Skip to main content

Modified Bacterial Toxins

  • Chapter
Vaccine Adjuvants

Part of the book series: Infectious Disease ((ID))

Abstract

Bacteria produce a range of virulence factors that allow them to invade, colonize, and cause disease in humans and other hosts. Bacterial toxins are harmful virulence factors that can kill or damage host cells and have powerful immunomodulatory that can subvert immune responses of the host. Immune responses against these toxins, in particular the production of antitoxin antibodies, are often a key component of the protective immunity against the bacteria and modified bacterial toxins, inactivated by chemically or genetic means, have formed the basis of several successful antibacterial vaccines. However, because of their immunomodulatory properties, bacterial toxins can also enhance immune responses to unrelated antigens, especially when administered by mucosal routes. Therefore bacterial toxins and nontoxic derivatives are also developed as mucosal adjuvant for subunit vaccines against a range of infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Medzhitov R, Janeway C. Innate immunity: the virtues of a nonclonal system of recognition. Cell 1997;91:295–298.

    PubMed  CAS  Google Scholar 

  2. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005;17:1–14.

    PubMed  CAS  Google Scholar 

  3. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000;408:740–745.

    PubMed  CAS  Google Scholar 

  4. Mossman TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996;17:138–146.

    Google Scholar 

  5. Mahon BP, Katrak K, Nomoto A, Macadam AJ, Minor PD, Mills KHG. Poliovirus-specific Th1 clones with cytotoxic and helper activity mediate protective humoral immunity against a lethal poliovirus infection in a transgenic mouse model. J Exp Med 1995;181:1285–1292.

    PubMed  CAS  Google Scholar 

  6. Moore A, McGuirk P, Adams S, Jones WC, McGee JP, O’Hagan D, Mills KHG. Induction of HIV-specific CD8+ CTL and CD4+ Th1 cells by immunization with recombinant gp120 entrapped in biodegradable microparticles. Vaccine 1995;13:1741–1749.

    PubMed  CAS  Google Scholar 

  7. Mills KHG. Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 2004;4:841–855.

    PubMed  CAS  Google Scholar 

  8. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Ann Rev Immunol 2000;18:767–811.

    CAS  Google Scholar 

  9. Trinchieri G, Pflanz S, and Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19:641–644.

    Google Scholar 

  10. Dinarello CA, Novick D, Puren AJ, et al. Overview of interleukin-18: more than an interferon-γ inducing factor. J Leuc Biol 1998;63:658–664.

    CAS  Google Scholar 

  11. d’Ostiani CF, Del Sero G, Bacci A, et al. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J Exp Med 2000;191:1661–1674.

    PubMed  CAS  Google Scholar 

  12. Sallusto F, Palermo B, Lenig D, et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol 1998;28:2760–2769.

    PubMed  CAS  Google Scholar 

  13. Whelan M, Harnett MM, Houston KM, Patel V, Harnett W, Rigley KP. A filarial nematode secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells. J Immunol 2000;164:6453–6260.

    PubMed  CAS  Google Scholar 

  14. Lavelle EC, McNeela E, Armstrong ME, Leavy O, Higgins SC, Mills KH. Cholera toxin promotes the induction of regulatory T cells specific for bystander antigens by modulating dendritic cell activation. J Immunol 2003;171:2384–2392.

    PubMed  CAS  Google Scholar 

  15. McGuirk P, McCann C, Mills KH. Pathogen-specific T regulatory 1, cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10, production by dendritic cells: a novel strategy for evasion of protective T helper type 1, responses by Bordetella pertussis. J Exp Med 2002;195:221–231.

    PubMed  CAS  Google Scholar 

  16. Chambers CA. The expanding world of co-stimulation: the two signal model revisited. Immunol Today 2001;22:217–223.

    CAS  Google Scholar 

  17. Friede P, Gunzer M. Interaction of T cells with APCs: the serial encounter model. Immunol Today 2001;22:187–191.

    Google Scholar 

  18. Ryan M, McCarthy L, Mahon B, Rappuoli R, Mills KHG. Pertussis toxin potentiates Th1, and Th2, responses to co-injected antigen: adjuvant action is associated with enhanced regulatory cytokine production and expression of the co-stimulatory molecules B7-1, B7-2, and CD28. Int Immunol 1998;10:651–662.

    PubMed  CAS  Google Scholar 

  19. Leavy O. Mechanisms of immunomodulatory activity of cholera toxin. PhD thesis, Trinity College Dublin, 2005.

    Google Scholar 

  20. van Ginkel FW, Nguyen HH, McGhee JR Vaccines for mucosal immunity to combat emerging infectious diseases. Emerg Infect Dis 2000;6:123–132.

    PubMed  Google Scholar 

  21. Raychaudhuri S, Morrow JW. Can soluble antigens induce CD8+ cytotoxic T-cell responses? A paradox revisited. Immunol Today 1993;14:344–348.

    PubMed  CAS  Google Scholar 

  22. Osicka R, Osickova A, Basar T, et al. Delivery of CD8+ T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect Immun 2000;68:247–256.

    PubMed  CAS  Google Scholar 

  23. Simmons CP, Hussell T, Sparer T, Walzl G, Openshaw P, Dougan G. Mucosal delivery of a respiratory syncytial virus CTL peptide with enterotoxin-based adjuvants elicits protective, immunopathogenic, and immunoregulatory antiviral CD8+ T cell responses. Immunol J 2001;166:1106–1113.

    CAS  Google Scholar 

  24. Czerkinsky C, Anjuere F, McGhee JR, et al. Mucosal immunity and tolerance: relevance to vaccine development. Immunol Rev 1999;170:197–222.

    PubMed  CAS  Google Scholar 

  25. Greco D, Salmaso S, Mastrantonio P, et al. A controlled trial of two acellular vaccines and one whole-cell vaccine against pertussis. Progetto Pertosse Working Group. N Engl J Med 1996;334:341–348.

    PubMed  CAS  Google Scholar 

  26. Gustafsson L, Hallander HO, Olin P, Reizenstein E, Storsaeter J. A controlled trial of a two-component acellular, a five-component acellular, and a whole-cell pertussis vaccine. N Engl J Med 1996;334:349–355.

    PubMed  CAS  Google Scholar 

  27. Trollofors B, Taranger J, Lagergard T, et al. A placebo-controlled trial of a pertussis-toxoid vaccine. N Engl J Med 1995;333:1045–1050.

    Google Scholar 

  28. Pizza M, Covacci A, Bartoloni A, et al. Mutants of pertussis toxin suitable for vaccine development. Science 1989;246:497–499.

