Advertisement

Minimally Invasive Approaches to Spinal Metastases

Endoscopic Surgery and Vertebral Augmentation
  • Jean-ValÉry C. E. Coumans
  • A. Jay Khanna
  • Isador H. Lieberman
Part of the Current Clinical Oncology book series (CCO)

Abstract

Approximately 50 to 70% of all cancer patients ultimately develop skeletal metastases, and the spine is the most common site of metastatic deposition. Most patients with spinal metastases are treated nonsurgically, commonly with radiation therapy, chemotherapy, radiopharmaceutical therapy, hormonal therapy, and antiresorptive therapy with bisphosphonates and analgesics (1,2). Usually, surgery is considered only for patients with intractable pain, neurological compromise, and overt or impending instability. The goals of spinal tumor surgery are to decompress the spinal cord and nerve roots, stabilize the spine, alleviate pain, and, in some cases, establish a diagnosis. Occasionally, the goal of surgery for a patient with a primary neoplasm of the spine is to effect a cure.

Keywords

Vertebral Body Compression Fracture Spinal Metastasis Percutaneous Vertebroplasty Thoracoscopic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Body JJ, Bartl R, Burckhardt P, et al. Current use of bisphosphonates in oncology. International Bone and Cancer Study Group. J Clin Oncol 1998; 16:3890–3899.PubMedGoogle Scholar
  2. 2.
    Schachar NS. An update on the nonoperative treatment of patients with metastatic bone disease. Clin Orthop 2001; 382:75–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Dickman CA, Karahalios DG. Thoracoscopic spinal surgery. Clin Neurosurg 1996; 43:392–422.PubMedGoogle Scholar
  4. 4.
    Hanley E, Green NE, Spengler DM. An AOA critical issue. Less invasive procedures in spine surgery. J Bone Joint Surg 2003; 85:956–961.PubMedCrossRefGoogle Scholar
  5. 5.
    Staelin ST, Zdeblick TA, Mahvi DM. Laparoscopic lumbar spinal fusion: the role of the general surgeon. J Laparoendosc Adv Surg Tech 2000; 10:297–304.Google Scholar
  6. 6.
    Zdeblick TA. Laparoscopic spinal fusion. Orthop Clin North Am 1998; 29:635–645.PubMedCrossRefGoogle Scholar
  7. 7.
    Jacobaeus HC. Possibility of th euse of the cystoscope for investigation of serious cavities. Munch Med Wochenschr 1910; 57:2090–2092.Google Scholar
  8. 8.
    Lin JC, Wiechmann RJ, Szwerc MF, et al. Diagnostic and therapeutic video-assisted thoracic surgery resection of pulmonary metastases. Surgery 1999; 126:636–641.PubMedGoogle Scholar
  9. 9.
    Lin JC, Hazelrigg SR, Landreneau RJ. Video-assisted thoracic surgery for diseases within the mediastinum. Surg Clin North Am 2000; 80:1511–1533.PubMedCrossRefGoogle Scholar
  10. 10.
    Schwarz RE, Posner MC, Ferson PF, Keenan RJ, Landreneau RJ. Thoracoscopic techniques for the management of intrathoracic metastases. Results. Surg Endosc 1998; 12:842–845.CrossRefGoogle Scholar
  11. 11.
    Landreneau RJ, Hazelrigg SR, Mack MJ, et al. Postoperative painrelated morbidity: video-assisted thoracic surgery versus thoracotomy. Ann Thorac Surg 1993; 56:1285–1289.PubMedGoogle Scholar
  12. 12.
    Landreneau RJ, Mack MJ, Hazelrigg SR, et al. Prevalence of chronic pain after pulmonary resection by thoracotomy or video-assisted thoracic surgery. J Thorac Cardiovasc Surg 1994; 107:1079–1085.PubMedGoogle Scholar
  13. 13.
    Dickman CA, Rosenthal D, Karahalios DG, et al. Thoracic vertebrectomy and reconstruction using a microsurgical thoracoscopic approach. Neurosurgery 1996; 38:279–293.PubMedCrossRefGoogle Scholar
  14. 14.
    Han PP, Kenny K, Dickman CA. Thoracoscopic approaches to the thoracic spine: experience with 241 surgical procedures. Neurosurgery 2002; 51:S2-88–S2-95.CrossRefGoogle Scholar
  15. 15.
