Advertisement

Laboratory Studies and Diagnostic Work-Up of Bony Lesions in the Spine

  • Kai-Uwe Lewandrowski
  • Robert F. Mclain
  • Henry J. Mankin
Part of the Current Clinical Oncology book series (CCO)

Abstract

Almost any time a physician treats a bony lesion or fracture pathological to the spine, the world of poor bone quality is entered. In order to improve understanding (and control) of the normal and diseased skeletal system, it is necessary to be conversant with a basic knowledge of these disorders affecting the spine. Therefore, basic laboratory tests, which can aid in the diagnostic work-up and evaluation of tumor recurrence, are reviewed in this chapter. It should be noted, though, that this chapter provides only an overview on the subject and it does not provide a complete review of all laboratory tests and prognostic factors applicable to spine tumor patients.

Keywords

Vascular Endothelial Growth Factor Renal Cell Carcinoma Multiple Myeloma Primary Hyperparathyroidism Mineral Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mundy, GR. Bone remodeling. In: Favus, M, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 4th ed. Philadelphia, PA: Lippincott William and Wilkins; 1999:30–38.Google Scholar
  2. 2.
    Lian JB, Stein GS, Canalis E, Gehron Robey P, Boskey AL. Bone formation: osteoblast lineage cells, growth factors, matrix proteins and the mineralization process. In: Favus, M, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 4th ed. Philadelphia, PA: Lippincott William and Wilkins; 1999:14–29.Google Scholar
  3. 3.
    Glimcher MJ. The nature of the mineral phase in bone. In: Avioli LV, Krane SM, eds. Metabolic Bone Diseases and Related Disorders. 3rd ed.. San Diego, CA: Academic Press; 1998:23–95.Google Scholar
  4. 4.
    Khosla S, Kleerekoper M. Biochemical markers of bone turnover. In: Favus, M, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 4th ed. Philadelphia, PA: Lippincott William and Wilkins; 1999:128–133.Google Scholar
  5. 5.
    Glimcher MJ. The nature of the mineral component of bone and the mechanism of calcification. In: Coe FL, Favus ME, eds. Disorders of Bone and Mineral Metabolism. New York, NY: Raven Press; 1992:265–286.Google Scholar
  6. 6.
    Broadus AE. Mineral balance and homeostasis. In: Favus, M, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 4th ed. Philadelphia PA: Lippincott William and Wilkins; 1999:74–80.Google Scholar
  7. 7.
    Rodan GA. Introduction to bone biology. Bone 1992; 13:3–6.CrossRefGoogle Scholar
  8. 8.
    Landis WJ, Glimcher MJ. Electron diffraction and electron probe micronanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res. 1978; 63:188–223.PubMedCrossRefGoogle Scholar
  9. 9.
    Boskey AL. Mineral-matrix interactions in bone and cartilage. Clin Orthop 1992; 281:244–274.PubMedGoogle Scholar
  10. 10.
    Silverberg SJ. The distribution and balance of calcium, magnesium and phosphorus. In: Favus ME, ed. Primer on Metabolic Bone Diseases and Disorders of Mineral Metabolism. Kelseyville, CA: American Society for Bone and Mineral Research; 1990:30–32.Google Scholar
  11. 11.
    von Recklinghausen FD. Die fibrose oder deformierende ostitis, die osteomalazie und die osteoplastische carcinose in ihren gegenseitigen Beziehungen. Forschr R Virchow. 1891:1–45.Google Scholar
  12. 12.
    Jaffe HL. Metabolic, Degenerative and Inflammatory Diseases of Bones and Joints. Philadelphia, PA: Lea and Febiger; 1972:301–331.Google Scholar
  13. 13.
