Advertisement

Human Cannabinoid Pharmacokinetics and Interpretation of Cannabinoid Concentrations in Biological Fluids and Tissues

  • Marilyn A. Huestis
  • Michael L. Smith
Part of the Forensic Science And Medicine book series (FSM)

Abstract

Pharmacokinetics is the study of the absorption, distribution, metabolism, and elimination of a drug in the body and how these processes change with time. Following controlled drug administration, scientists monitor the drug and its metabolites in bodily fluids and tissues to develop a pharmacokinetic profile for the animal or human being studied. After years of research, scientists have learned some important general principles about pharmacokinetic profiles. One is that, in general, pharmacokinetic profiles are similar for most animals and humans, but specific elements of the disposition of a drug in the body can differ greatly between species and between subjects within a species. Another principle is that helpful models can be developed that characterize a drug’s pharmacokinetics and define parameters to describe processes such as time to peak and maximum concentrations, half-lives, volumes of distribution, and so on. Measuring these pharmacokinetic parameters facilitates comparison between and within human subjects who are examined at different times following administration of a drug. As specific examples in this chapter will convey, it is important to conduct carefully controlled studies and astutely note inter- and intrasubject similarities and differences in pharmacokinetic parameters to build databases that can be used to answer real life questions. The third principle that we will consider is that pharmacokinetic profiles change with the route of drug administration.

Keywords

Oral Fluid Marijuana Smoke Cutoff Concentration Marijuana Cigarette Positive Urine Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huestis, M. A. (2002) Cannabis (marijuana)-effects on human behavior and performance, in The Effects of Drugs on Human Performance and Behavior (Farrell, L. J., Logan, B. K., and Dubowski, K. M., eds.), Central Police University Press, Taipei, pp. 15–60.Google Scholar
  2. 2.
    Grotenhermen, F. (2003) Pharmacokinetics and pharmacodynamics of cannabinoids. Clin. Pharmacokinet. 42, 327–360.PubMedGoogle Scholar
  3. 3.
    Turner, C. E., ElSohly, M. A., and Boeren, E. G. (1980) Constituents of Cannabis sativa L. XVII. a review of the natural constituents. J. Nat. Products 43, 169–234.Google Scholar
  4. 4.
    Turner, C.E., Hadley, K. W., Fetterman, P. S., Doorenbos, N. J., Quimby, M. W., and Waller, C. (1973) Constituents of Cannabis sativa L. IV: Stability of cannabinoids in stored plant material. J. Pharm. Sci. 62, 1601–1605.PubMedGoogle Scholar
  5. 5.
    Turner, C. E., Bouwsma, O. J., Billets, S., and ElSohly, M. A. (1980) Constituents of Cannabis sativa L. XVIII-electron voltage selected ion monitoring study of cannabinoids. Biomed. Mass Spectrom. 7, 247–256.PubMedGoogle Scholar
  6. 6.
    Turner, C. E. (1983) Cannabis: the plant, its drugs, and their effects. Aviat. Space Environ. Med. 54, 363–368.PubMedGoogle Scholar
  7. 7.
    ElSohly, H. N., Boeren, E. G., Turner, C. E., and ElSohly, M. A. (1984) Constituents of Cannabis sativa L. XXIIII: Cannabitetrol, a new Polyhydroxylated cannabinoid, in The Cannabinoids: Chemical, Pharmacologic and Therapeutic Aspects (Agurell, S., Dewey, W. L., and Willette, R. E., eds.), Academic Press, Inc., Orlando, FL, pp. 89–96.Google Scholar
  8. 8.
    Turner, C. E., Hadley, K., and Fetterman, P. S. (1973) Constituents of Cannabis sativa L. VI: Propyl homologs in samples of known geographical origin. J. Pharm. Sci. 62, 1739–1741.PubMedGoogle Scholar
  9. 9.
    Hemphill, J. K., Turner, J. C., and Mahlberg, P. G. (1980) Cannabinoid content of individual plant organs from different geographical strains of Cannabis sativa L. J. Nat. Products 43 (1), 112–122.Google Scholar
  10. 10.
    Iversen, L. (2003) Cannabis and the brain. Brain 26, 252–1270.Google Scholar
  11. 11.
    Roth, M. D., Baldwin, G. C., and Tashkin, D. P. (2002) Effects of delta-9-tetrahydrocannabinol on human immune function and host defense. CPL 121, 229–239.Google Scholar
  12. 12.
    Salmeron, B. J. and Stein, E. A. (2002) Pharmacological applications of magnetic resonance imaging. Psychopharmacol. Bull. 36, 102–129.PubMedGoogle Scholar
  13. 13.
    Mathew, R. J., Wilson, W. H., Turkington, T. G., et al. (2002) Time course of tetrahydrocannabinol-induced changes in regional cerebral blood flow measured with positron emission tomography. Psychiatry Res. Neuroimaging 116, 173–185.Google Scholar
  14. 14.