    McAfee PC, Regan JR, Fedder IL, Mack MJ, Geis WP. Anterior thoracic corpectomy for spinal cord decompression performed endoscopically. Surg Laparosc Endosc 1995; 5:339–348.PubMedGoogle Scholar
  16. 16.
    McLain RF, Lieberman IH. Endoscopic approaches to metastatic thoracic disease. Spine 2000; 25:1855–1858.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenthal D, Marquardt G, Lorenz R, Nichtweiss M. Anterior decompression and stabilization using a microsurgical endoscopic technique for metastatic tumors of the thoracic spine. J Neurosurg 1996; 84:565–572.PubMedGoogle Scholar
  18. 18.
    McAfee PC, Regan JR, Zdeblick T, et al. The incidence of complications in endoscopic anterior thoracolumbar spinal reconstructive surgery. A prospective multicenter study comprising the first 100 consecutive cases. Spine 1995; 20:1624–1632.PubMedCrossRefGoogle Scholar
  19. 19.
    Lieberman IH, Salo PT, Orr RD, Kraetschmer B. Prone position endoscopic transthoracic release with simultaneous posterior instrumentation for spinal deformity: a description of the technique. Spine 2000; 25:2251–2257.PubMedCrossRefGoogle Scholar
  20. 20.
    McLain RF. Endoscopically assisted decompression for metastatic thoracic neoplasms. Spine 1998; 23:1130–1135.PubMedCrossRefGoogle Scholar
  21. 21.
    McLain RF. Spinal cord decompression: an endoscopically assisted approach for metastatic tumors. Spinal Cord 2001; 39:482–487.PubMedCrossRefGoogle Scholar
  22. 22.
    Deramond H, Depriester C, Galibert P, Le Gars D. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am 1998; 36:533–546.PubMedCrossRefGoogle Scholar
  23. 23.
    Diener KM. Bisphosphonates for controlling pain from metastatic bone disease. Am J Health Syst Pharm 1996; 53:1917–1927.PubMedGoogle Scholar
  24. 24.
    Galibert P, Deramond H, Rosat P, Le Gars D. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty]. Neurochirurgie 1987; 33:166–168.PubMedGoogle Scholar
  25. 25.
    Kaemmerlen P, Thiesse P, Jonas P, et al. Percutaneous injection of orthopedic cement in metastatic vertebral lesions [letter]. N Engl J Med 1989; 321:121.PubMedGoogle Scholar
  26. 26.
    Mathis JM, Petri M, Naff N. Percutaneous vertebroplasty treatment of steroid-induced osteoporotic compression fractures. Arthritis Rheum 1998; 41:171–175.PubMedCrossRefGoogle Scholar
  27. 27.
    Jensen ME, Evans AJ, Mathis JM, Kallmes DF, Cloft HJ, Dion JE. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol 1997; 18:1897–1904.PubMedGoogle Scholar
  28. 28.
    Gangi A, Kastler BA, Dietemann JL. Percutaneous vertebroplasty guided by a combination of CT and fluoroscopy. AJNR Am J Neuroradiol 1994; 15:83–86.PubMedGoogle Scholar
  29. 29.
    Weill A, Chiras J, Simon JM, Rose M, Sola-Martinez T, Enkaoua E. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology 1996; 199:241–247.PubMedGoogle Scholar
  30. 30.
    Cortet B, Cotten A, Boutry N, et al. Percutaneous vertebroplasty in the treatment of osteoporotic vertebral compression fractures: an open prospective study. J Rheumatol 1999; 26:2222–2228.PubMedGoogle Scholar
  31. 31.
    Barr JD, Barr MS, Lemley TJ, McCann RM. Percutaneous vertebroplasty for pain relief and spinal stabilization. Spine 2000; 25:923–928.PubMedCrossRefGoogle Scholar
  32. 32.
    Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone 1999; 25:17S–21S.PubMedCrossRefGoogle Scholar
  33. 33.
    Jefferiss CD, Lee AJC, Ling RSM. Thermal aspects of self-curing polymethylmethacrylate. J Bone Joint Surg 1975; 57:511–518.Google Scholar
  34. 34.
    Radin EL, Rubin CT, Thrasher EL, et al. Changes in the bonecement interface after total hip replacement. An in vivo animal study. J Bone Joint Surg 1982; 64:1188–1200.PubMedGoogle Scholar
  35. 35.
    San Millan Ruiz D, Burkhardt K, Jean B, et al. Pathology findings with acrylic implants. Bone 1999; 25:85S–90S.PubMedCrossRefGoogle Scholar
  36. 36.
    Belkoff SM, Maroney M, Fenton DC, Mathis JM. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone 1999; 25:23S–26S.PubMedCrossRefGoogle Scholar
  37. 37.
    Tohmeh AG, Mathis JM, Fenton DC, Levine AM, Belkoff SM. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine 1999; 24:1772–1776.PubMedCrossRefGoogle Scholar
  38. 38.
    Schildhauer TA, Bennett AP, Wright TM, Lane JM, O’Leary PF. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: biomechanical evaluation of a minimally invasive technique. J Orthop Res 1999; 17:67–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Padovani B, Kasriel O, Brunner P, Peretti-Viton P. Pulmonary embolism caused by acrylic cement: a rare complication of percutaneous vertebroplasty. AJNR Am J Neuroradiol 1999; 20:375–377.PubMedGoogle Scholar
  40. 40.
    Alvarez L, Perez-Higueras A, Quinones D, Calvo E, Rossi RE. Vertebroplasty in the treatment of vertebral tumors: postprocedural outcome and quality of life. Eur Spine J 2003; 12:356–360.PubMedCrossRefGoogle Scholar
  41. 41.
    Fourney DR, Schomer DF, Nader R, et al. Percutaneous vertebroplasty and kyphoplasty for painful vertebral body fractures in cancer patients. J Neurosurg 2003; 98:21–30.PubMedCrossRefGoogle Scholar
  42. 42.
    Martin JB, Wetzel SG, Seium Y, et al. Percutaneous vertebroplasty in metastatic disease: transpedicular access and treatment of lysed pedicles—initial experience. Radiology 2003; 229:593–597.PubMedCrossRefGoogle Scholar
  43. 43.
    Wenger M. Vertebroplasty for metastasis. Med Oncol 2003; 20:203–209.PubMedCrossRefGoogle Scholar
  44. 44.
    Belkoff SM, Mathis JM, Fenton DC, Scribner RM, Reiley ME, Talmadge K. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. Spine 2001; 26:151–156.PubMedCrossRefGoogle Scholar
  45. 45.
    Lieberman IH, Dudeney S, Reinhardt MK, Bell G. Initial outcome and efficacy of “kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures. Spine 2001; 26:1631–1638.PubMedCrossRefGoogle Scholar
  46. 46.
    Coumans JV, Reinhardt MK, Lieberman IH. Kyphoplasty for vertebral compression fractures: 1-year clinical outcomes from a prospective study. J Neurosurg 2003; 991:44–50.Google Scholar
  47. 47.
    Heaney RP. The natural history of vertebral osteoporosis. Is low bone mass an epiphenomenon? Bone 1992; 13:S23–S26.Google Scholar
  48. 48.
    Leech JA, Dulberg C, Kellie S, Pattee L, Gay J. Relationship of lung function to severity of osteoporosis in women. Am Rev Respir Dis 1990; 141:68–71.PubMedGoogle Scholar
  49. 49.
    Do HM. Magnetic resonance imaging in the evaluation of patients for percutaneous vertebroplasty. Top Magn Reson Imaging 2000; 11:235–244.PubMedCrossRefGoogle Scholar
  50. 50.
    Dudeney S, Lieberman IH, Reinhardt MK, Hussein M. Kyphoplasty in the treatment of osteolytic vertebral compression fractures as a result of multiple myeloma. J Clin Oncol 2002; 20:2382–2387.PubMedCrossRefGoogle Scholar
  51. 51.
    Assaker R, Reyns N, Pertruzon B, Lejeune JP. Image-guided endoscopic spine surgery: Part II: clinical applications. Spine 2001; 26:1711–1718.PubMedCrossRefGoogle Scholar
  52. 52.
    Assaker R, Cinquin P, Cotten A, Lejeune JP. Image-guided endoscopic spine surgery: Part I. A feasibility study. Spine 2001; 26:1705–1710.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, Inc., Totowa, NJ 2006

Authors and Affiliations

  • Jean-ValÉry C. E. Coumans
    • 1
  • A. Jay Khanna
    • 2
  • Isador H. Lieberman
    • 3
  1. 1.Department of NeurosurgeryMassachusetts General HospitalBoston
  2. 2.Johns Hopkins Orthopaedic Surgery at Good Samaritan HospitalBaltimore
  3. 3.The Cleveland Clinic Spine InstituteThe Cleveland Clinic FoundationAnn Arbor

Personalised recommendations