Pharmacology of Cannabinoids

  • Lionel P. Raymon
  • H. Chip Walls
Part of the Forensic Science And Medicine book series (FSM)


Ever since the cloning of two distinct cannabinoid receptors and the discovery of lipids derived from arachidonic acid as endogenous ligands, cannabinoid pharmacology has received increased attention and yielded new insights in the understanding of the complex effects of smoking marijuana. Novel receptors offer the prospect of new therapeutics, and after decades of sparse research cannabinoid pharmacology is once again on the forefront of medical news. The use of molecular biology techniques, such as knockout mice, and the development of antagonists and agonists of the cannabinoid receptors are slowly unraveling a network of intricate physiological and neurological effects.


Basal Ganglion Ventral Tegmental Area Fatty Acid Amide Hydrolase Association Cortex Glyceryl Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Devane, W. A., Hanus, L., Breuer, A., et al. (1992) Isolation and structure of a brainconstituent that binds to the cannabinoid receptor. Science 258, 1946–1949.PubMedCrossRefGoogle Scholar
  2. 2.
    Mechoulam, R., Ben-Shabat, S., Hanus, L., et al. (1995) Identification of an endogenous2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem.Pharmacol. 50, 83–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Sugiura, T., Kondo, S., Sukagawa, A., et al. (1995) 2-Arachidonoylglycerol: a possibleendogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215 (1), 89–97.Google Scholar
  4. 4.
    Stella, N., Schweitzer, P., and Piomelli, D. (1997) A second endogenous cannabinoid thatmodulates long-term potentiation. Nature 388, 773–778.PubMedCrossRefGoogle Scholar
  5. 5.
    Hanus, L., Abu-Lafi, S., Fride, E., et al. (2001) 2-Arachidonyl glyceryl ether, an endogenousagonist of the cannabinoid CB1 receptor. Proc. Natl. Acad. Sci. USA 98(7), 3662–3665.PubMedCrossRefGoogle Scholar
  6. 6.
    Di Marzo, V., Fontana, A., Cadas, H., et al. (1994) Formation and inactivation of endogenouscannabinoid anandamide in central neurons. Nature 372, 686-691.Google Scholar
  7. 7.
    Sugiura, T., Kondo, S., Sukagawa, A., et al. (1996) Enzymatic synthesis of anandamide,an endogenous cannabinoid receptor ligand, through N-acylphosphatidylethanolaminepathway in testis: involvement of Ca2+-dependent transacylase and phosphodiesterase activities. Biochem. Biophys. Res. Commun. 218, 113–117.PubMedCrossRefGoogle Scholar
  8. 8.
    Cadas, H., Gaillet, S., Beltramo, M., Venance, L., and Piomelli, D. (1996) Biosynthesisof an endogenous cannabinoid precursor in neurons and its control by calcium and cAMP.J. Neurosci. 16, 3934–3942.PubMedGoogle Scholar
  9. 9.
    Cadas, H., di Tomaso, E., and Piomelli, D. (1997) Occurrence and biosynthesis of endogenouscannabinoid precursor, N-arachidonoyl phosphatidylethanolamine in rat brain. J.Neurosci. 17, 1226–1242.PubMedGoogle Scholar
  10. 10.
    Piomelli, D., Beltramo, M., Giuffrida, A., and Stella, N. (1998) Endogenous cannabinoidsignaling. Neurobiol. Dis. 5, 462–473.Google Scholar
  11. 11.
    Hillard, C. J. and Jarrahian, A. (2000) The movement of N-arachidonoylethanolamine(anandamide) across cellular membranes. Chem. Phys. Lipids 108, 123–134.PubMedCrossRefGoogle Scholar
  12. 12.
    Giuffrida, A., Beltramo, M., and Piomelli, D. (2001) Mechanisms of endocannabinoidinactivation: biochemistry and pharmacology. J. Pharmacol. Exp. Ther. 298, 7–14.PubMedGoogle Scholar
  13. 13.
    Ueda, N., Puffenbarger, R. A., Yamamoto, S., and Deutsch, D. G. (2000) The fatty acidamide hydrolase (FAAH). Chem. Phys. Lipids 108, 107–121.PubMedCrossRefGoogle Scholar
  14. 14.