    Kumar, R. N., Chambers, W. A., and Pertwee, R. G. (2001) Pharmacological actions and therapeutic uses of Cannabis and cannabinoids. Anaesthesia 56, 1059–1068.PubMedGoogle Scholar
  15. 15.
    Pertwee, R. G. (2002) Cannabinoids and multiple sclerosis. Pharmacol. Ther. 95, 165–174.PubMedGoogle Scholar
  16. 16.
    Mechoulam, R. and Hanu, L. (2001) The cannabinoids: an overview. Therapeutic implications in vomiting and nausea after cancer chemotherapy, in appetite promotion, in multiple sclerosis and in neuroprotection. Pain Res. Manag. 6, 67–73.PubMedGoogle Scholar
  17. 17.
    Baker, D., Pryce, G., Giovannoni, G., and Thompson, A.J. (2003) The therapeutic potential of Cannabis. Lancet Neurol. 2, 291–298.PubMedGoogle Scholar
  18. 18.
    Ross, S. A., Mehmedic, Z., Murphy, T. P., and ElSohly, M. A. (2000) GC-MS analysis of the total delta-9-THC content of both drug-and fiber-type Cannabis seeds. J. Anal. Toxicol. 24, 715–717.PubMedGoogle Scholar
  19. 19.
    Pitts, J. E., Neal, J. D., and Gough, T. A. (1992) Some features of Cannabis plants grown in the United Kingdom from seeds of known origin. J. Pharm. Pharmacol. 44, 947–951.PubMedGoogle Scholar
  20. 20.
    ElSohly, M. A., Ross, S. A., Mehmedic, Z., Arafat, R., Yi, B., and Banahan, B. F. III (2000) Potency trends of delta-9-THC and other cannabinoids in confiscated marijuana from 1980-1997. J. Forensic Sci. 45, 24–30.PubMedGoogle Scholar
  21. 21.
    Drug Enforcement Administration (2003) Illegal drug price and purity report. DEA-02058 April, 1–16.Google Scholar
  22. 22.
    Claussen, U. and Korte, F. (1968) Concerning the behavior of hemp and of delta-9-6a, 10atrans-tetrahydrocannabinol in smoking. Justus Liebigs. Ann. Chem. 713, 162–165.PubMedGoogle Scholar
  23. 23.
    Abrams, R. M., Davis, K. H., Jaeger, M. J., and Szeto, H.H. (1985) Marijuana smoke production and delivery system, in Marihuana’ 84 Proceedings of the Oxford Symposium on Cannabis (Harvey, D. J., Paton, S. W., and Nahas, G. G., eds.), IRL Press Limited, Oxford, pp. 205–209.Google Scholar
  24. 24.
    Davis, K. H., McDaniel, I. A., Cadwell, L. W., and Moody, P. L. (1984) Some smoking characteristics of marijuana cigarettes, in The Cannabinoids: Chemical, Pharmacologic, and Therapeutic Aspects (Agurell, S., Dewey, W. L., and Willette, R. E., eds.), Academic Press, Orlando, FL, pp 97–109.Google Scholar
  25. 25.
    Ohlsson, A., Lindgren, J. E., Wahlen, A., Agurell, S., Hollister, L. E., and Gillespie, H.K. (1980) Plasma delta-9-tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin. Pharmacol. Ther. 28, 409–416.PubMedGoogle Scholar
  26. 26.
    Agurell, S., Halldin, M., Lindgren, J. E., et al. (1986) Pharmacokinetics and metabolism of delta1-tetrahydrocannabinol and other cannabinoids with emphasis on man. Pharmacol. Rev. 38, 21–43.PubMedGoogle Scholar
  27. 27.
    Azorlosa, J. L., Heishman, S. J., Stitzer, M. L., and Mahaffey, J. M. (1992) Marijuana smoking: effect of varying delta 9-tetrahydrocannabinol content and number of puffs. J. Pharmacol. Exp. Ther. 261(1), 114–122.PubMedGoogle Scholar
  28. 28.
    Heishman, S. J., Stitzer, M. L., and Yingling, J. E. (1989) Effects of tetrahydrocannabinol content on marijuana smoking behavior, subjective reports, and performance. Pharmacol. Biochem. Behav. 34, 173–179.PubMedGoogle Scholar
  29. 29.
    Tinklenberg, J. R., Melges, F. T., Hollister, L. E., and Gillespie, H. K. (1970) Marijuana and immediate memory. Nature 226, 1171–1172.PubMedGoogle Scholar
  30. 30.
    Huestis, M. A., Henningfield, J. E., and Cone, E. J. (1992) Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. J. Anal. Toxicol. 16, 276–282.PubMedGoogle Scholar
  31. 31.
    Mason, A. P. and McBay, A. J. (1984) Ethanol, marijuana, and other drug use in 600 drivers killed in single-vehicle crashes in North Carolina, 1978-1981. J. Forensic Sci. 29, 987–1026.PubMedGoogle Scholar
  32. 32.