    PubMed  CAS  Google Scholar 

  29. Rappuoli R. Rational design of vaccines. Nat Med 1997;3:374–376.

    PubMed  CAS  Google Scholar 

  30. Mills KHG, Ryan M, Ryan E, Mahon BP. A murine model in which protection correlates with pertussis vaccine efficacy in children reveals complementary roles for humoral and cell-mediated immunity in protection against Bordetella pertussis. Infect Immun 1998;66:594–602.

    PubMed  CAS  Google Scholar 

  31. Ryan M, Mills KHG. The role of the S-1, and B-oligomer components of pertussis toxin in its adjuvant properties for Th1, and Th2, cells. Biochem Soc Trans 1997;25:126S.

    PubMed  CAS  Google Scholar 

  32. Mills KHG, Barnard A, Watkins S, Redhead K. Specificity of the T cell response to Bordetella pertussis in aerosol infected mice. In: Manclarck CR, ed. Proceedings of the 6th International Symposium on Pertussis. Bethesda, MD: Department of Health and Human Services, United States Public Health Service, 1990, pp. 166–174.

    Google Scholar 

  33. Nencioni L, Volpini G, Peppoloni S, Bugnoli M, De Magistris T, Marsili I, Rappuoli R. Properties of pertussis toxin mutant PT-9K/129G after formaldehyde treatment. Infect Immun 1991;59:625–630.

    PubMed  CAS  Google Scholar 

  34. Ratti G, Rappuoli R, Giannini G. The complete nucleotide sequence of the gene coding for diphtheria toxin in the corynephage omega (tox+) genome. Nuc Acids Res 1983;11:6589–6595.

    CAS  Google Scholar 

  35. Rappuoli R. (1997) New and improved vaccines against diphtheria and tetanus. In: Levine MM, Woodrow GC, Kaper JB, Cobon GS, ed. New generation vaccines (2nd edition). New York: Mercel Dekker, 1997, pp. 417–436.

    Google Scholar 

  36. Gupta RK, Collier RJ, Rappuoli R, Siber GR. Differences in the immunogenicity of native and formalinized cross reacting material (CRM197) of diphtheria toxin in mice and guinea pigs and their implications on the development and control of diphtheria vaccine based on CRMs. Vaccine 1997;15:1341–1343.

    PubMed  CAS  Google Scholar 

  37. Porro M, Saletti M, Nencioni L, Tagliaferri L, Marsili I. Immunogenic correlation between cross-reacting material (CRM197) produced by a mutant of Corynebacterium diphtheriae and diphtheria toxoid. J Infect Dis 1980;142:716–724.

    PubMed  CAS  Google Scholar 

  38. McNeela EA, O’Connor D, Jabbal-Gill I, et al. A mucosal vaccine against diphtheria: Formulation of cross reacting material (CRM197) of diphtheria toxin with chitosan enhances local and systemic antibody and Th2, responses following nasal delivery. Vaccine 2000;19:1188–1198.

    PubMed  CAS  Google Scholar 

  39. Mills KH, Cosgrove C, McNeela EA, et al. Protective levels of diphtheria-neutralizing antibody induced in healthy volunteers by unilateral priming-boosting intranasal immunization associated with restricted ipsilateral mucosal secretory immunoglobulin a. Infect Immun 2003;71:726–732.

    PubMed  CAS  Google Scholar 

  40. McNeela EA, Jabbal-Gill I, Illum L, et al. Intranasal immunization with genetically detoxified diphtheria toxin induces T cell responses in humans: enhancement of Th2, responses and toxin-neutralizing antibodies by formulation with chitosan. Vaccine 2004;22:909–914.

    PubMed  CAS  Google Scholar 

  41. Spangler BD. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Micbobiol Rev 1992;56:622–647.

    CAS  Google Scholar 

  42. Zhang RG, Scott DL, Westbrock ML, et al. The three-dimensional structure of cholera toxin. J Mol Biol 1995;251:563–573.

    PubMed  CAS  Google Scholar 

  43. Rappuoli R, Pizza M, Douce G, Dougan G. Structure and mucosal adjuvanticity of cholera and Escherichia coli heat-labile enterotoxins. Immunol Today 1999;20:493–500.

    PubMed  CAS  Google Scholar 

  44. Pizza M, Giuliani MM, Fontana MR, et al. Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine 2001;19:2534–2541.

    PubMed  CAS  Google Scholar 

  45. Williams NA, Hirst TR, Nashar TO. Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunol Today 1999;20:95–101.

    PubMed  CAS  Google Scholar 

  46. Holmgren J, Lonroth I, Svennerholm L. Tissue receptor for cholera exotoxin: postulated structure from studies with GM1, ganglioside and related glycolipids. Infect Immun 1973;8:208–214.

    PubMed  CAS  Google Scholar 

  47. Gill DM, Rappaport RS. Origin of the enzymatically active A1, fragment of cholera toxin. J Infect Dis 1979;139:674–680.

    PubMed  CAS  Google Scholar 

  48. Field M, Rao MC, Chang EB. Intestinal electrolyte transport and diarrheal disease: Part 1. N Engl J Med 1989;321:800–806.

    PubMed  CAS  Google Scholar 

  49. Pelham HR. The Florey Lecture. The secretion of proteins by cells. Proc R Soc Lond B Biol Sci 1992;22(250):1–10.

    Google Scholar 

  50. Tsai SC, Noda M, Adamik R, Moss J, Vaughan M. Stimulation of choleragen enzymatic activities by GTP and two soluble proteins purified from bovine brain. J Biol Chem 1988;263:1768–1772.

    PubMed  CAS  Google Scholar 

  51. Lycke N, Lindholm L, Holmgren J. IgA isotype restriction in the mucosal but not in the extramucosal immune response after oral immunizations with cholera toxin or cholera subunit B. Int Archs Allergy Appl Immunol 1983;72:119–127.

    CAS  Google Scholar 

  52. Lycke N, Holmgren J. Long-term mucosal memory to cholera toxin in mice after oral immunizations: antitoxin production from isolated lamina propria cells after in vivo or in vitro boosting. In: Strober W, Lamm ME, McGhee JR, James SP, eds. Mucosal Immunity and Infections at Mucosal Surfaces. New York: Oxford University Press, 1988, pp. 401–404.

    Google Scholar 

  53. Xu-Amano J, Kiyono H, Jackson RL, et al. Helper T cell subsets for immunoglobulin responses A, oral immunization with tetanus toxoid and cholera toxin as adjuvant selectively induces Th2, cells in mucosa-associated tissues. J Exp Med 1993;178:1309–1320.

    PubMed  CAS  Google Scholar 

  54. Marinaro M, Staats HF, Hiroi T, et al. Mucosal adjuvant effect of cholera toxin in mice results from induction of T helper 2, (Th2) cells and IL-4. J Immunol 1995;155:4621–4629.

    PubMed  CAS  Google Scholar 

  55. Yamamoto S, Kiyono H, Yamamoto M, et al. A non toxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity. Proc Natl Acad Sci USA 1997;94:5267–5272.

