptosis involves the potassium channel KV1.3. Biochem Biophys Res Comm 2002;295:526–531.

    PubMed  CAS  Google Scholar 

  4. Elliott MJ, Baker JD, Dong YB, Yang HL, Gleason Jr. JF, McMasters KM. Inhibition of cyclin a kinase activity in E2F-1 chemogene therapy of colon cancer. Tumor Biol 2002;23:324–336.

    CAS  Google Scholar 

  5. Zhao Y, Brown TL, Kohler H, Muller S. Mts-conjugated-antiactive caspase 3 antibodies inhibit actinomycin D-induced apoptosis. Apoptosis 2003;8:631–637.

    PubMed  CAS  Google Scholar 

  6. Duncan R. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Pharm Sci Technol Today 1999;2:441–449.

    PubMed  CAS  Google Scholar 

  7. Lee MD, Ellestad GA, Borders DB. Calicheamicins: discovery, structure, chemistry, and interactions with DNA. Acc Chem Res 1991;24:235–243.

    CAS  Google Scholar 

  8. Watanabe CMH, Supekova L, Schultz PG. Transcriptional effects of the potent enediyne anticancer agent Calicheamicin γI. Chem Biol 2002;9:245–251.

    PubMed  CAS  Google Scholar 

  9. Hamann RR, Hinman LM, Hollander I, et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjugate Chem 2002;13:47–58.

    CAS  Google Scholar 

  10. Day BW. Mutants yield a phamacophore model for the tubulin-paclitaxel binding site. TIPS 2000;21:321–323.

    PubMed  CAS  Google Scholar 

  11. Giannakakou P, Gussio R, Nogales E, et al. Common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 2000;97:2904–2909.

    PubMed  CAS  Google Scholar 

  12. Gussio R, Fojo TA, Giannakakou P. Reply. TIPS 2000;21:323–324.

    PubMed  CAS  Google Scholar 

  13. Kowalski RJ, Giannakakou P, Hamel E. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol®). J Biol Chem 1997;272:2534–2451.

    PubMed  CAS  Google Scholar 

  14. Frykman S, Tsuruta H, Lau J, et al. Modulation of epothilone analog production through media design. J Ind Microbiol Biotech 2002;28:17–20.

    CAS  Google Scholar 

  15. Nicolaou KC, Ritzen A, Namoto K. Recent developments in the chemistry, biology and medicine of the epothilones. Chemical Comm 2001:1523–1535.

    Google Scholar 

  16. Wartmann M, Altmann KH. The biology and medicinal chemistry of epothilones. Curr Med Chem Anti-Cancer Agents 2002;2:123–148.

    CAS  Google Scholar 

  17. Omura S, Sasaki Y, Iwai Y, Takeshima H. Staurosporine, a potentially important gift from a microorganism. J Antibiot 1995;48:535–548.

    PubMed  CAS  Google Scholar 

  18. Jackson JR, Gilmartin A, Imburgia C, Winkler JD, Marshall LA, Roshak A. An indolocarbazole inhibitor of human checkpoint kinase (chk1) abrogates cell cycle arrest caused by DNA damage. Cancer Res 2000;60:566–572.

    PubMed  CAS  Google Scholar 

  19. Shao RG, Cao CX, Shimizu T, O’Connor PM, Kohn KW, Pommier Y. Abrogation of an Sphase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxy-staurosporin (UCN-01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res 1997;57:4029–4035.

    PubMed  CAS  Google Scholar 

  20. Graves PR, Yu L, Schwarz JK, et al. The chk1 protein kinase and the cdc25c regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 2000;275:5600–5605.

    PubMed  CAS  Google Scholar 

  21. Newman DJ, Cragg GM, Holbeck S, Sausville EA. Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Current Can Drug Targ 2002;2:279–308.

    CAS  Google Scholar 

  22. Dancey J, Sausville EA. Issues and progress with protein kinase inhibitors for cancer treatment. Nature Revs Drug Discov 2003;2:296–313.

    CAS  Google Scholar 

  23. Prudhomme M. Recent developments of rebeccamycin analogues as topoisomerase I inhibitors and antitumor agents. Curr Med Chem 2000;7:1189–1212.

    PubMed  CAS  Google Scholar 

  24. Bailly C, Riou J-F, Colson P, Houssier C, Rodrigues-Pereira E, Prudhomme M. DNA cleavage by topoisomerase I in the presence of indolocarbazole derivatives of rebeccamycin. Biochemistry 1997;36:3917–3929.

    PubMed  CAS  Google Scholar 

  25. Rossi F, Labourier E, Forne T, et al. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 1996;381:80–82.

    PubMed  CAS  Google Scholar 

  26. Tazi J, Rossi F, Labourier E, Gallouzi I, Brunel C, Antoine E. DNA topoisomerase I: a customofficer at DNA-RNA worlds border? J Mol Med 1997;75:786–800.

    PubMed  CAS  Google Scholar 

  27. Kamal A, Thao L, Sensintaffar J, et al. A high-affinity conformation of hsp90 confers tumour selectivity on hsp90 inhibitors. Nature 2003;425:407–410.