    Law, B., Mason, P. A., Moffat, A. C., Gleadle, R. I., and King, L. J. (1984) Forensic aspects of the metabolism and excretion of cannabinoids following oral ingestion of Cannabis resin. J. Pharm. Pharmacol. 36, 289–294.PubMedGoogle Scholar
  33. 33.
    Ohlsson, A., Lindgren, J. E., Wahlen, A., Agurell, S., Hollister, L. E., and Gillespie, H.K. (1981) Plasma levels of delta-9-tetrahydrocannabinol after intravenous, oral and smoke administration. NIDA Monograph 34, 250–256.Google Scholar
  34. 34.
    Wall, M. E., Sadler, B. M., Brine, D., Taylor, H., and Perez-Reyes, M. (1983) Metabolism, disposition, and kinetics of delta-9-tetrahydrocannabinol in men and women. Clin. Pharmacol. Ther. 34, 352–363.PubMedGoogle Scholar
  35. 35.
    Perez-Reyes, M., Timmons, M. C., Davis, K. H., and Wall, E. M. (1973) A comparison of the pharmacological activity in man of intravenously administered delta-9-tetrahydrocannabinol, cannabinol and cannabidiol. Experientia 29, 1368–1369.PubMedGoogle Scholar
  36. 36.
    Hunt, C. A. and Jones, R. T. (1980) Tolerance and disposition of tetrahydrocannabinol in man. J. Pharmacol. Exp. Ther. 215, 35–44.PubMedGoogle Scholar
  37. 37.
    Kelly, P. and Jones, R. T. (1992) Metabolism of tetrahydrocannabinol in frequent and infrequent marijuana users. J. Anal. Toxicol. 16, 228–235.PubMedGoogle Scholar
  38. 38.
    Harvey, D. J. (2001) Absorption, distribution, and biotransformation of the cannabinoids, in Marijuana and Medicine (Nahas, G. G., Sutin, K. M., Harvey, D. J., and Agurell, S., eds.), Humana Press, Totowa, NJ, pp. 91–103.Google Scholar
  39. 39.
    Johansson, E., Noren, K., Sjovall, J., and Halldin, M. M. (1989) Determination of delta-1-tetrahydrocannabinol in human fat biopsies from marihuana users by gas chromatography-mass spectrometry. Biomed. Chromatogr. 3, 35–38.PubMedGoogle Scholar
  40. 40.
    Kreuz, D. S. and Axelrod, J. (1973) Delta-9-tetrahydrocannabinol: localization in body fat. Science 179, 391–393.PubMedGoogle Scholar
  41. 41.
    Johansson, E., Agurell, S., Hollister, L. E., and Halldin, M. M. (1988) Prolonged apparent half-life of delta-1-tetrahydrocannabinol in plasma of chronic marijuana users. J. Pharm. Pharmacol. 40, 374–375.PubMedGoogle Scholar
  42. 42.
    Iribarne, C., Berthou, F., Baird, S., et al. (1996) Involvement of cytochrome P450 3A4 enzyme in the N-demethylation of methadone in human liver microsomes. Chem. Res. Toxicol. 9, 365–373.PubMedGoogle Scholar
  43. 43.
    Matsunaga, T., Iwawaki, Y., Watanabe, K., Yamamoto, I., Kageyama, T., and Yoshimura, H. (1995) Metabolism of delta-9-tetrahydrocannabinol by cytochrome P450 isozymes purified from hepatic microsomes of monkeys. Life Sci. 56, 2089–2095.PubMedGoogle Scholar
  44. 44.
    Lemberger, L., Silberstein, S. D., Axelrod, J., and Kopin, I. J. (1970) Marihuana: studies on the disposition and metabolism of delta-9-tetrahydrocannabinol in man. Science 170, 1320–1322.PubMedGoogle Scholar
  45. 45.
    Ben-Zvi, Z., Bergen, J. R., Burstein, S., Sehgal, P. K., and Varanelli, C. (1976) The metabolism of delta-tetrahydrocannabinol in the rhesus monkey, in The Pharmacology of Marihuana (Braude, M. C. and Szara, S., eds.), Raven Press, New York, pp. 63–75.Google Scholar
  46. 46.
    Greene, M. L. and Saunders, D. R. (1974) Metabolism of tetrahydrocannabinol by the small intestine. Gastroenterology 66, 365–372.PubMedGoogle Scholar
  47. 47.
    Krishna, D. R. and Klotz, U. (1994) Extrahepatic metabolism of drugs in humans. Clin. Pharmacokinet. 26, 144–160.PubMedGoogle Scholar
  48. 48.
    Watanabe, K., Tanaka, T., Yamamoto, I., and Yoshimura, H. (1988) Brain microsomal oxidation of delta-8-and delta-9-tetrahydrocannabinol. Biochem.and Biophys. Res. Commun. 157, 75–80.Google Scholar
  49. 49.