    PubMed  CAS  Google Scholar 

  56. Yamamoto S, Yoshifumi K, Yamamoto M, et al. Mutants in the ADP-ribosyltransferase cleft of cholera toxin lack diarrheagenicity but retain adjuvanticity. J Exp Med 1997;185:1203–1210.

    PubMed  CAS  Google Scholar 

  57. Yamamoto M, Rennert P, McGhee RJ, et al. Alternate mucosal immune system: organized Peyer’s patches are not required for IgA responses in the gastrointestinal tract. J Immunol 2000;164:5184–5191.

    PubMed  CAS  Google Scholar 

  58. Simecka JW, Jackson RJ, Kiyono H, McGhee JR. Mucosally induced immunoglobulin E-associated inflammation in the respiratory tract. Infect Immun 2000;68:672–679.

    PubMed  CAS  Google Scholar 

  59. Clarke CJ, Wilson AD, Williams NA, Stokes CR. Mucosal priming of T-lymphocyte responses to fed protein antigens using cholera toxin as adjuvant. Immunology 19991;72:232–328.

    Google Scholar 

  60. Douce G, Fontana M, Pizza M, Rappuoli R, Dougan G. Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin. Infect Immun 1997;65:2821–2828.

    PubMed  CAS  Google Scholar 

  61. Pierre P, Denis O, Bazin H, Mbella EM, Vaerman J-P. Modulation of oral tolerance to ovalbumin by cholera toxin and its subunit B. Eur J Immunol 1992;22:3127–3128.

    Google Scholar 

  62. Glenn G, Scharton-Kersten T, Vassell R, Mallet CP, Hale TL, Alving CR. Cutting edge: transcutaneous immunization with cholera toxin protects mice against lethal mucosal toxin challenge. J Immunol 1998;161:3211–3214.

    PubMed  CAS  Google Scholar 

  63. Reudel C, Rieser C, Kofler N, Wick G, Wolf H. Humoral and cellular immune responses in the murine respiratory tract following oral immunization with cholera toxin or Escherichia coli heat-labile enterotoxin. Vaccine 1996;14:792–798.

    Google Scholar 

  64. Richards, CM, Shimeld C, Williams NA, Hill TJ. Induction of mucosal immunity against herpes simplex virus type 1, in the mouse protects against ocular infection and establishment of latency. J Infect Dis 1998;177:1451–1457.

    PubMed  CAS  Google Scholar 

  65. Martin M, Metzger DJ, Michalek SM, Connell TD, Russell MW. Comparative analysis of the mucosal adjuvanticity of the type II heat-labile enterotoxins LT-IIa and LTIIb. Infect Immun 2000;68:281–287.

    PubMed  CAS  Google Scholar 

  66. Hornquist E, Lycke N. Cholera toxin adjuvant greatly promotes antigen priming of cells T. Eur J Immunol 1993;23:2136–2143.

    PubMed  CAS  Google Scholar 

  67. Pacheco SE, Gibbs RA, Ansari-Lari A, Rogers P. Intranasal immunization with HIV reverse transcriptase: effect of dose in the induction of helper type 1, and 2, immunity. AIDS Res Hum Retroviruses 2000;16:2009–2017.

    PubMed  CAS  Google Scholar 

  68. Akhiani AA, Schon K, Lycke N. Vaccine-induced immunity against Helicobacter pylori infection is impaired in IL-18-deficient mice. J Immunol 2004;173:3348–3356.

    PubMed  CAS  Google Scholar 

  69. Schaffeler MP, Brokenshire JS, Snider DP. Detection of precursor Th cells in mesenteric lymph nodes after oral immunization with protein antigen and cholera toxin. Int Immunol 1997;9:1555–1562.

    PubMed  CAS  Google Scholar 

  70. Yanagita M, Hiroi T, Kitagaki N, et al. Nasopharyngeal-associated lymphoreticular tissue (NALT) immunity: fimbriae-specific Th1, and Th2, cell-regulated IgA responses for the inhibition of bacterial attachment to epithelial cells and subsequent inflammatory cytokine production. J Immunol 1999;162:3559–3565.

    PubMed  CAS  Google Scholar 

  71. Lavelle EC, Jarnicki A, McNeela E, et al. Effects of cholera toxin on innate and adaptive immunity and its application as an immunomodulatory agent. J Leukoc Biol 2004;75:756–763.

    PubMed  CAS  Google Scholar 

  72. Ryan EJ, McNeela E, Murphy G, et al. Mutants of Eesherichia coli heat labile toxin act as effective mucosal adjuvants for nasal delivery of an acellular pertussis vaccine: differential effects of the non-toxic AB complex and enzyme activity on Th1, and Th2, cells. Infect Immun 1999;67:6270–6280.

    PubMed  CAS  Google Scholar 

  73. Cheng E, Cárdenas-Freytag L, Clements JD. The role of cAMP in mucosal advuvanticity of Escherichia coli heat-labile enterotoxin (LT). Vaccine 1999;18:38–49.

    PubMed  CAS  Google Scholar 

  74. Takahashi I, Kiyono H, Marinaro M, et al. Mechanisms for mucosal immunogenicity and adjuvanticity of Escherichia coli labile toxin. J Infect Dis 1996;173:627–635

    PubMed  CAS  Google Scholar 

  75. Douce G, Giannelli V, Pizza M, Lewis D, Everest P, Rappuoli R, Dougan G. Genetically detoxified mutants of heat-labile toxin from Escherichia coli are able to act as oral adjuvant. Infect Immun 1999;67:4400–4406.

    PubMed  CAS  Google Scholar 

  76. Giuliani MM, Del Giudice G, Giannelli V, Dougan G, Douce G, Rappuoli R, Pizza M. Mucosal adjuvanticity and immunogenicity of LTR72, a novel mutant of Escherichia coli heat-labile enterotoxin with partial knockout of ADP-ribosyltransferase activity. J Exp Med 1998;187:1123–1132.

    PubMed  CAS  Google Scholar 

  77. Weltzin R, Guy B, Thomas WD, Giannasca PJ, Monath TP. Parenteral adjuvant activities of Escherichia coli heat-labile toxin and its subunit for immunization of mice against gastric Helicobacter pylori infection. Infect Immun 2000;68:2775–2782.

    PubMed  CAS  Google Scholar 

  78. Douce G, Giuliani MM, Giannelli V, Pizza MG, Rappuoli R, Dougan G. Mucosal immunogenicity of genetically detoxified derivatives of heat labile toxin from Escherichia coli. Vaccine 1998;16:1065–1073.

    PubMed  CAS  Google Scholar 

  79. Bowen JC, Nair SK, Reddy R, Rouse BT. Cholera toxin acts as a potent adjuvant for the induction of cytotoxic T-lymphocyte responses with non-replicating antigens. Immunology 1994;81:338–342.