    PubMed  CAS  Google Scholar 

  28. Neckers L, Ivy SP. Heat shock protein 90. Current Opin Oncology 2003;15:419–424.

    CAS  Google Scholar 

  29. Beliakoff J, Bagatell R, Paine-Murrieta G, Taylor CW, Lykkesfeldt AE, Whitesell L. Hormonerefractory breast cancer remains sensitive to the antitumor activity of heat shock protein 90 inhibitors. Clin Cancer Res 2003;9:4961–4971.

    PubMed  CAS  Google Scholar 

  30. Hartwell JL, Plants used against cancer. Lawrence, MA: Quarterman, 1982.

    Google Scholar 

  31. Cragg GM, Boyd MR, Cardellina II JH, Newman DJ, Snader KM, McCloud TG. Ethnobotany and drug discovery: the experience of the US National Cancer Institute. In: Chadwick DJ, Marsh J (eds), Ethnobotany and the Search for New Drugs: CIBA Foundation Symposium, Chichester, UK: Wiley & Sons: 1994:178–196.

    Google Scholar 

  32. Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery. Natural Prod Rep 2000;17:215–234.

    CAS  Google Scholar 

  33. Kingston DGI. Taxol, a molecule for all seasons. Chemical Comm 2001:867–880.

    Google Scholar 

  34. Cragg GM, Schepartz SA, Suffness M, Grever MR. The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J Nat Prod 1993;56:1657–1668.

    PubMed  CAS  Google Scholar 

  35. Kapoor LD, CRC Handbook of Ayurvedic Medicinal Plants. Boca Raton, Florida: CRC Press; 1990.

    Google Scholar 

  36. Cortes JE, Pazdur R. Docetaxel. J Clin Oncol 1995;13:2643–2655.

    PubMed  CAS  Google Scholar 

  37. He L, Orr GA, Horwitz SB. Novel molecules that interact with microtubules and have functional activity similar to taxol. Drug Discov Today 2001;6:1153–1164.

    PubMed  CAS  Google Scholar 

  38. Jordan MA. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem-Anti-Cancer Agents 2002;2:1–17.

    CAS  Google Scholar 

  39. Potmeisel M, Pinedo H, Camptothecins: New Anticancer Agents. Boca Raton, Florida: CRC Press; 1995.

    Google Scholar 

  40. Lee K-H. Current developments in the discovery and design of new drug candidates from plant natural product leads. J Nat Prod 2004;67:273–283.

    PubMed  CAS  Google Scholar 

  41. Ranelleti FO, Ricci R, Larocca LM, et al. Growth inhibitory effect of quercetin and presence of type-II estrogen-binding sites in human colon-cancer cell lines and primary colorectal tumors. Int J Cancer 1992;50:486–492.

    Google Scholar 

  42. Walker DH. Small-molecule inhibitors of cyclin-dependent kinases: molecular tools and potential therapeutics. Curr Top Microbiol Immunol 1998;227:149–165.

    PubMed  CAS  Google Scholar 

  43. Sielecki T, Boylan JF, Benfield PA, Trainor GL. Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation. J Med Chem 2000;43:1–18.

    PubMed  CAS  Google Scholar 

  44. Losiewicz MD, Carlson BA, Kaur G, Sausville EA, Worland PJ. Potent inhibition of cdc2 kinase activity by the flavanoid, l86–8275. Biochem Biophys Res Comm 1994;201:589–595.

    PubMed  CAS  Google Scholar 

  45. Czech J, Hoffman D, Naik R, Sedlacek H. Anti-tumoral activity of flavone 186–8275. Int J Oncol 1995;6:31–36.

    CAS  Google Scholar 

  46. Kaubisch A, Schwartz GK. Cyclin-dependent kinase and protein kinase C inhibitors: a novel class of antineoplastic agents in clinical development. Cancer J 2000;6:192–212.

    PubMed  CAS  Google Scholar 

  47. Senderowicz AM. Small-molecule cyclin-dependent kinase modulators. Oncogene 2003;22: 6609–6620.

    PubMed  CAS  Google Scholar 

  48. Dai Y, Grant S. Cyclin-dependent kinase inhibitors. Curr Opin Pharmacol 2003;3:362–370.

    PubMed  CAS  Google Scholar 

  49. Holwell SE, Cooper PA, Grosios K, et al. Combretastatin A-1 phosphate, a novel tubulinbinding agent with in vivo anti-vascular effects in experimental tumors. Anticancer Research 2002;22:707–712.

    PubMed  CAS  Google Scholar 

  50. Li Q, Sham HL. Discovery and development of antimitotic agents that inhibit tubulin polymerization for the treatment of cancer. Expert Opin Ther Patents 2002;12:1663–1702.

    CAS  Google Scholar 

  51. Cragg GM, Newman DJ. A tale of two tumor targets: topoisomerase I and tubulin. The Wall and Wani contribution to cancer chemotherapy. J Nat Prod 2004;67(2):232–244.

    PubMed  CAS  Google Scholar 

  52. Bergmann W, Feeney RJ. The isolation of a new thymine pentoside from sponges. J Am Chem Soc 1950;72:2809–2810.

    CAS  Google Scholar 

  53. Bergmann W, Feeney RJ. Contributions to the study of marine products. XXXII. The nucleosides of sponges. J Org Chem 1951;16:981–987.

    CAS  Google Scholar 

  54. Bergmann W, Burke DC. Contributions to the study of marine products. XI. The nucleosides of sponges. IV. Spongosine. J Org Chem 1956;21:226–228.