    Widman, M., Nordqvist, M., Dollery, C. T., and Briant, R. H. (1975) Metabolism of delta-1-tetrahydrocannabinol by the isolated perfused dog lung. Comparison with in vitro liver metabolism. J. Pharm. Pharmacol. 27, 842–848.PubMedGoogle Scholar
  50. 50.
    Harvey, D. J. and Paton, W. D. M. (1984) Metabolism of the cannabinoids. Rev. Biochem. Toxicol. 6, 221–264.Google Scholar
  51. 51.
    Mechoulam, R., BenZvi, Z., Agurell, S., et al. (1973) Delta-6 tetrahydrocannabinol-7-oic acid, a urinary delta-6-THC metabolite: isolation and synthesis. Experientia 29, 1193–1195.PubMedGoogle Scholar
  52. 52.
    Sporkert, F., Pragst, F., Ploner, C. J., Tschirch, A., and Stadelmann, A. M. (2001) Pharmacokinetic investigations and delta-9-tetrahydrocannabinol and its metabolites after single administration of 10 mg Marinol in attendance of a psychiatric study. The Annual Meeting of The International Association of Forensic Toxicologists, Prague, Czech Republic, Abstract P62.Google Scholar
  53. 53.
    Halldin, M. M., Widman, M., Bahr, C. V., Lindgren, J. E., and Martin, B. R. (1982) Identification of in vitro metabolites of delta 1-tetrahydrocannabinol formed by human livers. Drug Metab. Dispos. 10, 297–301.PubMedGoogle Scholar
  54. 54.
    Garrett, E. R. and Hunt, C. A. (1977) Pharmacokinetics of delta-9-tetrahydrocannabinol in dogs. J. Pharm. Sci. 66, 395–407.PubMedGoogle Scholar
  55. 55.
    Williams, P. L. and Moffat, A. C. (1980) Identification in human urine of delta-9-tetrahydrocannabinol-11-oic glucuronide: a tetrahydrocannabinol metabolite. J. Pharm. Pharmacol. 32, 445–448.PubMedGoogle Scholar
  56. 56.
    Huestis, M. A., Mitchell, J. M., and Cone, E. J. (1996) Urinary excretion profiles of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in humans after single smoked doses of marijuana. J. Anal. Toxicol. 20, 441–452.PubMedGoogle Scholar
  57. 57.
    Huestis, M. A. and Cone, E. J. (1998) Urinary excretion half-life of 11-nor-9-carboxydelta-9-tetrahydrocannabinol in humans. Ther. Drug Monit. 20, 570–576.PubMedGoogle Scholar
  58. 58.
    Johansson, E. and Halldin, M. M. (1989) Urinary excretion half-life of delta 1-tetrahydrocannabinol-7-oic acid in heavy marijuana users after smoking. J. Anal. Toxicol. 13, 218–223.PubMedGoogle Scholar
  59. 59.
    Cone, E. J., Johnson, R. E., Paul, B. D., Mell, L. D., and Mitchell, J. (1988) Marijuanalaced brownies: Behavioral effects, physiologic effects, and urinalysis in humans following ingestion. J. Anal. Toxicol. 12, 169–175.PubMedGoogle Scholar
  60. 60.
    Gustafson, R. A., Levine, B., Stout, P. R., et al. (2003) Urinary cannabinoid detection times after controlled oral administration of delta-9-tetrahydrocannabinol to humans. Clin. Chem. 49, 1114–1124.PubMedGoogle Scholar
  61. 61.
    Kemp, P. M., Abukhalaf, I. K., Manno, J. E., et al. (1995) Cannabinoids in humans. II. The influence of three methods of hydrolysis on the concentration of THC and two metabolites in urine. J. Anal. Toxicol. 19, 292–298.PubMedGoogle Scholar
  62. 62.
    Mason, A. P. and McBay, A. J. (1985) Cannabis: pharmacology and interpretation of effects. J. Forensic Sci. 30, 615–631.PubMedGoogle Scholar
  63. 63.
    Moskowitz, H. (1985) Marijuana and driving. Accid. Anal. Prev. 17, 323–345.PubMedGoogle Scholar
  64. 64.
    Kurzthaler, I., Hummer, M., Miller, C., et al. (1999) Effect of Cannabis use on cognitive functions and driving ability. J. Clin. Psychiatry 60, 395–399.PubMedGoogle Scholar
  65. 65.
    Ramaekers, J. G., Berghaus, G., van Laar, M., and Drummer, O. H. (2004) Dose related risk of motor vehicle crashes after Cannabis use. Drug Alcohol Depend. 73, 109–119.PubMedGoogle Scholar
  66. 66.
    O’Kane, C. J., Tutt, D. C., and Bauer, L. A. (2002) Cannabis and driving: a new perspective. Emerg. Med. 14, 296–303.Google Scholar
  67. 67.