    Pertwee, R. G. and Ross, R. A. (2002) Cannabinoid receptors and their ligands. Prostag-landinsLeukot. Essent. Fatty Acids 66(2,3), 101–121.CrossRefGoogle Scholar
  15. 15.
    Iversen, L. (2003) Cannabis and the brain. Brain 126, 1252–1270.PubMedCrossRefGoogle Scholar
  16. 16.
    Wilson, R. I. and Nicoll, R. A. (2001) Endogenous cannabinoids mediate retrograde signalingat hippocampal synapses. Nature 410, 588–592.PubMedCrossRefGoogle Scholar
  17. 17.
    Kreitzer, A. C. and Regehr, W. G. (2001) Retrograde inhibition of presynaptic calciuminflux by endogenous cannabinoids at excitatory synapses onto Purkinje cells. Neuron 29, 717–727.PubMedCrossRefGoogle Scholar
  18. 18.
    Ohno-Shosaku, T., Maejima, T., and Kano, M. (2001) Endogenous cannabinoids mediateretrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29, 729–738.PubMedCrossRefGoogle Scholar
  19. 19.
    Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C., and Bonner, T.I. (1990)Structure of a cannabinoid receptor and functional expression the cloned cDNA. Nature 346, 561–564.PubMedCrossRefGoogle Scholar
  20. 20.
    Gerard, C.M., Mollereau, C., Vassart, G., and Parmentier, M. (1991) Molecular cloning ofa human cannabinoid receptor which is also expressed in testis. Biochem. J. 279, 129–134.PubMedGoogle Scholar
  21. 21.
    Munro, S., Thomas, K. L., and Abu-Shaar, M. (1993) Molecular characterization of aperipheral receptor for cannabinoids. Nature 365, 61–65.PubMedCrossRefGoogle Scholar
  22. 22.
    Howlett, A. C., Barth, F., Bonner, T. I., et al. (2002) International union of pharmacol-ogy. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 54, 161–202.PubMedCrossRefGoogle Scholar
  23. 23.
    Childers, S.R. and Deadwyler, S. A. (1996) Role of cyclic AMP in the actions of cannabinoidreceptors. Biochem. Pharmacol. 52, 819–827.PubMedCrossRefGoogle Scholar
  24. 24.
    Caulfield, M. P. and Brown, D. A. (1992) Cannabinoid receptor agonists inhibit Ca2+current in NG108-15 neuroblastoma cells via a pertussis toxin-sensitive mechanism. Br.J. Pharmacol. 106, 231–232.PubMedGoogle Scholar
  25. 25.
    Schlicker, E. and Kathmann, M. (2001) Modulation of transmitter release via presynapticcannabinoid receptors. Trends Pharmacol. Sci. 22, 565–572.PubMedCrossRefGoogle Scholar
  26. 26.
    Derkinderen, P., Toutant, M., Burgaya, F., et al. (1996) Regulation of a neuronal form offocal adhesion kinase by anandamide. Science 273, 1719-1722.Google Scholar
  27. 27.
    Wartmann, M., Campbell, D., Subramanian, A., Burstein, S. H., and Davis, R. J. (1995)The MAP kinase signal transduction pathway is activated by the endogenous cannabinoidanandamide. FEBS Lett. 359, 133–136.PubMedCrossRefGoogle Scholar
  28. 28.
    De Petrocellis, L., Melck, D., Palmisano, A., et al. (1998) The endogenous cannabinoidanandamide inhibits human breast cancer cell proliferation. Proc. Natl. Acad. Sci. USA 95, 8375–8380.PubMedCrossRefGoogle Scholar
  29. 29.
    Herkenham, M., Lynn, A. B., Little, M. D., et al. (1990) Cannabinoid receptor localizationin brain. Proc. Natl. Acad. Sci. USA 87, 1932–1936.PubMedCrossRefGoogle Scholar
  30. 30.
    Ergotova, M. and Elphick, M. R. (2000) Localisation of cannabinoid receptors in the ratbrain using antibodies to the intracellular C-terminal tail of CB1. J. Comp. Neurol. 422, 159–171.CrossRefGoogle Scholar
  31. 31.
    Glass, M., Dragunow, M., and Faull, R. L. M. (1997) Cannabinoid receptors in the humanbrain: a detailed anatomical and quantitative autoradiographic study in the fetal,neonatal and adult human brain. Neuroscience 77, 299–318.PubMedCrossRefGoogle Scholar
  32. 32.
    Elphick, M. R. and Egertova, M. (2001) The neurobiology and evolution of cannabinoidsignalling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 381–408.PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriguez de Fonseca, F., Del Arco, I., Martin-Calderon, J. L., Gorriti, M.A., and Navarro, M. (1998) Role of the endogenous cannabinoid system in the regulation of motoractivity. Neurobiol. Dis. 5, 483–501.PubMedCrossRefGoogle Scholar
  34. 34.
    Greenberg, H. S., Werness, S. A., Pugh, J. E., Andrus, R. O., Anderson, D. J., and Domino, E. F. (1994) Short-term effects of smoking marijuana on balance in patientswith multiple sclerosis and normal volunteers. Clin. Pharmacol. Ther. 55, 324–328.PubMedCrossRefGoogle Scholar
  35. 35.
    Manno, J. E., Kiplinger, G.F., Haine, S. E., Bennett, I.F., and Forney, R. B. (1970) Comparativeeffects of smoking marihuana or placebo on human motor and mental performance.Clin. Pharmacol. Ther. 11(6), 808–15.PubMedGoogle Scholar
  36. 36.
    Zimmer, A., Zimmer, A. M., Hohmann, A. G., Herkenham, M., and Bonner, T. I. (1999)Increased mortality, hypoactivity and hypoalgesia in cannabinoid CB1 receptor knockoutmice. Proc. Natl. Acad. Sci. USA 96, 5780–5785.PubMedCrossRefGoogle Scholar
  37. 37.
    Ledent, C., Valverde, O., Cossu, G., et al. (1999) Unresponsiveness to cannabinoids andreduced addictive effects of opiates in CB1 receptor knockout mice. Science 283, 401–404.PubMedCrossRefGoogle Scholar
  38. 38.
    Compton, D. R., Aceto, M. D., Lowe, J., and Martin, B. R. (1996) In vivo characterizationof a specific cannabinoid receptor antagonist (SR141716A): inhibition of ?9-tetrahy-drocannabinol-induced responses and apparent agonist activity. J. Pharmacol. Exp. Ther. 277, 586–594.PubMedGoogle Scholar
  39. 39.
    Jones, R. T. (1978) Marihuana: human effects, in Handbook of Psychopharmacology,Vol. 12 (Iversen, S. D. and Snyder, S. H., eds.), Plenum Press, New York, pp. 373–412.Google Scholar
  40. 40.
    Mendelson, J. H., Babor, T. F., Kuehnle, J. C., et al. (1976) Behavioral and biologicaspects of marijuana use. Ann. NYAcad. Sci. 282, 186–210.CrossRefGoogle Scholar
  41. 41.
    Hampson, R. E. and Deadwyler, S. A. (1999) Cannabinoids, hippocampal function andmemory. Life Sci. 65, 715–723.PubMedCrossRefGoogle Scholar
  42. 42.
    Lichtman, Martin, B. R. (1996) Δ9-Tetrahydrocannabinol impairs spatialmemory through a cannabinoid receptor mechanism. Psychopharmacology 126, 125–131.PubMedCrossRefGoogle Scholar
  43. 43.
    Mallet, P. E. and Beninger, R. J. (1998) The cannabinoid CB1 receptor antagonistSR141716A attenuates the memory impairment produced by ?9-tetrahydrocannabinol oranandamide. Psychopharmacology 140, 11–19.PubMedCrossRefGoogle Scholar
  44. 44.
    Katona, I., Sperlagh, B., Magloczky, Z., et al. (2000) GABAergic interneurons are thetargets of cannabinoid actions in the human hippocampus. Neuroscience 100(4), 797–804.PubMedCrossRefGoogle Scholar
  45. 45.
    Bohme, G. A., La Ville, M., Ledent, C., Parmentier, M., and Imperato, A. (2000) Enhancedlong term potentiation in mice lacking cannabinoid CB1 receptors. Neuroscience 95(1), 5–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Reibaud, M., Obinu, M. C., Ledent, C., Parmentier, M., Bohme, G. A., and Imperato, A.(1999) Enhancement of memory in cannabinoid CB1 receptor knockout mice. Eur. J.Pharmacol. 379, R1–R2.PubMedCrossRefGoogle Scholar
  47. 47.
    Terranova, J. P., Storme, J. J., Lafon, N., et al. (1996) Improvement of memory in rodentsby the selective CB1 cannabinoid receptor antagonist, SR 141716. Psychopharmacology 126, 165–72.PubMedCrossRefGoogle Scholar
  48. 48.
    Katona, I., Rancz, E. A., Acsady, L., et al. (2001) Distribution of CB1 receptors in theamygdala and their role in the control of GABAergic transmission. J. Neurosci. 21(23), 9506–9518.PubMedGoogle Scholar
  49. 49.
    Hall, W. and Degenhardt, L. (2000) Cannabis use and psychosis: a review of clinical andepidemiological evidence. Aust. NZ J. Psychiatry 34, 26–34.CrossRefGoogle Scholar
  50. 50.
    Johns, A. (2001) Psychiatric effects of Cannabis. Br. J. Psychiatry 178, 116–122.PubMedCrossRefGoogle Scholar
  51. 51.
    Di Marzo, V., Goparaju, S. K., Wang, L., et al. (2001) Leptin-regulated endocannabinoidsare involved in maintaining food intake. Nature 410, 822–825.PubMedCrossRefGoogle Scholar
  52. 52.
    Beal, J. E., Olson, R., Laubenstein, L., et al. (1995) Dronabinol as a treatment for anorexiaassociated with weight loss in patients with AIDS. J. Pain Symptom Manage. 10(2), 89–97.PubMedCrossRefGoogle Scholar
  53. 53.
    Colombo, G., Agabio R., Diaz, G., Lobina, C., Reali, R., and Gessa, G.L. (1998) Appetitesuppression and weight loss after the cannabinoid antagonist SR141716A. Life Sci. 63, PL113–117.PubMedCrossRefGoogle Scholar
  54. 54.
    Herkenham, M., Lynn, A. B., Johnson, M. R., Melvin, L. S., de Costa, B. R., and Rice, K.C. (1991) Characterization and localization of cannabinoid receptors in rat brain: a quantitativein vitro autoradiographic study. J. Neurosci. 11, 563–583.PubMedGoogle Scholar
  55. 55.
    Bensaid, M., Gary-Bobo, M., Esclangon, A., et al. (2003) The cannabinoid CB1 receptorantagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol. Pharmacol. 63(4), 908–914.PubMedCrossRefGoogle Scholar
  56. 56.
    Murphy, L. L., Steger, R. W., Smith, M. S., and Bartke, A. (1990) Effects of delta-9tetrahydrocannabinol, cannabinol and cannabidiol, alone and in combinations, on lutein-izinghormone and prolactin release and on hypothalamic neurotransmitters in the malerat. Neuroendocrinology 52, 316–321.PubMedGoogle Scholar
  57. 57.
    Rettori, V., Wenger, T., Snyder, G., Dalterio, S., and McCann, S. M. (1988) Hypotha-lamicaction of delta-9-tetrahydrocannabinol to inhibit the release of prolactin and growthhormone in the rat. Neuroendocrinology 47, 498–503.PubMedGoogle Scholar
  58. 58.
    Fan, P. (1995) Cannabinoid agonists inhibit the activation of 5HT3 receptors in rat nodoseganglion neurons. J. Neurophysiol. 73, 907–910.PubMedGoogle Scholar
  59. 59.
    Hohmann, A. G. and Herkenham, M. (1999) Cannabinoid receptors undergo axonal flowin sensory nerves. Neuroscience 92(4), 1171–1175.PubMedCrossRefGoogle Scholar
  60. 60.
    Richardson, J. D., Kilo, S., and Hargreaves, K. M. (1998) Cannabinoids reduce hyperal-gesiaand inflammation via interaction with peripheral CB1 receptors. Pain 75, 111–119.PubMedCrossRefGoogle Scholar
  61. 61.
    Pertwee, R. G. (2001) Cannabinoid receptors and pain. Prog. Neurobiol. 63, 569–611.PubMedCrossRefGoogle Scholar
  62. 62.
    Drew, L. J., Harris, J., Millns, P. J., Kendall, D. A., and Chapman, V. (2000) Activationof spinal cannabinoid 1 receptors inhibits C-fibre driven hyperexcitable neuronal responsesand increases [35S]GTPγS binding in the dorsal horn of the spinal cord ofnoninflamed and inflamed rats. Eur. J. Neurosci. 12, 2079–2086.PubMedCrossRefGoogle Scholar
  63. 63.
    Hohmann, A. G. and Herkenham, M. (1998) Regulation of cannabinoid and mu opioidreceptors in rat lumbar spinal cord following neonatal capsaicin treatment. Neurosci. Lett. 252, 13–16.PubMedCrossRefGoogle Scholar
  64. 64.
    Walker, J. M. and Huang, S. M. (2002) Cannabinoid analgesia. Pharmacol. Ther. 95, 127–135.PubMedCrossRefGoogle Scholar
  65. 65.
    Fuentes, J. A., Ruiz-Gayo, M., Manzanares, J., Vela, G., Reche, I., and Corchero, J. (1999)Cannabinoids as potential new analgesics. Life Sci. 65(6-7), 675–685.PubMedCrossRefGoogle Scholar
  66. 66.
    Lichtman, A. H. and Martin, B. R. (1991) Spinal and supraspinal components of cannab-inoid-inducedantinociception. J. Pharmacol. Exp. Ther. 258, 517–523.PubMedGoogle Scholar
  67. 67.
    Di Marzo, V., Breivogel, C. S., Tao, Q., et al. (2000) Levels, metabolism, and pharmacologicalactivity of anandamide in CB1 cannabinoid receptor knockout mice: evidencefor non-CB1, non-CB2 receptor-mediated actions of anandamide in mouse brain. J.Neurochem. 75(6), 2434–2444.PubMedCrossRefGoogle Scholar
  68. 68.
    Di Marzo, V., Bisogno, T., and De Petrocellis, L. (2001) Anandamide: some like it hot.Trends Pharmacol. Sci. 22(7), 346–349.PubMedCrossRefGoogle Scholar
  69. 69.
    Breivogel, C. S., Griffin, G., Di Marzo, V., and Martin, B. R. (2001) Evidence for a new Gprotein-coupled cannabinoid receptor in mouse brain. Molec. Pharmacol. 60(1), 155–163.Google Scholar
  70. 70.
    Benham, C. D., Davis, J. B., and Randall, A. D. (2002) Vanilloid and TRP channels: afamily of lipid-gated cation channels. Neuropharmacology 42, 873–888.PubMedCrossRefGoogle Scholar
  71. 71.
    Huestis, M. A., Gorelick, D. A., Heishman, S. J., et al. (2001) Blockade of effects ofsmoked marijuana by the CB1-selective cannabinoid receptor antagonist SR141716. Arch.Gen. Psychiatry 58, 322–328.PubMedCrossRefGoogle Scholar
  72. 72.
    Wise, R. A. (1987) The role of reward pathways in the development of drug dependence.Pharmacol. Ther. 35, 227–263.PubMedCrossRefGoogle Scholar
  73. 73.
    French, E. D., Dillon, K., and Wu, X. (1997) Cannabinoids excite dopamine neurons inthe ventral tegmentum and substantia nigra. Neuroreport 8, 649–652.PubMedCrossRefGoogle Scholar
  74. 74.
    Tanda, G., Pontieri, F. E., and Di Chiara, G. (1997) Cannabinoid and heroin activation ofmesolimbic dopamine transmission by a common μ opioid receptor mechanism. Science 276, 2048–2050.PubMedCrossRefGoogle Scholar
  75. 75.
    Navarro, M., Chowen, J., Carrera, M., et al. (1998) CB1 cannabinoid receptor antagonist-inducedopiate withdrawal in morphine-dependent rats. Neuroreport 9, 3397–3402.PubMedCrossRefGoogle Scholar
  76. 76.
    Manzanares, J., Corchero, J., Romero, J., Fernandez-Ruiz, J. J., Ramos, J. A., and Fuentes,J. A. (1999) Pharmacological and biochemical interactions between opioids and cannabinoids.Trends Pharmacol. Sci. 20, 287–294.PubMedCrossRefGoogle Scholar
  77. 77.
    Wachtel, S. R. and De Wit, H. (2000) Naltrexone does not block the subjective effects oforal Δ9-tetrahydrocannabinol in humans. Drug Alcohol Depend. 59, 251–260.PubMedCrossRefGoogle Scholar
  78. 78.
    Budney, A. J., Hughes, J. R., Moore, B. A., and Novy, P. L. (2001) Marijuana abstinenceeffects in marijuana smokers maintained in their home environment. Arch. Gen. Psychiatry 58, 917–924.PubMedCrossRefGoogle Scholar
  79. 79.
    Aceto, M. D., Scates, S. M., Lowe, J. A., and Martin, B. R. (1996) Dependence on delta-9-tetrahydrocannabinol:studies on precipitated and abrupt withdrawal. J. Pharmacol.Exp. Ther. 278, 1290–1295.PubMedGoogle Scholar
  80. 80.
    Oviedo, A., Glowa, J., and Herkenham, M. (1993) Chronic cannabinoid administrationalters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study.Brain Res. 616, 293–302.PubMedCrossRefGoogle Scholar
  81. 81.
    Coutts, A. A., Anavi-Goffer, S., Ross, R. A., et al. (2001) Agonist-induced internaliza-tionand trafficking of cannabinoid CB1 receptors in hippocampal neurons. J. Neurosci. 21(7), 2425–2433.PubMedGoogle Scholar
  82. 82.
    Bass, C. E. and Martin, B. R. (2000) Time course for the induction and maintenance oftolerance to ?9-tetrahydrocannabinol in mice. Drug Alcohol Depend. 60, 113–119.PubMedCrossRefGoogle Scholar
  83. 83.
    Wu, X. and French, E. D. (2000) Effects of chronic ?9-tetrahydrocannabinol on rat mid-braindopamine neurons: an electrophysiological assessment. Neuropharmacology 39, 391–398.PubMedCrossRefGoogle Scholar
  84. 84.
    Pope, H. G. Jr., Gruber, A. J., Hudson, J. I., Huestis, M. A., and Yurgelun-Todd, D.(2001) Neuropsychological performance in long term Cannabis users. Arch. Gen. Psychiatry 58, 909–915.PubMedCrossRefGoogle Scholar
  85. 85.
    Benowitz, N. L. and Jones, R. T. (1975) Cardiovascular effects of prolonged delta-9-tetrahydrocannabinolingestion. Clin. Pharmacol. Ther. 18, 287–297.PubMedGoogle Scholar
  86. 86.
    Benowitz, N. L., Rosenberg, J., Rogers, W., Bachman, J., and Jones, R. T. (1979) Cardiovasculareffects of intravenous delta-9-tetrahydrocannabinol: autonomic nervous mechanisms.Clin. Pharmacol. Ther. 25, 440–446.PubMedGoogle Scholar
  87. 87.
    Tsou, K., Brown, S., Sanudo-Pena, M.C., Mackie, K., and Walker, J.M (1998) Immuno-histochemicaldistribution of cannabinoid CB1 receptors in the rat central nervous system.Neurosci. 83(2), 393–411.CrossRefGoogle Scholar
  88. 88.
    Niederhoffer, N. and Szabo, B. (1999) Effect of the cannabinoid receptor agonist WIN55212-2 on sympathetic cardiovascular regulation. Br. J. Pharmacol. 126, 457–466.PubMedCrossRefGoogle Scholar
  89. 89.
    Ellis, E. F., Moore, S. F., and Willoughby, K. A. (1995) Anandamide and delta 9-THCdilation of cerebral arterioles is blocked by indomethacin. Am. J. Physiol. (Heart Circul.)269, H1859–H1864.Google Scholar
  90. 90.
    White, R. and Hiley, C. R. (1998) The actions of some cannabinoid receptor ligands inthe rat isolated mesenteric artery. Br. J. Pharmacol. 125, 533–541.PubMedCrossRefGoogle Scholar
  91. 91.