    CAS  Google Scholar 

  55. Suckling CJ. Chemical approaches to the discovery of new drugs. Sci Prog Edin 1991;75: 323–360.

    CAS  Google Scholar 

  56. Lee WW, Benitez A, Goodman L, Baker BR. Potential anticancer agents. Xl. Synthesis of the â-anomer of 9-(d-arabinofuranosyl)-adenine. J Am Chem Soc 1960;82:2648–2649.

    CAS  Google Scholar 

  57. Davis P/ Fermentation of 9-(β-d-arabinofuranosyl)adenine. US Patent 1969, 1159290, 26JUL69.

    Google Scholar 

  58. Cimino G, De Rosa S, De Stefano S. Antiviral agents from a gorgonian, Eunicella cavolini. Experientia 1984;40:339–400.

    CAS  Google Scholar 

  59. Rinehart K, Gloer JB, Cook JC. Structures of the didemnins, antiviral and cytotoxic depsipeptides from a Caribbean tunicate. J Am Chem Soc 1981;103:1857–1859.

    CAS  Google Scholar 

  60. Sakai R, Rinehart KL, Kishore V, et al. Structure-activity relationships of the didemnins. J Med Chem 1996;39:2819–2834.

    PubMed  CAS  Google Scholar 

  61. Crews CM, Collins JL, Lane WS. GTP-dependent binding of the antiproliferative agent didemnin to the elongation factor 1a. J Biol Chem 1994;269:15,411–15,414.

    PubMed  CAS  Google Scholar 

  62. Meng L, Sin N, Crews CM. The antiproliferative agent didemnin B uncompetitively inhibits palmitoyl protein thioesterase. Biochemistry 1998;37:10,488–10,492.

    PubMed  CAS  Google Scholar 

  63. Johnson KL, Lawen A. Rapamycin inhibits didemnin B-induced apoptosis in human HL-60 cells: evidence for the possible involvement of FK506-binding protein 25. Immunol Cell Biol 1999;77:242–248.

    PubMed  CAS  Google Scholar 

  64. Vera M, Joullie MM. Natural products as probes of cell biology: 20 years of didemnin research. Med Res Revs 2002;22:102–145.

    CAS  Google Scholar 

  65. Rinehart K. Antitumor compounds from tunicates. Med Res Rev 2000;20:1–27.

    PubMed  CAS  Google Scholar 

  66. Pettit GR. The dolastatins. Fortschr Chem Org Naturst 1997;70:1–79.

    PubMed  CAS  Google Scholar 

  67. Bai R, Pettit GR, Hamel E. Dolastatin 10, a powerful cytostatic peptide derived from a marine animal: inhibition of tubulin polymerization mediated through the vinca alkaloid binding domain. Biochem Pharmacol 1990;39:1941–1949.

    PubMed  CAS  Google Scholar 

  68. Bai R, Friedman SJ, Pettit GR, Hamel E. Dolastatin 15, a potent antimitotic depsipeptide derived from Dolabella auricularia: interactions with tubulin and effects on cellular microtubules. Biochem Pharmacol 1992;43:2637–2645.

    PubMed  CAS  Google Scholar 

  69. Pettit GR, Kamano Y, Herald CL, et al. The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc 1987;109:6883–6885.

    CAS  Google Scholar 

  70. Pettit GR, Kamano Y, Dufresne C, Cerny RL, Herald CL, Schmidt JM. Isolation and structure of the cytostatic linear depsipeptide dolastatin 15. J Org Chem 1989;54:6005–6006.

    CAS  Google Scholar 

  71. Hamel E. Interactions of antimitotic peptides and depsipeptides with tubulin. Biopolymers 2002;66:142–160.

    PubMed  CAS  Google Scholar 

  72. Bai R, Pettit GR, Hamel E. Binding of dolastatin 10 to tubulin at a distinct site for peptide antimitotic agents near the exchangeable nucleotide and vinca alkaloid sites. J Biol Chem 1990;265:17,141–17,149.

    PubMed  CAS  Google Scholar 

  73. Vaishampayan H, Glode M, Du W, et al. Phase II study of dolastatin-10 in patients with hormonerefractory metastatic prostate adenocarcinoma. Clin Canc Res 2000;6:4205–4208.

    CAS  Google Scholar 

  74. Margolin K, Longmate J, Synold TW, et al. Dolastatin-10 in metastatic melanoma: a phase II and pharmacokinetic trial of the California Cancer Consortium. Invest New Drugs 2001;19: 335–340.

    PubMed  CAS  Google Scholar 

  75. Cruz-Monserrate Z, Mullaney JT, Harran PG, Pettit GR. Dolastatin 15 binds in the vinca domain of tubulin as demonstrated by Hummel-Dreyer chromatography. Eur J Biochem 2003;270:3822–3828.

    PubMed  CAS  Google Scholar 

  76. Harrigan GG, Luesch H, Yoshida WY, et al. Symplostatin 1: a dolastatin 10 analogue from the marine cyanobacterium Symploca hynoides. J Nat Prod 1998;61:1075–1077.

    PubMed  CAS  Google Scholar 

  77. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 2001;64:907–910.