    Lukas, S. E. and Orozco, S. (2001) Ethanol increases plasma delta-9-tetrahydrocannabinol (THC) levels and subjective effects after marihuana smoking in human volunteers. Drug Alcohol Depend. 64, 143–149.PubMedGoogle Scholar
  68. 68.
    Ramaekers, J. G., Robbe, H. W., and O’Hanlon, J. F. (2000) Marijuana, alcohol and actual driving performance. Hum. Psychopharmacol. 15, 551–558.PubMedGoogle Scholar
  69. 69.
    Huestis, M. A., Sampson, A. H., Holicky, B. J., Henningfield, J. E., and Cone, E. J. (1992) Characterization of the absorption phase of marijuana smoking. Clin. Pharmacol. Ther. 52, 31–41.PubMedGoogle Scholar
  70. 70.
    Huestis, M. A., Henningfield, J. E., and Cone, E. J. (1992) Blood cannabinoids. II. Models for the prediction of time of marijuana exposure from plasma concentrations of delta 9-tetrahydrocannabinol (THC) and 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THCCOOH). J. Anal. Toxicol. 16, 283–290.PubMedGoogle Scholar
  71. 71.
    Cone, E. J. and Huestis, M. A. (1993) Relating blood concentrations of tetrahydrocan nabinol and metabolites to pharmacologic effects and time of marijuana usage. Ther. Drug Monit. 15, 527–532.PubMedGoogle Scholar
  72. 72.
    Huestis, M. A., Zigbuo, E., Heishman, S. J., et al. (2002) Determination of time of last exposure following controlled smoking of multiple marijuana cigarettes. Annual Meeting of the Society of Forensic Toxicologists, Dearborn, MI, Abstract 26.Google Scholar
  73. 73.
    Robbe, H. W. and O’Hanlon, J. F. (1993) Marijuana and Actual Driving Performance, U.S. Department of Transportation/National Highway Traffic Safety Administration Report, November, pp. 1–133.Google Scholar
  74. 74.
    Drummer, O. H., Gerostamoulos, J., Batziris, H., et al. (2004) The involvement of drugs in drivers of motor vehicles killed in Australian road traffic crashes. Accid. Anal. Prev. 36, 239–248.PubMedGoogle Scholar
  75. 75.
    Wilson, W., Mathew, R., Turkington, T., Hawk, T., Coleman, R. E., and Provenzale, J. (2000) Brain morphological changes and early marijuana use: a magnetic resonance and positron emission tomography study. J. Addict. Dis. 19, 1–22.PubMedGoogle Scholar
  76. 76.
    Mathew, R. J., Wilson, W. H., Coleman, R. E., Turkington, T. G., and DeGrado, T. R. (1997) Marijuana intoxication and brain activation in marijuana smokers. Life Sci. 60(23), 2075–2089.PubMedGoogle Scholar
  77. 77.
    Gatley, S. J., Lan, R., Volkow, N. D., et al. (1998) Imaging the brain marijuana receptor: development of a radioligand that binds to cannabinoid CB1 receptors in vivo. J. Neurochem. 70, 417–423.PubMedGoogle Scholar
  78. 78.
    Evans, S. M., Cone, E. J., and Henningfield, J. E. (1996) Arterial and venous cocaine plasma concentrations in humans: relationship to route of administration, cardiovascular effects and subjective effects. J. Pharmacol. Exp. Ther. 279, 1345–1356.PubMedGoogle Scholar
  79. 79.
    Martin, B. R., Mechoulam, R., and Razdan, R. K. (1999) Discovery and characterization of endogenous cannabinoids. Life Sci. 65, 573–595.PubMedGoogle Scholar
  80. 80.
    Pertwee, R. (1993) The evidence for the existence of cannabinoid receptors. Gen. Pharmacol. 24(4), 811–824.PubMedGoogle Scholar
  81. 81.
    Devane, W. A., Hanus, L., Breuer, A., et al. (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949.PubMedGoogle Scholar
  82. 82.
    Mechoulam, R., Shabat, S. B., Hanus, L., et al. (1996) Endogenous cannabinoid ligandschemical and biological studies. J. Lipid Mediators Cell Signal. 14, 45–49.Google Scholar
  83. 83.
    Rinaldi-Carmona, M., Barth, F., Heaulme, M., et al. (1995) Biochemical and pharmacological characterization of SR141716A, the first potent and selective brain cannabinoid receptor antagonist. Life Sci. 56, 1941–1947.PubMedGoogle Scholar
  84. 84.
    Aceto, M. D., Scates, S. M., Lowe, J. A., and Martin, B. R. (1996) Dependence on delta9 tetrahydrocannabinol: studies on precipitated and abrupt withdrawal. J. Pharmacol. Exp. Ther. 278, 1290–1295.PubMedGoogle Scholar
  85. 85.
    Huestis, M. A., Gorelick, D. A., Heishman, S. J., et al. (2001) Blockade of effects of smoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch. Gen. Psychiatry 58, 322–328.PubMedGoogle Scholar
  86. 86.