    Bilezikian JP. Primary hyperparathyroidism. In: Favus, M, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 4th ed. Philadelphia, PA: Lippincott William and Wilkins; 1999:187–191.Google Scholar
  14. 14.
    Chang CW, Tsue TT, Hermreck AS, Baxter KG, Hoover LA. Efficacy of preoperative dual-phase sestamibi scanning in hyperparathyoidism. Am Otholaryngol 2000; 21:355–359.CrossRefGoogle Scholar
  15. 15.
    Bilezikian JP. Hypercalcemic states: their differential diagnosis and acute management. In: Coe FL, Favus ME, eds. Disorders of Bone and Mineral Metabolism. New York, NY: Raven Press; 1992:493–522.Google Scholar
  16. 16.
    Habener JF, Potts JT, Jr. Primary hyperparathyroidism. In: Avioli LV, Krane SM, eds. Metabolic Bone Disease. 2nd ed. Philadelphia, PA: WB Saunders; 1990:475–546.Google Scholar
  17. 17.
    Wynne AG, van Heerden J, Carney JA, Fitzpatrick LA. Parathyroid carcinoma: clinical and pathologic features in 43 patients. Medicine (Baltimore) 1992; 71:197–205.Google Scholar
  18. 18.
    Obara T, Fujimoto Y. Diagnosis and treatment of patients with parathyroid carcinoma; an update and review. World J Surg 1991; 15:738–744.PubMedCrossRefGoogle Scholar
  19. 19.
    Ladenson JH. Calcium determination in primary hyperparathyroidism. J Bone Miner Res 1991; 6:S33–S41.PubMedGoogle Scholar
  20. 20.
    Spiegel AM. Pathophysiology of primary hyperparathyroidism. J Bone Miner Res 1991; 6:S15–S17.PubMedGoogle Scholar
  21. 21.
    Hellman P, Carling T, Rask L, Akerstrom G. Pathophysiology of primary hyperparathyroidism. Histo Histopathol 2000; 15:619–627.Google Scholar
  22. 22.
    Raisz, LG. Mechanisms and regulation of bone resorption by osteoclastic cells. In: Coe FL, Favus ME, eds. Disorders of Bone and Mineral Metabolism. New York, NY: Raven Press; 1992:287–311.Google Scholar
  23. 23.
    Hayes CW, Conway WF. Hyperparathyroidism. Radiol Clin North Am 1991; 29:85–96.PubMedGoogle Scholar
  24. 24.
    Parisien M, Silverberg SJ, Shane E, Dempster DW, Bilezikian JP. Bone disease in primary hyperparathyroidism. Endocrinol Metab Clin North Am 1990; 19:19–34.PubMedGoogle Scholar
  25. 25.
    Heath DA. Primary hyperparathyroidism. Clinical presentation and factors influencing clinical management. Endocrinol Metab Clin North Am 1990; 18:631–646.Google Scholar
  26. 26.
    Kappelle JW, Raymakers JA, Bosch R, Dursma SA. No short-term effects of 24,25-dihydroxycholecalciferol in healthy subjects. Bone 1989; 10:397–399.PubMedCrossRefGoogle Scholar
  27. 27.
    Habener JF, Potts JT, Jr, Primary hyperparathyroidism. In: Avioli LV, Krane SM, eds. Metabolic Bone Disease. 2nd ed. Philadelphia, PA: WB Saunders; 1990:475–546.Google Scholar
  28. 28.
    Parisien M, Silverberg SJ, Shane E, Dempster DW, Bilezikian JP. Bone disease in primary hyperparathyroidism. Endocrinol Metab Clin North Am 1990; 19:19–34.PubMedGoogle Scholar
  29. 29.
    Rossini M, Gatti D, Isaia G, Sartori L, Braga V, Adami S. Effects of oral alendronate in elderly patients with osteoporosis and mild primary hyperparathyroidism. J Bone Miner Res 2001; 16:113–119.PubMedCrossRefGoogle Scholar
  30. 30.
    Scott JT, Dixon ASTJ, Bywaters EGL. Association of hyperuricaemia and gout with hyperparathyroidism. Br Med J 1964; 1:1070–1073.PubMedGoogle Scholar
  31. 31.
    Lafferty, FW. Differential diagnosis of hypercalcemia. J Bone Miner Res 1991; 6:S51–S59.PubMedGoogle Scholar
  32. 32.
    Jorde R, Bonaa KH, Sundsfjord J. Primary hyperparathyroidism detected in a health screening. J Clin Epidemiol 2000; 53:1164–1169.PubMedCrossRefGoogle Scholar
  33. 33.
    Nussbaum SR, Potts JT, Jr. Immunoassays for parathyroid hormone 1-84 in the diagnosis of hyperparathyroidism. J Bone Miner Res 1991; 6:S43–S50.PubMedGoogle Scholar
  34. 34.
    Yonemura K, Suzuki G, Fujigaki Y, Hishida A. New insights on the pathogenesis of hypercalcemia in primary hyperparathyroidism. Am J. Med Sci 2000; 320:334–336.PubMedCrossRefGoogle Scholar
  35. 35.
    Lopez Hanninen E, Vogl TJ, Steinmuller T, Ricke J, Neuhaus P, Felix R. Preoperative contrast enhanced MRI of the parathyroid glands in hyperparathyroidism. Invest Radiol 2000; 35:426–430.PubMedCrossRefGoogle Scholar
  36. 36.
    Potts JT, Jr. Hyperparathyroidism and other hypercalcemic disorders. Adv Intern Med 1996; 41:165–212.PubMedGoogle Scholar
  37. 37.
    Breslau NA, Pak CYC. Asymptomatic primary hyperparathyroidism. In: Coe FL, Favus ME, eds. Disorders of Bone and Mineral Metabolism. New York, NY: Raven Press; 1992:523–538.Google Scholar
  38. 38.
    Heath H, III, Hodgson SF, Kennedy MA. Primary hyperparathyroidism: incidence, morbidity and potential economic impact in a community. N Engl J Med 1980; 302:189–193.PubMedGoogle Scholar
  39. 39.
    Harrison BJ, Wheeler MH. Asymptomatic primary hyperparathyroidism. World J Surg 1991; 15:724–729.PubMedCrossRefGoogle Scholar
  40. 40.
    Heath H, III. Clinical spectrum of primary hyperparathyroidism: evolution with changes in medical practice and technology. J Bone Miner Res 1991; 6:S63–S64.PubMedCrossRefGoogle Scholar
  41. 41.
    Mundy GR, Cove DH, Fisken R. Primary hyperparathyroidism: changes in the pattern of clinical presentation. Lancet. 1980; 1:1317–1320.PubMedCrossRefGoogle Scholar
  42. 42.
    Silverberg SJ. Natural history of primary hyperparathyroidism. Endocrinol Metab Clin North Am 2000; 29:451–464.PubMedCrossRefGoogle Scholar
  43. 43.
    Neumann PJ, Torppa AJ, Blumetti AE. Neuropsychologic deficits associated with primary hpyperparathyroidism. Surgery 1984; 96:1119–1123.Google Scholar
  44. 44.
    Tanaka Y, Narue T, Funahashi H, et al. Bone metabolic analysis in patients with primary hyperparathyroidism. Biome Pahrmacother 2000; 54:197–199.Google Scholar
  45. 45.
    Takami GM, Shirahama S, Ikeda Y, et al. Familial hyperparathyroidism. Biomed Pharmacother 2000; 54:21s–24s.PubMedCrossRefGoogle Scholar
  46. 46.
    Stenman UH, Leinonen J, Alfthan H, Rannikko S, Tuhkanen K, Alfthan O. A complex between prostate-specific antigen and alpha 1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer Res 1991; 51:222–226.PubMedGoogle Scholar
  47. 47.
    Catalona WJ, Partin AW, Slawin KM, et al. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA 1998; 279:1542–1547.PubMedCrossRefGoogle Scholar
  48. 48.
    Pokorny RM, Hunt L, Galandiuk S. What’s new with tumor markers for colorectal cancer? Dig Surg 2000; 17:209–215.PubMedCrossRefGoogle Scholar
  49. 49.
    Helm J, Choi J, Sutphen R, Barthel JS, Albrecht TL, Chirikos TN. Current and evolving strategies for colorectal cancer screening. Cancer Control 2003; 10:193–204.PubMedGoogle Scholar
  50. 50.
    Carpelan-Holmstrom M, Louhimo J, Stenman UH, Alfthan H, Haglund C. CEA, CA 19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers. Anticancer Res 2002; 22:2311–2316.PubMedGoogle Scholar
  51. 51.
    Crawford N, Colliver DW, Galandiuk S. Tumor markers and colorectal cancer: utility in management. J Surg Oncol 2003; 84:239–248.PubMedCrossRefGoogle Scholar
  52. 52.
    De Young NJ, Ashman LK. Physicochemical and immunochemical properties of carcinoembryonic antigen (CEA) from different tumour sources. Aust J Exp Biol Med Sci 1978; 56:321–331.PubMedCrossRefGoogle Scholar
  53. 53.
    Takami H, Koudaira H, Kodaira S. Relationship of ornithine decarboxylase activity and human colon tumorigenesis. Jpn J Clin Oncol 1994; 24:141–143.PubMedGoogle Scholar
  54. 54.
    Brown PD. Matrix metalloproteinase inhibitors: A novel class of anticancer agents. Adv Enzyme Regul 1995; 35:293–301.PubMedCrossRefGoogle Scholar
  55. 55.
    Mori M, Barnard GF, Mimori K, Ueo H, Akiyoshi T, Sugimachi K. Overexpression of matrix metalloproteinase-7 mRNA in human colon carcinomas. Cancer 1995; 75:1516–1519.PubMedCrossRefGoogle Scholar
  56. 56.
    Miseljic S, Galandiuk S, Myers SD, Wittliff JL. Expression of urokinase-type plasminogen activator and plasminogen activator inhibitor in colon disease. J Clin Lab Anal 1995; 9:413–417.PubMedCrossRefGoogle Scholar
  57. 57.
    Buo L, Meling GI, Karlsrud TS, Johansen HT, Aasen AO. Antigen levels of urokinase plasminogen activator and its receptor at the tumor-host interface of colorectal adenocarcinomas are related to tumor aggressiveness. Hum Pathol 1995; 26:1133–1138.PubMedCrossRefGoogle Scholar
  58. 58.
    McDermott U, Longley DB, Johnston PG. Molecular and biochemical markers in colorectal cancer. Ann Oncol 2002; 13:235–245.PubMedGoogle Scholar
  59. 59.
    Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319:525–532.PubMedGoogle Scholar
  60. 60.
    Slentz K, Senagore A, Hibbert J, Mazier WP, Talbott TM. Can preoperative and postoperative CEA predict survival after colon cancer resection? Am Surg 1994; 60:528–531.PubMedGoogle Scholar
  61. 61.
    McArdle C. ABC of colorectal cancer: Effectiveness of follow up. BMJ 2000; 321:1332–1335.PubMedCrossRefGoogle Scholar
  62. 62.
    Gadducci A, Cosio S, Carpi A, Nicolini A, Genazzani AR. Serum tumor markers in the management of ovarian, endometrial and cervical cancer. Biomed Pharmacother 2004; 58:24–38.PubMedCrossRefGoogle Scholar
  63. 63.
    Agnantis NJ, Goussia AC, Stefanou D. Tumor markers. An update approach for their prognostic significance. Part I. In Vivo 2003; 17:609–618.PubMedGoogle Scholar
  64. 64.
    Bull SB, Ozcelik H, Pinnaduwage D, et al. The combination of p53 mutation and neu/erbB-2 amplification is associated with poor survival in node-negative breast cancer. J Clin Oncol 2004; 22:86–96.PubMedCrossRefGoogle Scholar
  65. 65.
    Given M, Scott M, McGrath JP, Given HF. The predictive of tumor markers CA 15-3, TPS and CEA in breast cancer recurrence. Breast 2000; 9:277–280.PubMedCrossRefGoogle Scholar
  66. 66.
    Coskun U, Gunel N, Toruner FB, et al. Serum leptin, prolactin and vascular endothelial growth factor (VEGF) levels in patients with breast cancer. Neoplasma 2003; 50:41–46.PubMedGoogle Scholar
  67. 67.
    Maldazys JD, deKernion JB. Prognostic factors in metastatic renal carcinoma. J Urol 1986; 136:376–379.PubMedGoogle Scholar
  68. 68.
    Shiozaki H, Tahara H, Oka H, et al. Expression of immunoreactive E-cadherin adhesion molecules in human cancers. Am J Pathol 1991; 139:17–23.PubMedGoogle Scholar
  69. 69.
    Paul R, Necknig U, Busch R, Ewing CM, Hartung R, Isaacs WB. Cadherin-6: a new prognostic marker for renal cell carcinoma. J Urol 2004; 171:97–101.PubMedCrossRefGoogle Scholar
  70. 70.
    Bamias A, Chorti M, Deliveliotis C, et al. Prognostic significance of CA 125, CD44, and epithelial membrane antigen in renal cell carcinoma. Urology 2003; 62:368–373.PubMedCrossRefGoogle Scholar
  71. 71.
    Umbas R, Isaacs WB, Bringuier PP, et al. Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res 1994; 54:3929–3933.PubMedGoogle Scholar
  72. 72.
    Trape J, Buxo J, Perez de Olaguer J, Vidal C. Tumor markers as prognostic factors in treated non-small cell lung cancer. Anticancer Res 2003; 23:4277–4281.PubMedGoogle Scholar
  73. 73.
    Ando S, Kimura H, Iwai N, Yamamoto N, Iida T. Positive reactions for both Cyfra21-1 and CA125 indicate worst prognosis in nonsmall cell lung cancer. Anticancer Res 2003; 23:2869–2874.PubMedGoogle Scholar
  74. 74.
    Turken O, Kunter E, Cermik H, et al. Prevalence and prognostic value of c-erbB2 expression in non-small cell lung cancer (NSCLC). Neoplasma 2003; 50:257–261.PubMedGoogle Scholar
  75. 75.
    Carr DT, Holoye PY, Hong WK. Murray JF, Nadel JA, eds. Bronchogenic Carcinoma. Textbook of Respiratory Medicine. 2nd ed. 1994:1552–1553.Google Scholar
  76. 76.
    Niitsu N, Okamato M, Nakamine H, et al. Simultaneous elevation of the serum concentrations of vascular endothelial growth factor and interleukin-6 as independent predictors of prognosis in aggressive non-Hodgkin’s lymphoma. Eur J Haematol 2002; 68:91–100.PubMedCrossRefGoogle Scholar
  77. 77.
    Campanacci M. Plasmacytoma In Bone and Soft Tissue Tumors. New York, NY: Springer Verlag; 1990:559–574.Google Scholar
  78. 78.
    Goodman MA. Plasma cell tumors. Clin Orthop 1986; 204:86–92.PubMedGoogle Scholar
  79. 79.
    Waldenstrom JG. Benign monoclonal gammopathy. Acta Med Scand 1984; 216:435–447.PubMedGoogle Scholar
  80. 80.
    Kyle RA. Monoclonal gammopathy and multiple myeloma in the elderly. Baillieres Clin Haematol 1987; 1:533–557.PubMedCrossRefGoogle Scholar
  81. 81.
    Jackson A, Scarffe JH. Prognostic significance of osteopenia and immunoparesis at presentation in patients with solitary myeloma of bone. Eur J Cancer 1990; 26:363–371.PubMedGoogle Scholar
  82. 82.
    Kyle RA. Diagnostic criteria of multiple myeloma. Hematol Oncol Clin North Am 1992; 6:347–358.PubMedGoogle Scholar
  83. 83.
    Dimopoulos MA, Moulopoulos A, Delasalle K, Alexanian R. Solitary plasmacytoma of bone and asymptomatic multiple myeloma. Hematol Oncol Clin North Am 1992; 6:359–369.PubMedGoogle Scholar
  84. 84.
    Vaickus L, Ball ED, Foon KA. Immune markers in hematologic malignancies. Crit Rev Oncol Hematol 1991; 11:267–297.PubMedCrossRefGoogle Scholar
  85. 85.
    Kyle RA, Garton JP. Laboratory monitoring of myeloma proteins. Semin Oncol 1986; 13:310–317.PubMedGoogle Scholar
  86. 86.
    Martin AD, Bailey DA, McKay HA, Whiting S. Bone mineral and calcium accretion during puberty. Am J Clin Nutr 1997; 66:611–615.PubMedGoogle Scholar
  87. 87.
    Aitken JM, Hart DM, Anderson JB, Lindsay R, Smith DA, Speirs CF. Osteoporosis after oophorectomy for nonÄ’malignant disease in premenopausal women. Br Med J 1973; 2:325–328.PubMedGoogle Scholar
  88. 88.
    Genant HK, Block JE, Steiger P, Glueer CC, Ettinger B, Harris ST. Appropriate use of bone densitometry. Radiology 1989; 170:817–822.PubMedGoogle Scholar
  89. 89.
    Ganeval D, Lacour B, Chopin N, Grunfeld JP. Proteinuria in multiple myeloma and related diseases. Am J Nephrol 1990; 10:58–62.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, Inc., Totowa, NJ 2006

Authors and Affiliations

  • Kai-Uwe Lewandrowski
    • 1
  • Robert F. Mclain
    • 2
  • Henry J. Mankin
    • 3
  1. 1.The Cleveland Clinic FoundationThe Cleveland Clinic Spine InstituteCleveland
  2. 2.Department of Orthopaedic Surgery, The Cleveland Clinic FoundationLerner College of Medicine and The Cleveland Clinic Spine InstituteCleveland
  3. 3.The Orthopaedic Research LaboratoriesMassachusetts General HospitalBoston

Personalised recommendations