    PubMed  CAS  Google Scholar 

  78. Mooberry SL, Leal RM, Tinsley TL, Luesch H, Moore RE, Corbett TH. The molecular pharmacology of symplostatin 1: a new antimitotic dolastatin 10 analog. Int J Cancer 2003;104:512–521.

    PubMed  CAS  Google Scholar 

  79. Ahond A, Bedoya Zurita M, Colin M, et al. La giroline, novelle substance antitumorale extraite de l’eponge Pseudaxinyssa cantharella. C R Acad Sci Paris 1988;307:145–148.

    CAS  Google Scholar 

  80. Quinoa E, Adamczeski M, Crews P, Bakus GJ. Bengamides, heterocyclic anthelminthics from a Jaspidae marine sponge. J Org Chem 1986;51:4494–4497.

    CAS  Google Scholar 

  81. Adamczeski M, Quinoa E, Crews P. Novel sponge-derived amino acids. 5. Structures, stereochemistry, and synthesis of several new heterocycles. J Am Chem Soc 1989;111:647–654.

    CAS  Google Scholar 

  82. Adamczeski M, Quinoa E, Crews P. Novel sponge-derived amino acids. 11. The entire absolute stereochemistry of the bengamides. J Org Chem 1990;55:240–242.

    CAS  Google Scholar 

  83. Thale Z, Kinder FR, Bair KW, et al. Bengamides revisited: new structures and antitumor studies. J Org Chem 2001;66:1733–1741.

    PubMed  CAS  Google Scholar 

  84. Trimurtulu G, Ohtani I, Patterson GML, et al. Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green alga Nostoc sp. strain GSV 224. J Am Chem Soc 1994;116:4729–4737.

    CAS  Google Scholar 

  85. Sessa C, Weigang-Kohler K, Pagani O, et al. Phase I and pharmacological studies of the cryptophycin analogue LY355703 administered on a single or weekly schedule. Eur J Cancer 2002;38:2388–2396.

    PubMed  CAS  Google Scholar 

  86. Shih C, Teicher BA. Cryptophycins: a novel class of potent antimitotic antitumor depsipeptides. Curr Pharm Design 2001;7:1259–1276.

    CAS  Google Scholar 

  87. Kobayashi M, Aoki S, Ohyabu N, Kurosu M, Wang W, Kitagawa I. Arenastatin A, a potent cytotoxic depsipeptide from the Okinawan marine sponge Dysidea arenaria. Tetrahedron Lett 1994;35:7969–7972.

    CAS  Google Scholar 

  88. Golakoti T, Ogino J, Heltzel CE, et al. Structure determination, conformational analysis, chemical stability studies, and antitumor evaluation of the cryptophycins. Isolation of 18 new analogs from Nostoc sp. strain GSV 224. J Am Chem Soc 1995;117:12,030–12,049.

    CAS  Google Scholar 

  89. Koiso Y, Morita K, Kobayashi M, Wang W, Ohyabu N, Iwasaki S. Effects of arenastatin A and its synthetic analogs on microtubule assembly. Chem-Biol Interact 1996;102:183–191.

    PubMed  CAS  Google Scholar 

  90. Morita K, Koiso Y, Hashimoto Y, et al. Interaction of arenastatin A with porcine brain tubulin. Biol Pharm Bull 1997;1997:171–174.

    Google Scholar 

  91. Newman DJ. Bryostatin—from bryozoan to cancer drug. In: Gordon DP, Smith AM, Grant-Mackie JA (eds), Bryozoans in Space and Time, Wellington: NIWA, 1996:9–17.

    Google Scholar 

  92. Pettit GR, Herald CL, Hogan F. Biosynthetic products for anticancer drug design and treatment: bryostatins. In: Baguley BC, Kerr DJ (eds), Anticancer Drug Development, Academic, San Diego: 2002;203–235.

    Google Scholar 

  93. Clamp A, Jayson GC. The clinical development of the bryostatins. Anti-Cancer Drugs 2002;13:673–683.

    PubMed  CAS  Google Scholar 

  94. Davidson SK, Allen SW, Lim GE, Anderson CM, Haygood MG. Evidence for the biosynthesis of bryostatins by the bacterial symbiont “candidatus endobugula sertula” of the bryozoan Bugula neritina. Appl Environ Microbiol 2001;67:4531–4537.

    PubMed  CAS  Google Scholar 

  95. Davidson SK, Haygood MG. Identification of sibling species of the bryozoan Bugula neritina that produce different anticancer bryostatins and harbor distinct strains of the bacterial symbiont “candidatus endobugula sertula”. Biol Bull 1999;196:273–280.

    PubMed  CAS  Google Scholar 

  96. Haygood MG. The role of a bacterial symbiont in the biosynthesis of bryostatins in the marine bryozoan Bugula neritina. Abs Pap 6th Int Mar Biotech Conf 2003:Abs. S5-2A-K.

    Google Scholar 

  97. Piel J. A polyketide synthase-peptide synthase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 2002;99:14,002–14,007.

    PubMed  CAS  Google Scholar 

  98. Sigel MM, Wellham LL, Lichter W, Dudeck LE, Gargus J, Lucas AH. Anticellular and antitumor activity of extracts from tropical marine invertebrates. In: Younghen Jr HW (ed), Food-Drugs from the Sea Proceedings, Marine Technology Society, Washington, DC: 1969; 281–294.