    PubMed  CAS  Google Scholar 

  80. Simmons CP, Mastroeni P, Fowler R, Ghaem-maghami M, Lycke N, Pizza M, Rappuoli R, Dougan G. MHC class I-restricted cytotoxic lymphocyte responses induced by enterotoxin-based. J Immunol 1999;163:6502–6510.

    PubMed  CAS  Google Scholar 

  81. Tamura S, Yamanaka A, Shimohara M, et al. Synergistic action of cholera toxin B subunit (and Escherichia coli heat-labile toxin B subunit) and a trace amount of cholera whole toxin as an adjuvant for nasal influenza vaccine. Vaccine 1994;12:419–426.

    PubMed  CAS  Google Scholar 

  82. Richards CM, Aman AT, Hirst TR, Hill TJ, and Williams NA. Protective mucosal immunity to ocular herpes simplex virus type 1, infection in mice by using Escherichia coli heat-labile enterotoxin B subunit as an adjuvant. J Virol 2001;75:1664–16671.

    PubMed  CAS  Google Scholar 

  83. Toida N, Hajishengallis G, Wu HY, Russell MW. Oral immunization with the saliva-binding region of Streptococcus mutans AgI/II genetically coupled to the cholera toxin B subunit elicit T-helper-cell responses in gut-associated lymphoid tissues. Infect Immun 1997;65:909–915.

    PubMed  CAS  Google Scholar 

  84. Isaka M, Yasuda Y, Mizokami M, et al. Mucoosal immunization against hepatitis B virus by intranasal co-administration of recombinant hepatitis B surface antigen and recombinant cholera toxin B subunit as an adjuvant. Vaccine 2001;19:1460–1466.

    PubMed  CAS  Google Scholar 

  85. Sun JB, Mielcarek N, Lakew M, et al. Intranasal administration of a Schistosoma mansoni glutathione S-transferase-cholera toxoid conjugate vaccine evokes antiparasitic and antipathological immunity in mice. J Immunol 1999;15:1045–1052.

    Google Scholar 

  86. Sun J-B, Rask C, Olsson T, Holmgren J, Czerkinsky C. Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin subunit B. Proc Natl Acad Sci USA 1996;93:7196–7201.

    PubMed  CAS  Google Scholar 

  87. Williams NA, Stasiuk LM, Nashar TO, et al. Prevention of autoimmune disease due to lymphocyte modulation by the B-subunit of Escherichia coli heat-labile enterotoxin. Proc Natl Acad Sci USA 1997;94:5290–5295.

    PubMed  CAS  Google Scholar 

  88. Ploix C, Bergerot I, Durand A, Czerkinsky C, Holmgren J, Thivolet C. Oral administration of cholera toxin B-insulin conjugates protects NOD mice from autoimmune diabetes by inducing CD4+ regulatory T-cells. Diabetes 1999;48:2150–2156.

    PubMed  CAS  Google Scholar 

  89. Widermann U, Jahn-Schmid B, Repa A, Kraft D, Ebner C. Modulation of an allergic immune response via the mucosal route in a murine model of inhalative type-1, allergy. Int. Arch. Allergy Immunol 1999;118:129–132.

    Google Scholar 

  90. Ryan EJ, McNeela E, Pizza M, Rappuoli R, O’Neill L, Mills KHG. Modulation of innate and acquired immune responses by Escherichia coli heat-labile toxin: distinct pro-and anti-inflammatory effects of the nontoxic AB complex and the enzyme activity. J Immunol 2000;165:5750–5759.

    PubMed  CAS  Google Scholar 

  91. Douce G, Turcotte C, Cropley I, et al. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci USA 1995;92:1644–1648.

    PubMed  CAS  Google Scholar 

  92. Cárdenes-Freytag L, Cheng E, Mayeux P, Domer JE, Clements JD. Effectiveness of heat-killed Candida albicans and a novel mucosal adjuvant, LT(R192G), against systemic candidiasis. Infect Immun 1999;67:826–833.

    Google Scholar 

  93. O’Neal CM, Clements JD, Estes MK, Conner ME. Rotavirus 2/6, viruslike particles administered intranasally with cholera toxin, Escherichia coli heat-labile toxin (LT), and LT-R192G induce protection from rotavirus challenge. J Virol 1998;72:3390–3393.

    PubMed  CAS  Google Scholar 

  94. Chong C, Friberg M, Clements JD. LT(R192G), a non-toxic mutant of the heatlabile enterotoxin of Escherichia coli, elicits enhanced humoral and cellular immune responses associated with protection against lethal oral challenge with Salmonella spp. Vaccine 1998;16:732–740.

    PubMed  CAS  Google Scholar 

  95. Tebby PW, Scheuer CA, Peek JA, et al. Effective mucosal immunization against respiratory syncytial virus using purified F protein and a genetically detoxified cholera holotoxin, CT-E29H. Vaccine 2000;18:1223–2734.

    Google Scholar 

  96. Bowe F, Lavelle EC, McNeela EA, et al. Mucosal vaccination against serogroup B meningococcus: induction of bactericidal antibodies and cellular immunity following intranasal immunization with NadA of Neisseria meningitidis and mutants of Escherichia coli heat-labile enterotoxin. Infect Immun 2004;72:4052–4060.

    PubMed  CAS  Google Scholar 

  97. Lycke N, Tsuji T, Holmgren J. The adjuvant effect of Vibrio cholerae and Escherichia coli heat-labile enterotoxins is linked to their ADP-ribosyltransferase activity. Eur J Immunol 1992;22:2277–2281.

    PubMed  CAS  Google Scholar 

  98. Barakman JD, Ott G, O’Hagan DT. Intranasal immunization of mice with influenza virus vaccine in combination with the adjuvant LT-R72, induces potent mucosal and serum immunity which is stronger than that with traditional intramuscular immunization. Infect Immun 1999;67:4276–4279.

    Google Scholar 

  99. Agren LC, Ekman L, Lowenadler B, Lycke N. Genetically engineered nontoxic vaccine adjuvant that combines B cell targeting with immunomodulation by cholera toxin A1, subunit. J Immunol 1997;158:3936–3946.

    PubMed  CAS  Google Scholar 

  100. Lycke N, Schon K. The B cell targeted adjuvant, CTA1-DD, exhibits potent mucosal immunoenhancing activity despite pre-existing anti-toxin immunity. Vaccine 2001;19:2542–2548.

    PubMed  CAS  Google Scholar 

  101. Marchetti M, Rossi M, Giannelli V, et al. Protection against Helicobacter pylori infection in mice by intragastric vaccination with H pylori antigens is achieved using a non-toxic mutant of E coli heat-labile enterotoxin (LT) as adjuvant. Vaccine 1998;16:33–37.