    Cohen, C., Perrault, G., Voltz, C., Steinberg, R., and Soubrie, P. (2002) SR141716, a central cannabinoid (CB1) receptor antagonist, blocks the motivational and dopamine releasing effects of nicotine in rats. Behav. Pharmacol. 13, 451–463.PubMedGoogle Scholar
  87. 87.
    LeFur, G., Arnone, M., Rinaldi-Carmona, M., Barth, F., and Heshmati, H. (2001) SR141716, a selective antagonist of CB1, receptors and obesity. Annual Meeting of the International Cannabinoid Research Society, El Escorial, Spain, Abstract 101.Google Scholar
  88. 88.
    Preston, K. L. and Jasinski, D. R. (1991) Abuse liability studies of opioid agonist-antagonists in humans. Drug Alcohol Depend. 28, 49–82.PubMedGoogle Scholar
  89. 89.
    Huestis, M. A. and Cone, E. J. (1998) Differentiating new marijuana use from residual drug excretion in occasional marijuana users. J. Anal. Toxicol. 22, 445–454.PubMedGoogle Scholar
  90. 90.
    Lafolie, P., Beck, O., Blennow, G., et al. (1991) Importance of creatinine analyses of urine when screening for abused drugs. Clin. Chem. 37, 1927–1931.PubMedGoogle Scholar
  91. 91.
    Manno, J. E., Ferslew, K. E., and Manno, B. R. (1984) Urine excretion patterns of cannabinoids and the clinical application of the EMIT-d.a.u. cannabinoid urine assay for substance abuse treatment, in The Cannabinoids: Chemical, Pharmacologic, and Therapeutic Aspects (Agurell, S., Dewey, W. L., and Willette, R. E., eds.), Academic Press, Orlando, FL, pp. 281–290.Google Scholar
  92. 92.
    Cone, E. J., Lange, R., and Darwin, W. D. (1998) In vivo adulteration: excess fluid inges tion causes false-negative marijuana and cocaine urine test results. J. Anal. Toxicol. 22, 460–473.PubMedGoogle Scholar
  93. 93.
    Fraser, A. D. and Worth, D. (1999) Urinary excretion profiles of 1 1-nor-9-carboxy-delta-9-tetrahydrocannabinol: a delta-9-THCCOOH to creatinine ratio study. J. Anal. Toxicol. 23, 531–534.PubMedGoogle Scholar
  94. 94.
    Fraser, A. D. and Worth, D. (2003) Urinary excretion profiles of 1 1-nor-9-corboxy-delta-9-tetrahydrocannabinol: a delta-9-THC-COOH to creatinine ratio study #2. Forensic Sci. Int. 133, 26–31.PubMedGoogle Scholar
  95. 95.
    Kim, I., Barnes, A. J., Oyler, J. M., et al. (2002) Plasma and oral fluid pharmacokinetics and pharmacodynamics after oral codeine administration Clin. Chem. 48, 1486–1496.Google Scholar
  96. 96.
    Just, W. W., Werner, G., Erdmann, G., and Wiechmann, M. (1975) Detection and identification of delta-8-and delta 9-tetrahydrocannabinol in saliva of man and autoradiographic investigation of their distribution in different organs of the monkey. Strahlentherapie-Sonderbande 74, 90–97.PubMedGoogle Scholar
  97. 97.
    Maseda, C., Hama, K., Fukui, Y., Matsubara, K., Takahashi, S., and Akane, A. (1986) Detection of delta-9-THC in saliva by capillary GC/ECD after marihuana smoking. Forensic Sci. Int. 32, 259–266.PubMedGoogle Scholar
  98. 98.
    Gross, S. J., Worthy, T. E., Nerder, L., Zimmermann, E. G., Soares, J. R., and Lomax, P. (1985) Detection of recent Cannabis use by saliva delta-9-THC radioimmunoassay. J. Anal. Toxicol. 9, 1–5.PubMedGoogle Scholar
  99. 99.
    Hawks, R. L. (1984) Developments in cannabinoid analyses of body fluids: implications for forensic applications, in The Cannabinoids: Chemical, Pharmacologic, and Therapeutic Aspects (Agurell, S., Dewey, W., and Willette, R., eds.), Academic Press, Orlando, FL, pp. 123–134.Google Scholar
  100. 100.
    Huestis, M. A., Dickerson, S., and Cone, E. J. (1992) Can saliva THC levels be correlated to behavior?, in American Academy of Forensic Science Annual Meeting, Fittje Brothers, Colorado Springs, CO, p. 190.Google Scholar
  101. 101.
    Niedbala, R. S., Kardos, K. W., Fritch, D. F., et al. (2001) Detection of marijuana use by oral fluid and urine analysis following single-dose administration of smoked and oral marijuana. J. Anal. Toxicol. 25, 289–303.PubMedGoogle Scholar
  102. 102.