    Google Scholar 

  99. Rinehart K, Holt TG, Fregeau NL, et al. Ecteinascidins 729, 743, 745, 759A, 759B and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata. J Org Chem 1990;55:4512–4515.

    CAS  Google Scholar 

  100. Wright AE, Forleo DA, Gunawardana GP, Gunasekera SP, Koehn FE, McConnell OJ. Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata. J Org Chem 1990;55:4508–4512.

    CAS  Google Scholar 

  101. Scott JD, Williams RM. Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem Rev 2002;102:1669–1730.

    PubMed  CAS  Google Scholar 

  102. Oku N, Matsunaga S, van Soest RWM, Fusetani N., Renieramycin J, a highly cytotoxic tetrahydroisoquinoline alkaloid, from a marine sponge Neopetrosia sp. J Nat Prod 2003;66: 1136–1139.

    PubMed  CAS  Google Scholar 

  103. Corey EJ, Gin DY, Kania RS. Enantioselective total synthesis of ecteinascidin 743. J Am Chem Soc 1996;118:9202–9203.

    CAS  Google Scholar 

  104. Martinez EJ, Owa T, Schreiber SL, Corey EJ. Phthalascidin, a synthetic antitumor agent with potency and mode of action comparable to ecteinascidin 743. Proc Natl Acad Sci USA 1999;96:3496–3501.

    PubMed  CAS  Google Scholar 

  105. Manzanares I, Cuevas C, Garcia-Nieto R, Marco E, Gago F. Advances in the chemistry and pharmacology of ecteinascidins, a promising new class of anticancer agents. Curr Med Chem-Anti-Cancer Agents 2001;1:257–276.

    CAS  Google Scholar 

  106. Takebayashi Y, Pourquier P, Zimonjic DB, et al. Antiproliferative activity of ecteinascidin 743 is dependent upon transcription-coupled nucleotide-excision repair. Nat Med 2001;7:961–966.

    PubMed  CAS  Google Scholar 

  107. Zewail-Foote M, Li V-S, Kohn H, Bearss D, Guzman M, Hurley KH. The inefficiency of incisions of ecteinascidin 743-DNA adducts by the UVRabc nuclease and the unique structural feature of the DNA adducts can be used to explain the repair-dependent toxicities of this antitumor agent. Chem Biol 2001;8:1033–1049.

    PubMed  CAS  Google Scholar 

  108. Bonfanti M, La Valle E, Fernandez Sousa-Faro J-M, et al. Effect of ecteinascidin-743 on the interaction between DNA binding proteins and DNA. Anti-Cancer Drug Des 1999;14:179–186.

    CAS  Google Scholar 

  109. Twelves C, Hoekman K, Bowman A, et al. Phase I and pharmokinetic study of Yondelis® (ecteinascidin-743; Et-743) administered as an infusion over 1 h or 3 h every 21 days in patients with solid tumours. Eur J Cancer 2003;39:1842–1851.

    PubMed  CAS  Google Scholar 

  110. van Kesteren C, de Vooght MMM, Lopez-Lazaro L, et al. Yondelis® (trabectedin, Et-743): the development of an anticancer agent of marine origin. Anti-Cancer Drugs 2003;14:487–502.

    PubMed  Google Scholar 

  111. Laverdiere C, Kolb CA, Supko JG, et al. Phase II study of ecteinascidin 743 in heavily pretreated patients with recurrent osteosarcoma. Cancer 2003;98:832–840.

    PubMed  CAS  Google Scholar 

  112. Rinehart KL, Lithgow-Bertelloni AM. Novel antiviral and cytotoxic agent. US Patent 1989, GB Appl. 89/22,026.

    Google Scholar 

  113. Faircloth G, Rinehart K, Nunez de Castro I, Jimeno J., Dehydrodidemnin B, a new marine derived antitumour agent with activity against experimental tumour models. Ann Oncol 1996;7:34.

    Google Scholar 

  114. Urdiales JL, Morata P, Nunez de Castro I, Sanchez-Jimenez F. Anti-proliferative effect of dehydrodidemnin B (DDB), a depsipeptide isolated from Mediterranean tunicates. Cancer Lett 1996;102:31–37.

    PubMed  CAS  Google Scholar 

  115. Cuevas C, Cuevas F, Gallego P, et al. Synthetic methods for aplidine and new antitumoral deriv., methods of making and using them. US Patent 2000, 2000/16148, 30JUN2000.

    Google Scholar 

  116. Jimeno JM. A clinical armamentarium of marine-derived anti-cancer compounds. Anti-Cancer Drugs 2002;13(Suppl.1):S15–S19.

    PubMed  CAS  Google Scholar 

  117. Broggini M, Marchini SV, Galliera E, et al. Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4. Leukemia 2003;17:52–59.

    PubMed  CAS  Google Scholar 

  118. Cuadrado A, Garcia-Fernandez LF, Gonzalez L, et al. Aplidin® induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, src, jnk, and p38 MAPK. J Biol Chem 2003;278:241–250.

    PubMed  CAS  Google Scholar 

  119. Uemura D, Takahashi K, Yamamoto T, et al. An antitumor polyether macrolide from a marine sponge. J Am Chem Soc 1985;107:4796–4798.

    CAS  Google Scholar 

  120. Hirata Y, Uemura D. Halichondrins: antitumor polyether macrolides from a marine sponge. Pure Appl Chem 1986;58:701–710.