    PubMed  CAS  Google Scholar 

  102. Jakobsen H, Schulz D, Pizza M, Rappuoli R, Jonsdottir I. Intranasal immunization with pneumococcal polysaccharide conjugate vaccines with nontoxic mutants of Escherichia coli heat-labile enterotoxins as adjuvants protects mice against invasive pneumococcal infection. Infect Immun 1999;67:5892–5897.

    PubMed  CAS  Google Scholar 

  103. Gizurarson S, Tamura S, Kurata T, Hasiguchi K, Ogawa H. The effect of cholera toxin and cholera toxin B subunit on the nasal mucosal membrane. Vaccine 1991;9:825–832.

    PubMed  CAS  Google Scholar 

  104. Lycke N, Karlsson U, Sjolander A, Magnusson KE. (1991) The adjuvant action of cholera toxin is associated with an increased intestinal permeability for luminal antigens. Scand J Immunol 1991;33:691–698.

    PubMed  CAS  Google Scholar 

  105. Bromander AK, Kjerrulf M, Holmgren J, Lycke N. Cholera toxin enhances alloantigen presentation by cultured intestinal epithelial. Scand J Immunol 1993;37:452–458.

    PubMed  CAS  Google Scholar 

  106. Matousek MP, Nedrud JG, Cieplak W, Harding CV. Inhibition of class II histocompatability complex antigen processing by Escherichia coli heat-labile enterotoxin requires an enzymatically active subunit A. Infect Immun 1998;66:3480–3484.

    PubMed  CAS  Google Scholar 

  107. Li TK, Fox BS. Cholera toxin B subunit binding to an antigen-presenting cell directly co-stimulates cytokine production from a T cell clone. Int Immunol 1996;8:1849–1856.

    PubMed  CAS  Google Scholar 

  108. Cong Y, Weaver CT, Elson CO. The mucosal adjuvanticity of cholera toxin involves enhancement of costimulatory activity by selective up-regulation of B72 expression. J Immunol 1997;159:5201–5208.

    Google Scholar 

  109. Yamamoto M, Kiyono H, Yamamoto S, et al. Direct effects on antigen-presenting cells and T lymphocytes explain the adjuvanticity of a nontoxic cholera toxin mutant. J Immunol 1999;162:7015–7021.

    PubMed  CAS  Google Scholar 

  110. Williamson E, Westrich GM, Viney JL. Modulating dendritic cells to optimize mucosal immunization protocols. J Immunol 1999;163:3668–3675.

    PubMed  CAS  Google Scholar 

  111. Gagliardi MC, Sallusto F, Marinaro M, Langenkamp A, Lanzavecchia A, DeMagistris MT. Cholera toxin induces maturation of human dendritic cells and licences them for Th2, priming. Eur J Immunol 2000;30:2394–2403.

    PubMed  CAS  Google Scholar 

  112. Braun MC, He J, Wu CY, Kelsall BL. Cholera toxin suppresses interleukin (IL)-12, production and IL-12, receptor β1, and β2, chain expression. J Exp Med 1999;189:541–552.

    PubMed  CAS  Google Scholar 

  113. Panina-Bordignon P, Mazzeo D, Lucia PD, et al. Beta2-agonists prevent Th1, development by selective inhibition of interleukin 12. J Clin Invest 1997;100:1513–1519.

    PubMed  CAS  Google Scholar 

  114. Munoz E, Zubiaga AM, Merrow M, Sauter NP, Huber BT. Cholera toxin discriminates between T helper 1, and 2, cells in T cell receptor-mediated activation: role of cAMP in T cell proliferation. J Exp Med 1990;172:95–103.

    PubMed  CAS  Google Scholar 

  115. De Haan L, Holtrop M, Verweij WR, Agsteribbe E, Wilschut J. Mucosal immunogenicity and adjuvant activity of recombinant A subunit of the Escherichia coli heat-labile enterotoxin. Immunology 1999;97:706–713.

    PubMed  Google Scholar 

  116. Tamura M, Nogimori A, Murai A, et al. Subunit structure of islet-activation protein, pertussis toxin, in conformity with the A-model B, Biochemistry 1982;21:5516–5522.

    PubMed  CAS  Google Scholar 

  117. Kaslow HR, Burns DL. Pertussis toxin and target eurkaryotic cells: binding, entry and activation. FASEB J 1992;6:2684–2690.

    PubMed  CAS  Google Scholar 

  118. Saukkonen K, Burnette WN, Mar VL, Masure HR, Tuomanen EI. Pertussis toxin has eukaryotic-like carbohydrate recognition domains. Proc Natl Acad Sci USA 1992;89:118–122.

    PubMed  CAS  Google Scholar 

  119. Lobet Y, Feron C, Dequesne G, Simoen E, Hauser P, Locht C. Site-specific alterations in the B oligomer that affect receptor-binding activities and mitogenicity of pertussis toxin. J Exp Med 1993;177:79–87.

    PubMed  CAS  Google Scholar 

  120. Zhang XM, Berland R, Rosoff PM. Differential regulation of accessory mitogenic signaling receptors by the T cell antigen receptor. Mol Immunol 1995;32:323–332.

    PubMed  CAS  Google Scholar 

  121. Li H, Wong WS. Mechanisms of pertussis toxin-induced myelomonocytic cell adhesion: role of CD14, and urokinase receptor. Immunology 2000;100:502–509.

    PubMed  CAS  Google Scholar 

  122. Burnette WN. Perspectives in recombinant pertussis toxoid development. In: Koff W, Six HR, eds. Vaccine Research and Development. New York: Marcel Dekker, 1992, pp. 143–193.

    Google Scholar 

  123. Lyons AB. Pertussis toxin pretreatment alters the in vivo cell division behaviour and survival of B lymphocytes after intravenous transfer. Immunol Cell Biol 1997;75:7–12.

    PubMed  CAS  Google Scholar 

  124. Meade BD, Kind PD, Manclark CR. Altered mononuclear phagocyte function in mice treated with the lymphocytosis promoting factor of Bordetella pertussis. Dev Biol Stand 1985;61:63–74.

    PubMed  CAS  Google Scholar 

  125. Spangrude GJ, Sacchi F, Hill HR, Van Epps DE, Daynes RA. Inhibition of lymphocyte and neutrophil chemotaxis by pertussis toxin. J Immunol 1985;135:4135–4143.

    PubMed  CAS  Google Scholar 

  126. Sidey FM, Furman BL, Wardlaw AC. Effect of hyperreactivity to endotoxin on the toxicity of pertussis vaccine and pertussis toxin in mice. Vaccine 1989;7:237–241.

    PubMed  CAS  Google Scholar 

  127. Cherry JD, Brunel PA, Golden GS, Karzon DT. Report of the task force on pertussis immunization-1988. Pediatrics 1988;81:939–984.