    Kintz, P., Cirimele, V., and Ludes, B. (2000) Detection of Cannabis in oral fluid (saliva) and forehead wipes (sweat) from impaired drivers. J. Anal. Toxicol. 24, 557–561.PubMedGoogle Scholar
  103. 103.
    Samyn, N., De Boeck, G., and Verstraete, A. G. (2002) The use of oral fluid and sweat wipes for the detection of drugs of abuse in drivers. J. Forensic Sci. 47, 1380–1387.PubMedGoogle Scholar
  104. 104.
    Cone, E. J., Presley, L., Lehrer, M., et al. (2002) Oral fluid testing for drugs of abuse: positive prevalence rates by intercept immunoassay screening and GC-MS-MS confirmation and suggested cutoff concentrations. J. Anal. Toxicol. 26, 541–546.PubMedGoogle Scholar
  105. 105.
    Gronholm, M. and Lillsunde, P. (2001) A comparison between on-site immunoassay drug-testing devices and laboratory results. Forensic Sci. Int. 121, 37–46.PubMedGoogle Scholar
  106. 106.
    Jehanli, A., Brannan, S., Moore, L., and Spiehler, V. R. (2001) Blind trials of an onsite saliva drug test for marijuana and opiates. J. Forensic Sci. 46, 1214–1220.PubMedGoogle Scholar
  107. 107.
    Samyn, N. and van Haeren, C. (2000) On-site testing of saliva and sweat with Drugwipe and determination of concentrations of drugs of abuse in saliva, plasma and urine of suspected users. Int. J. Leg. Med. 113, 150–154.Google Scholar
  108. 108.
    Yacoubian, G. S., Jr., Wish, E. D., and Perez, D. M. (2001) A comparison of saliva testing to urinalysis in an arrestee population. J. Psychoactive Drugs 33, 289–294.PubMedGoogle Scholar
  109. 109.
    Walsh, J. M., Flegel, R., Crouch, D. J., Cangianelli, L., and Baudys, J. (2003) An evaluation of rapid-point-of-collection oral fluid drug-testing devices. J. Anal. Toxicol. 27, 429–439.PubMedGoogle Scholar
  110. 111.
    Menkes, D. B., Howard, R. C., Spears, G. F., and Cairns, E. R. (1991) Salivary THC following Cannabis smoking correlates with subjective intoxication and heart rate. Psychopharmacology 103, 277–279.PubMedGoogle Scholar
  111. 113.
    Steinmeyer, S., Ohr, H., Maurer, H. J., and Moeller, M. R. (2001) Practical aspects of roadside tests for administrative traffic offences in Germany. Forensic Sci. Int. 121, 33–36.PubMedGoogle Scholar
  112. 114.
    Cone, E. J., Johnson, R. E., Darwin, W. D., et al. (1987) Passive inhalation of marijuana smoke: urinalysis and room air levels of delta-9-tetrahydrocannabinol. J. Anal. Toxicol. 11, 89–96.PubMedGoogle Scholar
  113. 115.
    Hayden, J. W. (1991) Passive inhalation of marijuana smoke: a critical review. J. Substance Abuse 3, 85–90.Google Scholar
  114. 116.
    Mule, S. J., Lomax, P., and Gross, S. J. (1988) Active and realistic passive marijuana exposure tested by three immunoassays and GC/MS in urine. J. Anal. Toxicol. 12, 113–116.PubMedGoogle Scholar
  115. 117.
    Kidwell, D. A., Holland, J. C., and Athanaselis, S. (1998) Testing for drugs of abuse in saliva and sweat. J. Chromatogr. B Biomed. Sci. Appl. 713, 111–135.PubMedGoogle Scholar
  116. 118.
    Crouch, D. J., Cook, R. F., Trudeau, J. V., et al. (2001) The detection of drugs of abuse in liquid perspiration. J. Anal. Toxicol. 25, 625–627].PubMedGoogle Scholar
  117. 119.
    Kintz, P. (1996) Drug testing in addicts: a comparison between urine, sweat, and hair. Ther. Drug Monit. 18, 450–455.PubMedGoogle Scholar
  118. 120.
    Cone, E. J. (1996) Mechanisms of drug incorporation into hair. Ther. Drug Monit. 18, 438–443.PubMedGoogle Scholar
  119. 121.
    Borges, C. R., Roberts, J. C., Wilkins, D. G., and Rollins, D. E. (2003) Cocaine, benzoylecgonine, amphetamine, and N-acetylamphetamine binding to melanin subtypes. J. Anal. Toxicol. 27, 125–134.PubMedGoogle Scholar
  120. 122.
    Cone, E. J., Darwin, W. D., and Wang, W. L. (1993) The occurrence of cocaine, heroin and metabolites in hair of drug abusers. Forensic. Sci. Int. 63, 55–68.PubMedGoogle Scholar
  121. 123.