    CAS  Google Scholar 

  121. Pettit GR, Herald CL, Boyd MR, et al. Isolation and structure of the cell growth inhibitory constituents from the Western Pacific marine sponge Axinella sp. J Med Chem 1991;34: 3339–3340.

    PubMed  CAS  Google Scholar 

  122. Pettit GR, Tan R, Williams MD, et al. Isolation and structure of halistatin 1 from the Eastern Indian Ocean marine sponge Phakellia carteri. J Org Chem 1993;58:2538–2543.

    CAS  Google Scholar 

  123. Gravelos DG, Lake R, Blunt JW, Munro MHG, Litaudon MSP. Halichondrins: cytotoxic polyether macrolides. US Patent 1993, EP 0 572 109 A1.

    Google Scholar 

  124. Aicher TD, Buszek KR, Fang FG, et al. Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 1992;114:3162–3164.

    CAS  Google Scholar 

  125. Towle MJ, Salvato KA, Budrow J, et al. In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res 2001;61:1013–1021.

    PubMed  CAS  Google Scholar 

  126. Yu MJ. Structurally simplified analogs of halichondrin B: discovery of E7389, a highly potent anticancer agent. Abs Pap Am Chem Soc 2002;224:238-Medi Part 232.

    Google Scholar 

  127. Gunasekera SP, Gunasekera M, Longley RE, Schulte GK. Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J Org Chem 1990;55:4912–4915.

    CAS  Google Scholar 

  128. Gunasekera SP, Gunasekera M, Longley RE, Schulte GK. Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J Org Chem 1991;56:1346.

    CAS  Google Scholar 

  129. ter Haar E, Kowalski RJ, Hamel E, et al. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry 1996;35:243–250.

    PubMed  Google Scholar 

  130. Nerenberg JB, Hung DT, Somers PK, Schreiber SL. Total synthesis of the immunosuppressive agent (-) discodermolide. J Am Chem Soc 1993;115:12,621–12,622.

    CAS  Google Scholar 

  131. Marshall JA, Johns BA. Total synthesis of (+)-discodermolide. J Org Chem 1998;63:7885–7892.

    CAS  Google Scholar 

  132. Halstead DP. Total synthesis of (+)-miyakolide, (-)-discodermolide, and (+)-discodermolide (PhD Thesis). Cambridge: Harvard: 1998.

    Google Scholar 

  133. Smith III AB, Kaufman MD, Beauchamp TJ, LaMarche MJ, Arimoto H. Gram-scale synthesis of (+)-discodermolide. Org Lett 1999;1:1823–1826.

    PubMed  CAS  Google Scholar 

  134. Paterson I, Delgado O, Florence GJ, Lyothier I, Scott JP, Sereinig N. 1,6-asymmetric induction in boron-mediated aldol reactions: application to a practical total synthesis of (+)-discodermolide. Org Lett 2003;5:35–38.

    PubMed  CAS  Google Scholar 

  135. Paterson I, Florence GJ. The development of a practical total synthesis of discodermolide, a promising microtubule-stabilizing anticancer agent. Eur J Org Chem 2003:2193–2208.

    Google Scholar 

  136. Isbrucker RA, Cummins J, Pomponi SA, Longley RE, Wright AE. Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine sponge origin. Biochem Pharmacol 2003;66:75–82.

    PubMed  CAS  Google Scholar 

  137. Martello LA, LaMarche MJ, He L, Beauchamp TJ, Smith III AB, Horwitz SB. The relationship between taxol and (+)-discodermolide: synthetic analogs and modeling studies. Chem Biol 2001;8:843–855.

    PubMed  CAS  Google Scholar 

  138. Hamann MT, Scheuer PJ., Kahalalide F. A bioactive depsipeptide from the sacoglossan mollusk Elysia rufescens and the green alga Bryopsis sp. J Amer Chem Soc 1993;115:5825–5826.

    CAS  Google Scholar 

  139. Hamann MT, Otto CS, Scheuer PJ, Dunbar DC. Kahalalides: bioactive peptides from a marine mollusk Elysia rufescens and its algal diet Bryopsis sp. J Org Chem 1996;61:6594–6600.

    PubMed  CAS  Google Scholar 

  140. Garcia-Rocha M, Bonay P, Avila J. The antitumoral compound kahalalide F acts on cell lysosomes. Cancer Lett 1996;99:43–50.

    PubMed  CAS  Google Scholar 

  141. Lopez-Macia A, Jimenez JC, Royo M, Giralt E, Alberico F. Synthesis and structure determination of kahalalide F. J Am Chem Soc 2001;123:11,398–11,401.

    PubMed  CAS  Google Scholar 

  142. Suarez Y, Gonzalez L, Cuadrado A, Berciano M, Lafarga M, Munoz A. Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol Cancer Ther 2003;2:863–872.

    PubMed  CAS  Google Scholar 

  143. Cuadros R, Montejo de Garcini E, Wandosell F, Faircloth G, Fernandez-Sousa JM, Avila J. The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Lett 2000;152:23–29.

    PubMed  CAS  Google Scholar 

  144. Talpir R, Benayahu Y, Kashman Y, Pannell L, Schleyer M. Hemiasterlin and geodiamolide TA; two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick). Tetrahedron Lett 1994;35:4453–4456.