    Google Scholar 

  128. Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B. Monocyte chemotactic proteins MCP-1, MCP-2, and MCP-3, are major attractants for human CD4+ and CD8+ lymphocytes T. FASEB J 1994;8:1055–1060.

    PubMed  CAS  Google Scholar 

  129. Schorr W, Swandulla D, Zeilhofer HU. Mechanisms of IL-8-induced Ca2+ signaling in human neutrophil granulocytes. Eur Immunol 1999;29:897–904.

    CAS  Google Scholar 

  130. Allavena P, Bianchi G, Zhou D, et al. Induction of natural killer cell migration by monocyte chemotactic protein-1,-2, and-3. Eur J Immunol 1994;24:3233–3236.

    PubMed  CAS  Google Scholar 

  131. Roberts M, Bacon A, Rappuoli R, et al. A mutant toxin molecule that lacks ADPribosyltransferase activity, PT-9K/129G, is an effective mucosal adjuvant for intranasally delivered proteins. Infect Immun 1995;63:2100–2108.

    PubMed  CAS  Google Scholar 

  132. Mu H-H, Sewell WA. Regulation of DTH and IgE responses by IL-4, and IFN-γ in immunized mice given pertussis toxin. Immunology 1994;83:639–645.

    PubMed  CAS  Google Scholar 

  133. Munoz JJ, Peacock MG. Action of Pertussigen (pertussis toxin) on serum IgE and on Fce receptors on lymphocytes. Cell Immunol 1990;127:327–336.

    PubMed  CAS  Google Scholar 

  134. Bell F, Heath P, MacLennan J, et al. Adverse effects and sero-responses to an acellular pertussis/diphtheria/tetanus vaccine when combined with Haemophilus influenzae type b vaccine in an accelerated schedule. Eur J Pediatr 1999;158:329–336.

    PubMed  CAS  Google Scholar 

  135. Richie E, Punjabi NH, Harjanto SJ, et al. Safety and immunogenicity of combined diphtheria-tetanus-pertussis (whole cell and acellular)-Haemophilus influenzae-b conjugate vaccines administered to Indonesian children. Vaccine 1999;17:1384–1393.

    PubMed  CAS  Google Scholar 

  136. Mahon BP, Ryan M, Griffin F, Mills KHG. Interleukin-12, is produced by macrophages in response to live or killed Bordetella pertussis and enhances the efficacy of an acellular pertussis vaccine by promoting the induction of Th1 cells. Infect Immun 1996;64:5295–5301.

    PubMed  CAS  Google Scholar 

  137. Samore MH, Siber GR. Pertussis toxin enhanced IgG1, and IgE responses to primary tetanus immunization are mediated by interleukin-4, and persist during secondary responses to tetanus alone. Vaccine 1996;14:290–297.

    PubMed  CAS  Google Scholar 

  138. Tamura S-I, Tanaka H, Takayama R, Sato H, Sato Y, Uchida N. Break of unresponsiveness of delayed-type hypersensitivity to sheep red blood cells by pertussis toxin. Cell Immunol 1985;92:376–390.

    PubMed  CAS  Google Scholar 

  139. Kamradt T, Soloway PD, Perkins DL, Gefter ML. Pertussis toxin prevents the induction of peripheral T cell anergy and enhances the T cell response to an encephalitogenic peptide of myelin basic protein. J Immunol 1991;147:3296–3302.

    PubMed  CAS  Google Scholar 

  140. Zou LP, Ljunggren HG, Levi M, et al. P0, protein peptide 180–199, together with pertussis toxin induces experimental autoimmune neuritis in resistant C57BL/6, mice. J Neurosci Res 2000;62:717–721.

    PubMed  CAS  Google Scholar 

  141. Sewell WA, De Moerloose PA, Hamilton JA, Schrader JW, Mackay IR, Vadas MA. Potentiation of delayed-type hypersensitivity by pertussigen or cyclohosphamide with release of different lymphokines. J Immunol 1987;61:483–488.

    CAS  Google Scholar 

  142. Fischer JE, Johnson JE, Johnson TR, Graham BS. Pertussis toxin sensitization alters the pathogenesis of subsequent respiratory syncytial virus infection. J Infect Dis 2000;182:1029–1038.

    PubMed  CAS  Google Scholar 

  143. Shive CL, Hofstetter H, Arredondo L, Shaw C, Forsthuber TG. The enhanced antigen-specific production of cytokines induced by pertussis toxin is due to clonal expansion of T cells and not to altered effector functions of long-term memory cells. Eur J Immunol 2000;30:2422–2431.

    PubMed  CAS  Google Scholar 

  144. Fischer JE, Johnson TR, Peebles RS, Graham BS. Vaccination with pertussis toxin alters the antibody response to simultaneous respiratory syncytial virus challenge. J Infect Dis 1999;180:714–719.

    PubMed  CAS  Google Scholar 

  145. Loosmore S, Zealey G, Cockle S, Boux H, Chong P, Yacoob R, Klein M. Characterization of pertussis toxin analogs containing mutations in B-oligomer subunits. Infect Immun 1993;61:2316–2324.

    PubMed  CAS  Google Scholar 

  146. Oka T, Honda T, Morokuma K, Ginnaga A, Ohkuma K, Sakoh M. Enhancing effects of pertussis toxin B oligomer on the immunogenicity of influenza vaccine administered intranasally. Vaccine 1994;12:1255–1258.

    PubMed  CAS  Google Scholar 

  147. Van der Pouw-Kraan CTM, Rensink HJAM, Rappuoli R, Aarden LA. Co-stimulation of T cells via CD28, inhibits human IgE production; reversal by pertussis toxin. Clin Exp Immunol 1995;99:473–478.

    PubMed  Google Scholar 

  148. Black WJ, Munoz JJ, Peacock MG, et al. ADP-ribosyltransferase activity of pertussis toxin and immunomodulation by Bordetella pertussis. Science 1988;240:656–658.

    PubMed  CAS  Google Scholar 

  149. Wong WS, Rosoff PM. Pharmacology of pertussis toxin B-oligomer. Can J Physiol Pharmacol 1996;74:559–564.

    PubMed  CAS  Google Scholar 

  150. Ausiello CM, Fedele G, Urbani F, Lande R, Di Carlo B, Cassone A. Native and genetically inactivated pertussis toxins induce human dendritic cell maturation and synergize with lipopolysaccharide in promoting T helper type 1, responses. J Infect Dis 2002;186:351–60.

    PubMed  CAS  Google Scholar 

  151. Gonzalo JA, Gonzalez-Garcia A, Baixeras E, et al. Pertussis toxin interferes with superantigen-induced deletion of peripheral T cells without affecting T cell activation in vivo. Inhibition of deletion and associated programmed cell death depends on ADP-ribosyltransferase. J Immunol 1994;152:4291–4219.