    Zygmunt, P. M., Petersson, J., Andersson, D. A., et al. (1999) Vanilloid receptors onsensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457.PubMedCrossRefGoogle Scholar
  92. 92.
    Offertaler, L., Mo, F. M., Batkai, S., et al. (2003) Selective ligands and cellular effectorsof a G-protein coupled endothelial cannabinoid receptor. Mol. Pharmacol. 63(3), 699–705.PubMedCrossRefGoogle Scholar
  93. 93.
    Klein, T. W., Newton, C., and Friedman, H. (1998) Cannabinoid receptors and immunity.Immunol. Today 19(8), 373–381.PubMedCrossRefGoogle Scholar
  94. 94.
    Berdyshev, E.V., Boichot, E., Germain, N., Allain, N., Anger, J. P., and Lagente, V.(1997) Influence of fatty acid ethanolamides and Δ9-tetrahydrocannabinol on cytokineand arachidonate release by mononuclear cells. Eur. J. Pharmacol. 330, 231–240.PubMedCrossRefGoogle Scholar
  95. 95.
    Zhu, L. X., Sharma, S., Stolina, M., et al. (2000) E. J. Immunol. 165, 373–380.PubMedGoogle Scholar
  96. 96.
    Hwang, S. W. and Oh, U. (2002) Hot channels in airways: pharmacology of the vanilloidreceptor. Curr. Opin. Pharmacol. 2, 235–242.PubMedCrossRefGoogle Scholar
  97. 97.
    Lyman, W. D., Sonett, J. R., Brosnan, C. F., Elkin, R., and Bornstein, M. B. (1989) Delta-9-tetrahydrocannabinol:a novel treatment for experimental autoimmune encephalomy-elitis.J. Neuroimmunol. 23(1), 73–81.PubMedCrossRefGoogle Scholar
  98. 98.
    Pertwee, R. G. (2002) Cannabinoids and multiple sclerosis. Pharmacol. Ther. 95, 165–174.PubMedCrossRefGoogle Scholar
  99. 99.
    Killestein, J., Hoogervorst, E. L., Reif, M., et al. (2003) Immunomodulatory effects oforally administered cannabinoids in multiple sclerosis. J. Neuroimmunol. 137, 140–143.PubMedCrossRefGoogle Scholar
  100. 100.
    Liu, J., Li, H., Burstein, S. H., Zurier, R. B., and Chen, J. D. (2003) Activation and bindingof peroxisome proliferator-activated receptor γ by synthetic cannabinoid ajulemicacid. Mol. Pharmacol. 63(5), 983–992.PubMedCrossRefGoogle Scholar
  101. 101.
    Faubert, B. L. and Kaminski, N. E. (2000) AP-1 activity is negatively regulated by can-nabinolthrough inhibition of its protein components, c-fos and c-jun. J. Leukoc. Biol. 67, 259–266.PubMedGoogle Scholar
  102. 102.
    Sancho, R., Calzado, M. A., Di Marzo, V., Appendino, G., and Munoz, E. (2003)Anandamide inhibits nuclear factor kB activation through a cannabinoid receptor-independentpathway. Mol. Pharmacol. 63(2), 429–438.PubMedCrossRefGoogle Scholar
  103. 103.
    Zheng, Z. M. and Specter, S. (1996) Delta-9-tetrahydrocannabinol: an inhibitor ofSTAT1α protein tyrosine phosphorylation. Biochem. Pharmacol. 51, 967–973.PubMedCrossRefGoogle Scholar
  104. 104.
    Clermont-Gnamien, S., Atlani, S., Attal, N., Le Mercier, F., Guirimand, F., and Brasseur, L. (2002) The therapeutic use of ?9-tetrahydrocannabinol (dronabinol) in refractory neuropathicpain. [French]. Presse Med. 31, 1840–1845.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, New Jersey 2007

Authors and Affiliations

  • Lionel P. Raymon
    • 1
  • H. Chip Walls
    • 2
  1. 1.Kaplan Medical, Pharmacology Chair and Department of Pathology, Miller School of MedicineUniversity of MiamiMiami
  2. 2.Technical Director, Forensic Toxicology Laboratory, Miller School of MedicineUniversity of Miami, School of MedicineHomestead

Personalised recommendations