    CAS  Google Scholar 

  145. Coleman JE, de Silva ED, Kong F, Andersen RJ, Allen TM. Cytotoxic peptides from the marine sponge Cymbastela sp. Tetrahedron 1995;51:10,653–10,662.

    CAS  Google Scholar 

  146. Anderson HJ, Coleman JE, Andersen RJ, Roberge M. Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation. Cancer Chemother Pharmacol 1997;39:223–226.

    PubMed  CAS  Google Scholar 

  147. Gamble WR, Durso NA, Fuller RW, et al. Cytotoxic and tubulin-interactive hemiasterlins from Auletta sp. and Siphonochalina spp. sponges. Bioorg Med Chem 1999;7:1611–1615.

    PubMed  CAS  Google Scholar 

  148. Bai R, Durso NA, Sackett DL, Hamel E. Interactions of the sponge-derived antimitotic tripeptide hemiasterlin with tubulin: comparison with dolastatin 10 and cryptophycin 1. Biochemistry 1999;38:14,302–14,310.

    PubMed  CAS  Google Scholar 

  149. Andersen RJ, Coleman JE, Piers E, Wallace DJ. Total synthesis of (-)-hemiasterlin, a structurally novel tripeptide that exhibits potent cytotoxic activity. Tet Lett 1997;38:317–320.

    Google Scholar 

  150. Nieman JA, Coleman JE, Wallace DJ, et al. Synthesis and antimitotic/cytotoxic activity of hemiasterlin analogues. J Nat Prod 2003;66:183–199.

    PubMed  CAS  Google Scholar 

  151. Loganzo F, Discafani C, Annable T, et al. HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents p-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res 2003;63:1838–1845.

    PubMed  CAS  Google Scholar 

  152. Natori T, Koezuka Y, Higa H. Agelasphins, novel α-galactosylceramides from the marine sponge Agelas mauritianus. Tet Lett 1993;34:5591–5592.

    CAS  Google Scholar 

  153. Natori T, Morita M, Akimoto K, Koezuka Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 1994;50: 2771–2784.

    CAS  Google Scholar 

  154. Hoshi A, Castaner J. KRN-7000. Drugs Fut 1996;21:152–153.

    CAS  Google Scholar 

  155. Motoki K, Kobayashi E, Uchida T, Fukushima H, Koezuka Y. Antitumor activities of α-, β-monogalactosylceramides and four diastereomers of an α-galactosylceramide. Bioorg Med Chem Lett 1995;5:705–710.

    CAS  Google Scholar 

  156. Moore KS, Wehrli S, Roder H, et al. Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci USA 1993;90:1354–1358.

    PubMed  CAS  Google Scholar 

  157. Hao D, Hammond LA, Eckhardt SG, et al. A phase I and pharmacokinetic study of squalamine, an aminosterol angiogenesis inhibitor. Clin Canc Res 2003;9:2465–2471.

    CAS  Google Scholar 

  158. Sorbera LA, Castaner RM, Leeson PA. Ae-941. Drugs Fut 2000;25:551–556.

    CAS  Google Scholar 

  159. Alpert L, Savard P, Ross N, et al. Angiostatic and antitumoral activity of AE-941 (Neovastat®), a molecular fraction derived from shark cartilage. Proc Am Assoc Cancer Res 1997;38:Abs 1530.

    Google Scholar 

  160. Gingras D, Boivin D, Deckers C, Gendron S, Bathomeuf C, Beliveau R. Neovastat—a novel antiangiogenic drug for cancer therapy. Anti-Cancer Drugs 2003;14:91–96.

    PubMed  CAS  Google Scholar 

  161. Bukowski RM. AE-941, a multifunctional antiangiogenic compound: trials in renal cell carcinoma. Expert Opin Investig Drugs 2003;12:1403–1411.

    PubMed  CAS  Google Scholar 

  162. Ahmed A, Hoegenauer EK, Enev VS, et al. Total synthesis of the microtubule stabilizing antitumor agent laulimalide and some nonnatural analogues: the power of Sharpless’ asymmetric epoxidation. J Org Chem 2003;68:3026–3042.

    PubMed  CAS  Google Scholar 

  163. Mulzer J, Ohler E. Microtubule-stabilizing marine metabolite laulimalide and its derivatives: synthetic approaches and antitumor activity. Chem Rev 2003;103:3753–3786.

    PubMed  CAS  Google Scholar 

  164. Gerwick WH, Proteau PJ, Nagle DE, Hamel E, Blokhin A, Slate DL. Structure of curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majuscula. J Org Chem 1994;59:1243–1245.

    CAS  Google Scholar 

  165. Edler MC, Fernandez AM, Lassota P, Ireland CM, Barrows LR. Inhibition of tubulin polymerization by vitilevuamide, a bicyclic marine peptide, at a site distinct from colchicine, the vinca alkaloids, and dolastatin 10. Biochem Pharmacol 2002;63:707–715.

    PubMed  CAS  Google Scholar 

  166. Janin YL. Peptides with anticancer use or potential. Amino Acids 2003;25:1–40.

    PubMed  CAS  Google Scholar 

  167. Lindquist N, Fenical W, Van Duyne GD, Clardy J. Isolation and structure determination of diazonamides A and B, unusual cytotoxic metabolites from the marine ascidian Diazona chinensis. J Am Chem Soc 1991;113:2303–2304.