    Rollins, D. E., Wilkins, D. G., Krueger, G. G., et al. (2003) The effect of hair color on the incorporation of codeine into human hair. J. Anal. Toxicol. 27, 545–551.PubMedGoogle Scholar
  122. 124.
    Henderson, G. L., Harkey, M. R., Zhou, C., Jones, R. T., and Jacob, P. III (1996) Incorporation of isotopically labeled cocaine and metabolites into human hair: 1. Dose-response relationships. J. Anal. Toxicol. 20, 1–12.PubMedGoogle Scholar
  123. 125.
    Cone, E. J. (1990) Testing human hair for drugs of abuse. I. Individual dose and time profiles of morphine and codeine in plasma, saliva, urine, and beard compared to druginduced effects on pupils and behavior. J. Anal. Toxicol. 14, 1–7.PubMedGoogle Scholar
  124. 126.
    Joseph, R. E., Jr., Hold, K. M., Wilkins, D. G., Rollins, D. E., and Cone, E. J. (1999) Drug testing with alternative matrices II. Mechanisms of cocaine and codeine deposition in hair. J. Anal. Toxicol. 23, 396–408.PubMedGoogle Scholar
  125. 127.
    Kintz, P., Cirimele, V., Jamey, C., and Ludes, B. (2003) Testing for GHB in hair by GC/ MS/MS after a single exposure. Application to document sexual assault. J. Forensic Sci. 48, 195–200.PubMedGoogle Scholar
  126. 128.
    Miyazawa, N. and Uematsu, T. (1992) Analysis of ofloxacin in hair as a measure of hair growth and as a time marker for hair analysis. Ther. Drug Monit. 14, 525–528.PubMedGoogle Scholar
  127. 129.
    Baez, H., Castro, M. M., Benaventa, M. A., et al. (2000) Drugs in prehistory: chemical analysis of ancient human hair. Forensic Sci. Int. 108, 173–179.PubMedGoogle Scholar
  128. 130.
    Springfield, A. C., Cartmell, L. W., Aufderheide, A. C., Buikstra, J., and Ho, J. (1993) Cocaine and metabolites in the hair of ancient Peruvian coca leaf chewers. Forensic. Sci. Int. 63, 269–275.PubMedGoogle Scholar
  129. 131.
    Goldberger, B. A., Darraj, A. G., Caplan, Y. H., and Cone, E. J. (1998) Detection of methadone, methadone metabolites, and other illicit drugs of abuse in hair of methadonetreatment subjects. J. Anal. Toxicol. 22, 526–530.PubMedGoogle Scholar
  130. 132.
    Cairns, T., Kippenberger, D. J., and Gordon, A. M. (1997) Hair analysis for detection of drugs of abuse, in Handbook of Analytical Therapeutic Drug Monitoring and Toxicology (Wong, S. H. Y. and Sunshine, I., eds.) CRC Press, New York, pp. 237–251.Google Scholar
  131. 133.
    Thorspecken, J., Skopp, G., and Potsch, L. (2004) In vitro contamination of hair by marijuana smoke. Clin. Chem. 50, 596–602.PubMedGoogle Scholar
  132. 134.
    Kintz, P., Cirimele, V., and Mangin, P. (1995) Testing human hair for Cannabis II. Identification of THC-COOH by GC-MS-NCI as a unique proof. J. Forensic Sci. 40, 619–622.PubMedGoogle Scholar
  133. 135.
    Jurado, C., Menendez, M., Repetto, M., Kintz, P., Cirimele, V., and Mangin, P. (1996) Hair testing for Cannabis in Spain and France: is there a difference in consumption? J. Anal. Toxicol. 20, 111–115.PubMedGoogle Scholar
  134. 136.
    Cirimele, V., Kintz, P., and Mangin, P. (1995) Testing human hair for Cannabis. Forensic Sci. Int. 70, 175–182.PubMedGoogle Scholar
  135. 137.
    Cairns, T., Kippenberger, D. J., Scholtz, H., and Baumgartner, W. A. (1995) Determination of carboxy-THC in hair by mass spectrometry, in Hair Analysis in Forensic Toxicology: Proceedings of the 1995 International Conference and Workshop (de Zeeuw, R. A., Al Hosani, I., Al Munthiri, S., and Maqbool, A., eds.), The Organizing Committee of the Conference, Abu Dhabi, pp. 185–193.Google Scholar
  136. 138.
    Jurado, C. and Sachs, H. (2003) Proficiency test for the analysis of hair for drugs of abuse, organized by the Society of Hair Testing. Forensic Sci. Int. 133, 175–178.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, New Jersey 2007

Authors and Affiliations

  • Marilyn A. Huestis
    • 1
  • Michael L. Smith
    • 2
  1. 1.Chemistry and Drug Metabolism, Intramural Research ProgramNational Institute on Drug Abuse, National Institutes of HealthBaltimore
  2. 2.Division of Forensic ToxicologyOffice of the Armed Forces Medical ExaminerRockville

Personalised recommendations