    PubMed  CAS  Google Scholar 

  152. Thom RE, Casnellie JE. Pertussis toxin activates protein kinase C and a tyrosine protein kinase in the human T cell line Jurkat. FEBS Letts 1989;244:181–184.

    CAS  Google Scholar 

  153. Sommermeyer H, Resch K. Pertussis toxin B-subunit-induced Ca2+-fluxes in jurkat human lymphoma cells: the action of long-term pre-treatment with cholera and pertussis holotoxins. Cell Signal 1990;2:115–128.

    PubMed  CAS  Google Scholar 

  154. Grenier-Brossette N, Bourget I, Breittmayer JP, Ferrua B, Fehlmann M, Cousin JL. Pertussis toxin-induced mitogenesis in human lymphocytes T. Immunopharmacology 1991;21:109–119.

    PubMed  CAS  Google Scholar 

  155. Wakatsuki A, Borrow P, Rigley K, Beverley PC. Cell-surface bound pertussis toxin induces polyclonal T cell responses with high levels of interferon-gamma in the absence of interleukin-12. Eur J Immunol 2003;33:1859–1868.

    PubMed  CAS  Google Scholar 

  156. de Jong EC, Vieira PL, Kalinski P, et al. Microbial compounds selectively induce Th1, cell-promoting or Th2, cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. J Immunol 2002;168:1704–1709.

    PubMed  Google Scholar 

  157. He J, Gurunathan S, Iwasaki A, Ash-Shaheed B, Kelsall BL. Primary role for Gi protein signaling in the regulation of interleukin 12, production and the induction of T helper cell type 1, responses. J Exp Med 2000;191:1605–1610.

    PubMed  CAS  Google Scholar 

  158. Gross MK, Au DC, Smith AL, Storm DR. Targeted mutations that ablate either the adenylate cyclase or hemolysin function of the bifunctional cyaA toxin of Bordetella pertussis abolish virulence. Proc Natl Acad Sci USA 1992;89:4898–4902.

    PubMed  CAS  Google Scholar 

  159. Mouallem M, Farfel Z, Hanski E. Bordetella pertussis adenylate cyclase toxin: intoxication of host cells by bacterial invasion, Infect Immun 1990;58:3759–3764.

    PubMed  CAS  Google Scholar 

  160. Pearson RD, Symes P, Conboy M, Weiss AA, Hewlett EL. Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. J Immunol 1987;139:2749–2754.

    PubMed  CAS  Google Scholar 

  161. Njamkepo E, Pinot F, Francois D, Guiso N, Polla BS, Bachelet M. Adaptive responses of human monocytes infected by Bordetella pertussis: the role of adenylate cyclase hemolysin. J Cell Physiol 2000;183:91–99.

    PubMed  CAS  Google Scholar 

  162. Gueirard P, Druilhe A, Pretolani M, Guiso N. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect Immun 1998;66:1718–1725.

    PubMed  CAS  Google Scholar 

  163. Ross PJ, Lavelle EC, Mills KH, Boyd AP. Adenylate cyclase toxin from Bordetella pertussis synergizes with lipopolysaccharide to promote innate interleukin-10, production and enhances the induction of Th2, and regulatory cells T. Infect Immun 2004;72:1568–1579.

    PubMed  CAS  Google Scholar 

  164. Dadaglio G, Moukrim Z, Lo-Man R, Sheshko V, Sebo P, Leclerc C. Induction of a polarized Th1, response by insertion of multiple copies of a viral T-cell epitope into adenylate cyclase of Bordetella pertussis. Infect Immun 2000;68:3867–3872.

    PubMed  CAS  Google Scholar 

  165. Hormozi K, Parton R, Coote J. Adjuvant and protective properties of native and recombinant Bordetella pertussis adenylate cyclase toxin preparations in mice. Med Microbiol 1999;23:273–282.

    CAS  Google Scholar 

  166. Boyd AP, Ross PJ, Conroy H, Mahon N, Lavelle EC, Mills KHG. (2004) Bordetella pertussis adenylate cyclase toxin modulates innate and adaptive immune responses: distinct roles for acylation and enzymatic activity in immunomodulation and cell death. J Immunol 2005;175:731–738.

    Google Scholar 

  167. Dinarello CA. The proinflammatory cytokines interleukin-1, and tumour necrosis factor and treatment of the septic shock syndrome. J Infect Dis 1991;163:1177–1184.

    PubMed  CAS  Google Scholar 

  168. Higgins SC, Lavelle EC, McCann C, et al. Toll-like receptor 4-mediated innate IL-10, activates antigen-specific regulatory T cells and confers resistance to Bordetella pertussis by inhibiting inflammatory pathology. J Immunol 2003;171:3119–3127.

    PubMed  CAS  Google Scholar 

  169. Ribi E. Beneficial modification of the endotoxin molecule. J Biol Response Mod 1984;3:1–9.

    PubMed  CAS  Google Scholar 

  170. Ulrich JT, Myers KB. Monophosphoryl lipid A as an adjuvant past experiences and new directions. In: Powell MF, Newman JM, eds. Vaccine Design: The Subunit and Adjuvant Approach. New York: Plenum Press, 1995, pp. 495–524.

    Google Scholar 

  171. Moore A, McCarthy L, Mills KHG. The adjuvant combination monophosphoryl lipid A and QS21, switches T cell responses induced with a soluble recombinant HIV protein from Th2, to Th1. Vaccine 1999;17:2517–2527.

    PubMed  CAS  Google Scholar 

  172. Salkowski CA. Lipopolysaccharide and monophosphoryl lipid A differentially regulate interleukin-12, gamma interferon, and interleukin-10, mRNA production in murine macrophages. Infect Immun 1997;65:3239–3247.

    PubMed  CAS  Google Scholar 

  173. Baldridge JR, Yorgensen Y, Ward JR, Ulrich JT. Monophosphoryl lipid A enhances mucosal and systemic immunity to vaccine antigens following intranasal administration. Vaccine 2000;18:2416–2425.

    PubMed  CAS  Google Scholar 

  174. Childers NK. Adjuvant activity of monophosphoryl lipid A for nasal and oral immunization with soluble or liposome-associated antigen. Infect Immun 2000;68:5509–5516.

    PubMed  CAS  Google Scholar 

  175. Mikloska Z, Ruckholdt M, Ghadiminejad I, Dunckley H, Denis M, Cunningham AL. Monophosphoryl lipid A and QS21, increase CD8, T lymphocyte cytotoxicity to herpes simplex virus-2, infected cell proteins 4, and 27, through IFN-g and IL-12, production. Immunol J 2000;164:5167–5176.

    CAS  Google Scholar 

  176. Peteers CCAM, Lagerman PR, De Weers O, et al. Polysaccharide-conjugate vaccines. In: Robinson A, Farrar GH, Wiblin CH, eds. Vaccine Protocols. Totowa, NJ: Humana Press, 1996, pp. 111–134.

    Google Scholar 

  177. Lagos R, Valenzuela MT, Levine OS, et al. Economisation of vaccination against Haemophilus influenzae type b: a randomised trial of immunogenicity of fractional-dose and two-dose regimens. Lancet 1998;351:1472–1476.

    PubMed  CAS  Google Scholar 

  178. Michetti P, Kreiss C, Kotloff KL, et al. Oral immunization with urease and Escherichia coli heat-labile enterotoxin is safe and immunogenic in Helicobacter pyloriinfected adults. Gastroenterology 1999;116:804–812.

    PubMed  CAS  Google Scholar 

  179. Gluck U, Gebbers JO, Gluck R. Phase 1 evaluation of intranasal virosomal influenza vaccine with and without Escherichia coli heat-labile toxin in adult volunteers. J Virol 1999;73:7780–7786

    PubMed  CAS  Google Scholar 

  180. Gluck R, Mischler R, Durrer P, et al. Safety and immunogenicity of intranasally administered inactivated trivalent virosome-formulated influenza vaccine containing Escherichia coli heat-labile toxin as a mucosal adjuvant. J Infect Dis 2000;181:1129–1132.

    PubMed  CAS  Google Scholar 

  181. Mutsch M, Zhou W, Rhodes P, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med 2004;350:896–903.

    PubMed  CAS  Google Scholar 

  182. van Ginkel FW, Jackson RJ, Yuki Y, McGhee JR. Cutting edge: the mucosal adjuvant cholera toxin redirects vaccine proteins into olfactory tissues. J Immunol 2000;165:4778–4782.

    PubMed  Google Scholar 

  183. Cohen D, Orr N, Haim M, et al. Safety and immunogenicity of two different lots of the oral, killed enterotoxigenic Escherichia coli-cholera toxin B subunit vaccine in Israeli young adults. Infect Immun 2000;68:4492–4497.

    PubMed  CAS  Google Scholar 

  184. Taylor DN, Cardenas V, Sanchez JL, et al. Two-year study of the protective efficacy of the oral whole cell plus recombinant B subunit cholera vaccine in Peru. J InFect Dis 2000;181:1667–1673.

    PubMed  CAS  Google Scholar 

  185. Holmgren J, Svennerholm AM, Jertborn M, et al. An oral subunit B, whole cell vaccine against cholera. Vaccine 1992;10:911–914.

    PubMed  CAS  Google Scholar 

  186. Bergquist C, Johansson E-L, Lagergard T, Holmgren J, Rudin A. Intranasal vaccination of humans with recombinant cholera toxin B subunit induces systemic and local antibody responses in the upper respiratory tract and the vagina. Infect Immun 1997;65:2676–2684.

    PubMed  CAS  Google Scholar 

  187. Hashigucci K, Ogawa H, Ishidate T, et al. Antibody responses in volunteers induced by nasal influenza vaccine combined with Escherichia coli heat-labile enterotoxin B subunit containing a trace amount of the holotoxin. Vaccine 1996;14:113–119.

    PubMed  CAS  Google Scholar 

  188. Stoute JA, Kester KE, Krzych U, et al. Long-term efficacy and immune responses following immunization with the RTSS malaria vaccine. J Infect Dis 1998;178:1139–1144.

    PubMed  CAS  Google Scholar 

  189. McCormack S, Tilzey A, Carmichael A, et al. A phase I trial in HIV negative healthy volunteers evaluating the effect of potent adjuvant on immunogenicity of a recombinant gp120W61D derived from dual tropic R5X4, HIV-1ACH320. Vaccine 2000;18:1166–1177.

    PubMed  CAS  Google Scholar 

  190. Miller DL, Ross EM, Alderslade R, Bellman MH, Rawson NS. Pertussis immunisation and serious acute neurological illness in children. BMJ 1981;282:1595–1599.

    PubMed  CAS  Google Scholar 

  191. Donnelly S, Loscher C, Lynch Mills KHG. Whole cell but not acellular pertussis vaccines induce convulsive activity in mice: evidence of a role for toxin-induced IL-1β in a new murine model for analysis of neuronal side effects of vaccination. Infect Immun 2001;69:4217–4223.

    PubMed  CAS  Google Scholar 

  192. Loscher CE, Donnelly S, McBennett S, Lynch MA, Mills KHG. Pro-inflammatory cytokines in the adverse systemic and neurologic effects associated with parenteral injection of a whole cell pertussis vaccine. Ann Acad NY Sci 1998;856:274–277.

    CAS  Google Scholar 

  193. Loscher CL, Donnelly S, Mills KHG, Lynch MA. Interlukin-1b-dependent changes in the hippocampus following parenteral immunization with a whole cell pertussis vaccine. J Neuroimmunol 2000;111:68–76.

    PubMed  CAS  Google Scholar 

  194. Yuhas Y, Shulman L, Weizman A, Kaminsky E, Vanichkin A, Ashkenazi S. Involvement of tumour necrosis factor alpha and interleukin-1β in enhancement of pentylenetetrazole-induced seizures caused by Shigella dysenteriae. Infect Immun 1999;67:1455–1460.

    PubMed  CAS  Google Scholar 

  195. Armstrong ME, Lavelle EC, Loscher CE, Lynch MA, Mills KHG. Induction of proinflammatory responses in the murine hypothalamus following intranasal delivery of cholera toxin: implications for the use of AB toxins as adjuvants in nasal vaccines. J Infect Dis 2005 (in press).

    Google Scholar 

  196. Rennels MB, Deloria MA, Pichichero ME, et al. Extensive swelling after booster doses of acellular pertussis-tetanus-diphtheria vaccines. Pediatrics 2000;105:e12.

    PubMed  CAS  Google Scholar 

  197. Ryan EJ, Nilsson L, Kjellman N-IM, Gothefors L, Mills KHG. Booster immunization of children with an acellular pertussis vaccine enhances Th2, cytokine production and serum IgE against pertussis toxin but not against common allergens. Clin Exp Immunol 2000;121:193–200.

    PubMed  CAS  Google Scholar 

  198. Marinaro M, Di Tommaso A, Uzzau S, Fasano A, De Magistris MT. Zonula Occludens toxin is a powerful mucosal adjuvant for intranasally delivered antigens. Infect Immun 1999;67:1287–1291.

    PubMed  CAS  Google Scholar 

  199. Mu H-H, Sewell WA. Enhancement of interleukin-4, production by pertussis toxin. Infect Immun 1993;61:2834–2840.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lavelle, E.C., Leavy, O., Mills, K.H.G. (2006). Modified Bacterial Toxins. In: Hackett, C.J., Harn, D.A. (eds) Vaccine Adjuvants. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-59259-970-7_7

Download citation

Publish with us

Policies and ethics