    CAS  Google Scholar 

  168. Cruz-Monserrate Z, Vervoort HC, Bai R, et al. Diazonamide A and a synthetic structural analog: disruptive effects on mitosis and cellular microtubules and analysis of their interactions with tubulin. Mol Pharmacol 2003;63:1273–1280.

    PubMed  CAS  Google Scholar 

  169. D’Ambrosio M, Guerriero A, Pietra F. Sarcodictyin-A and sarcodictyin-B, novel diterpenoidic alcohols esterified by (E)-n(1)-methylurocanic acid-isolation from the Mediterranean stolonifer Sarcodictyon roseum. Helv Chim Acta 1987;70:2019–2027.

    CAS  Google Scholar 

  170. D’Ambrosio M, Guerriero A, Pietra F. Isolation from the Mediterranean stoloniferan coral Sarcodictyon roseum of sarcodictyin C, D, E, and F, novel ditepenoidic alcohols esterified by (E)-or (Z)-n(1)-methylurocanic acid-failure of the carbon-skeleton type as a classification criterion. Helv Chim Acta 1988;71:964–976.

    CAS  Google Scholar 

  171. Lindel T, Jensen PR, Fenical W, Long BH, Casazza AM, Carboni J, Fairchild CR. Eleutherobin, a new cytotoxin that mimics paclitaxel (taxol®) by stabilizing microtubules. J Am Chem Soc 1997;119:8744–8745.

    CAS  Google Scholar 

  172. Cinel B, Roberge M, Behrisch H, van Ofwegen L, Castro CB, Andersen RJ. Antimitotic diterpenes from Erythropodium caribaerum test pharmacophore models for microtubule stabilization. Org Lett 2000;2:257–260.

    PubMed  CAS  Google Scholar 

  173. Taglialatela-Scafati O, Deo-Jangra U, Campbell M, Roberge M, Andersen RJ. Diterpenoids from cultured Erythropodium caribaeorum. Org Lett 2002;4:4085–4088.

    PubMed  CAS  Google Scholar 

  174. West LM, Northcote PT. Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000;65:445–449.

    PubMed  CAS  Google Scholar 

  175. Hood KA, West LM, Rouwe B, et al. Peloruside A, a novel antimitotic agent with paclitaxellike microtubule-stabilizing activity. Cancer Res 2002;62:3356–3360.

    PubMed  CAS  Google Scholar 

  176. Ghosh AK, Kim J-H. An enantioselective synthesis of the C1-C9 segment of antitumor macrolide peloruside A. Tetrahedron Lett 2003;44:3967–3969.

    CAS  Google Scholar 

  177. Erickson KL, Beutler JA, Cardellina II JH, Boyd MR. Salicylihalimides A and B, novel cytotoxic macrolides from the marine sponge Haliclona sp. J Org Chem 1997;62:8188–8192.

    PubMed  CAS  Google Scholar 

  178. Beutler JA, McKee TC. Novel marine and microbial natural product inhibitors of vacuolar ATPase. Curr Med Chem 2002;9:1241–1253.

    Google Scholar 

  179. Yet L. Chemistry and biology of salicylihalimide A and related compounds. Chem Rev 2003;103:4283–4306.

    PubMed  CAS  Google Scholar 

  180. Yousaf M, Rao KV, Gul W, et al. Solving limited supplies of marine pharmaceuticals through the rational and high-throughput modification of high yielding marine natural producer scaffolds. Abs Pap 6th Int Mar Biotech Conf 2003:Abs. S14–13B–13.

    Google Scholar 

  181. Kasanah N, Rao KV, Wedge D, Hill RT, Hamann MT. Biotransformation and biosynthetic studies of the manzamine alkaloids. Abs Pap 6th Int Mar Biotech Conf 2003:Abs S14–13B–14.

    Google Scholar 

  182. Nicolaou KC, Winssinger N, Vouloumis D, et al. Solid and solution phase synthesis and biological evaluation of combinatorial sarcodictyin libraries. J Am Chem Soc 1998;120:10,814–10,826.

    CAS  Google Scholar 

  183. Nicolaou KC, Roschangar F, Vourloumis D. Chemical biology of epothilones. Angew Chem, Int Ed Engl 1998;37:2014–2045.

    CAS  Google Scholar 

  184. Koeller KM, Haggarty SJ, Perkins BD, et al. Chemical genetic modifier screens: small molecule trichostatin suppressors as probes of intracellular histone and tubulin acetylation. Chem Biol 2003;10:397–410.

    PubMed  CAS  Google Scholar 

  185. Burke MD, Schreiber SL. A planning strategy for diversity-oriented synthesis. Angew Chem, Int Ed Engl 2004;43:46–58.

    Google Scholar 

  186. Brady SF, Chao CJ, Clardy J. New natural product families from an environmental DNA (eDNA) gene cluster. J Am Chem Soc 2002;124:9968–9969.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Newman, D.J., Cragg, G.M. (2005). The Discovery of Anticancer Drugs From Natural Sources. In: Zhang, L., Demain, A.L. (eds) Natural Products. Humana Press. https://doi.org/10.1007/978-1-59259-976-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-976-9_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-383-1

  • Online ISBN: 978-1-59259-976-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics