Skip to main content

Skeletal Myoblast Transplantation for Cardiac Repair

  • Chapter
Angiogenesis and Direct Myocardial Revascularization

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Coronary heart disease remains the single largest killer of American men and women. The American Heart Association statistics show that approx 1.1 million Americans suffer a myocardial infarction (MI) annually. Of those who survive, 22% of men and 46% of women are disabled with heart failure (1). Although cardiomyocytes of infarcted or failing human hearts have been shown to undergo mitoses (2,3), this regenerative capacity is by far too limited to compensate for the loss of cardiac cells resulting from a large infarct. In areas of ischemia, cell death ensues and scar forms in the place of myocardium. The remaining myocardial cells respond to mitotic signals by hypertrophy rather than hyperplasia. Necrotized myocardial cells are replaced by fibroblasts. If no viable myocardium is present, scar formation ensues with ventricular wall thinning and dilation of the ventricular cavity. This leads to symptoms of heart failure in a significant number of patients. For conventional coronary revascularization to be beneficial, viable myocardium must be present. The prognosis for these patients is poor, with a 1-yr mortality rate of 20% and a 5-yr mortality rate of close to 50% (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2003 Heart and Stroke Statistical Update. American Heart Association, 2003.

    Google Scholar 

  2. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci 1998;95:8801–8805.

    Article  PubMed  CAS  Google Scholar 

  3. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750–1757.

    Article  PubMed  CAS  Google Scholar 

  4. URREA; UNOS. 2002 Annual Report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1992–2001 [Internet]. Rockville (MD): HHS/HRSA/OSP/DOT; 2003 [modified 2003 Feb 18]. Available from: http://www.optn.org/data/annualReport.asp.

    Google Scholar 

  5. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long term mechanical left ventricular assist device for endstage heart failure. N Engl J Med 2001;345:1435–1443.

    Article  PubMed  CAS  Google Scholar 

  6. Li R-K, Jia Z-Q, Weisel RD, et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 1996;62:654–661.

    Article  PubMed  CAS  Google Scholar 

  7. Scorsin M, Hagège A.A, Marotte F, et al. Does transplantation of cardiomyocytes improve function of infarcted myocardium. Circulation 1997;96(Suppl II):188–193.

    Google Scholar 

  8. Müller-Ehmsen J, Peterson KL, Kedes L, et al. Long term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation 2002;105:1720–1726.

    Article  PubMed  Google Scholar 

  9. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763–776.

    Article  PubMed  CAS  Google Scholar 

  10. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiomyocytes divide after myocardial infarction. N Engl J Med 2001;344:1750–1757.

    Article  PubMed  CAS  Google Scholar 

  11. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961;9:493–495.

    Article  PubMed  CAS  Google Scholar 

  12. Mannion JD, Bitto T, Hammond NA, et al. Histochemical and fatigue characteristics of conditioned canine latissimus dorsi muscle. Circ Res 1986;58:298–304.

    PubMed  CAS  Google Scholar 

  13. Murry CE, Wiseman RW, Schwartz SM, et al. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996:98:2512–2523.

    Article  PubMed  CAS  Google Scholar 

  14. Alberts B, Bray D, Lewis J, et al. Differentiated cells and the maintenance of tissues. In: Molecular Biology of the Cell, 3d ed. Garland, New York:1994;1161–1175.

    Google Scholar 

  15. Eckert P, Schnackerz K. Ischemic tolerance of human skeletal muscle. Ann Plast Surg 1991;26:77–84.

    Article  PubMed  CAS  Google Scholar 

  16. Wolff KD, Stiller D. Ischemic Tolerance of free-muscle flaps: an NMR-spectroscopic study in the rat. Plast Reconstr Surg 1993;91:485–491.

    Article  PubMed  CAS  Google Scholar 

  17. Jennings RB, Reimer KA. Lethal myocardial ischemic injury. Am J Pathol 1981;102:241–255.

    PubMed  CAS  Google Scholar 

  18. Verheule S, van Kempen MJ, Welscher PH, et al. Characterization of gap junction channels in adult rabbit atrial and ventricular myocardium. Circ Res 1997;80:673–681.

    PubMed  CAS  Google Scholar 

  19. Reinecke H, Macdonald GH, Hauschka SD, et al. Electromechanical coupling between skeletal and cardiac muscle: Implications for infarct repair. J Cell Biol 2000;149:731–740.

    Article  PubMed  CAS  Google Scholar 

  20. Marelli D, Desrosiers C, el-Alfy M, et al. Cell Transplantation for myocardial repair: an experimental approach. Cell Transplant 1992;1(6):383–390.

    PubMed  CAS  Google Scholar 

  21. Irintchev A, Zweyer M, Wernig A. Cellular and molecular reactions in mouse muscles after myoblast transplantation. J Neurocytol 1995;24:319–331.

    Article  PubMed  CAS  Google Scholar 

  22. Fan Y, Maley M, Beilharz M, et al. Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve 1996;19:853–860.

    Article  PubMed  CAS  Google Scholar 

  23. Ghostine S, Carrion C, Souza LCG, et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 2002;106(Suppl 1):I131–I136.

    PubMed  Google Scholar 

  24. Yoon PD, Kao RL, Magovern GJ. Myocardial regeneration: transplanting satellite cells into damaged myocardium. Texas Heart Inst J 1995;22:119–125.

    CAS  Google Scholar 

  25. Chiu RCJ, Zibaitis A, Kao RL. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 1995;60:12–18.

    PubMed  CAS  Google Scholar 

  26. Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 2002;34:241–249.

    Article  PubMed  CAS  Google Scholar 

  27. Reinecke H, Macdonald GH, Hauschka SD, et al. Electromechanical coupling between skeletal and cardiac muscle: implications for infarct repair. J Cell Biol 2000;149:731–740.

    Article  PubMed  CAS  Google Scholar 

  28. Leobon B, Garcin I, Menasche P, et al. Myoblasts transplanted into rat infracted myocardium are functionally isolated from their host. PNAS 2003;100:7808–7811.

    Article  PubMed  CAS  Google Scholar 

  29. Atkins BZ, Hueman MT, Meuchel J, et al. Cellular cardiomyoplasty improves diastolic properties of injured hearts. J Surg Res 1999;85:234–242.

    Article  PubMed  CAS  Google Scholar 

  30. Jain M, DerSimonian H, Brenner DA, et al. Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation 2001;103:1920–1927.

    PubMed  CAS  Google Scholar 

  31. Menasche P, Hagege AA, Scoesin M, et al. Myoblast transplantation for Heart failure. Lancet 2001;357:279–280.

    Article  PubMed  CAS  Google Scholar 

  32. Hagege AA, Carrion C, Menasche P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischemic cardiomyopathy. Lancet 2003;361:491–492.

    Article  PubMed  Google Scholar 

  33. Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003;41:1078–1083.

    Article  PubMed  Google Scholar 

  34. Pagani FD, DerSimonian H, Zawadzka A, et al. Autologous skeletal myoblast transplanted to ischemia-damaged myocardium in humans. J Am Coll Cardiol 2003;41:879–888.

    Article  PubMed  Google Scholar 

  35. Smits PC, van Geuns RJM, Poldermans D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure. J Am Coll Cardiol 2003;42:2063–2069.

    Article  PubMed  Google Scholar 

  36. Siminiak T, et al. Transplantation of autologous skeletal myoblasts in the treatment of patients with post infarction heart failure. Circulation 2002;106:II636 (Abstract 3137).

    Google Scholar 

  37. Dib N, et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: interim results from the United States experience. Circulation 2002;106(Suppl II):II463 (Abstract 2291).

    Google Scholar 

  38. Zhang FM, et al. Clinical cellular cardiomyoplasty: technical considerations. J Cardiovasc Surg 2003;18:268–273.

    Google Scholar 

  39. Law PK, Fang G, Chua F, Kakuchaya T, Bockeria LA. First-in-man myoblast allografts for heart degeneration. Int J Med Implants Devices 2003;1:100–155.

    Google Scholar 

  40. Siminiak T, Fiszer D, Jerzykowska O, et al. Percutaneous autologous myoblast transplantation in the treatment of post-infarction myocardial contractility impairment—report on two cases. Kardiol Pol 2003;59(12):492–501.

    PubMed  Google Scholar 

  41. Herreros J, Prosper F, Perez A, et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur Heart J 2003;(22):2012–2020.

    Google Scholar 

  42. Cleland JGF, Chattopaddhyay S, Khand A, et al. Prevalence and incidence of arrhythmias and sudden death in heart failure. Hear Fail Rev 2002;7:229–242.

    Article  Google Scholar 

  43. Scorsin M, Hagege AA, Vilquin JT, et al. Comparison of the effects of fetal cardiomyocytes and skeletal myoblast transplantation on post-infarction left ventricular function. J Thorac Cardiovasc Surg 2000;119:1169–1175.

    Article  PubMed  CAS  Google Scholar 

  44. Spinale FG, Coker ML, Krombach D, et al. Matrix metalloproteinase inhibition during the development of congestive heart failure. Circ Res 1999;85:364–376.

    PubMed  CAS  Google Scholar 

  45. Tatsumi R, Anderson JE, Nevoret CJ, et al. HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 1998;194:114–128.

    Article  PubMed  CAS  Google Scholar 

  46. Pouzet B, Vilquin JT, Hagege AA, et al. Factors affecting functional outcome after autologous skeletal myoblast transplantation. Ann Thorac Surg 2001;71:844–851.

    Article  PubMed  CAS  Google Scholar 

  47. Tambara K, Sakakibara Y, Sakaguchi G, et al. Transplanted skeletal myoblasts can fully replace the infracted myocardium when they survive in the host in large numbers. Circulation 2003;108(Suppl II):II259–II263.

    PubMed  Google Scholar 

  48. Beauchamp RJ, Morgan JE, Pagel CN, et al. Dynamics of myoblast transplantation reveal a discrete minority of recursors with stem cell like properties as the myogenic source. J Cell Biol 1999;144:1113–1121.

    Article  PubMed  CAS  Google Scholar 

  49. Thompson RB, Emani SM, Davis BH, et al. Comparison of Intracardiac Cell transplantation: Autologous skeletal myoblasts versus bone marrow cells. Circulation 2003;108(Suppl II):II264–II271.

    PubMed  Google Scholar 

  50. Grossman PM, Han ZG, Palasis M, Barry JJ, Lederman RJ. Incomplete retention after direct myocardial injection. Cath Cardiovasc Intervent 2002;55:392–397.

    Article  Google Scholar 

  51. Qu Z, Balkir L, van Deutekom JCT, et al. Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 1998;142:1257–1267.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 2001;33:907–921.

    Article  PubMed  CAS  Google Scholar 

  53. Suzuki K, Brand NJ, Allen S, et al. Overexpression of connexin 43 in skeletal yoblasts: relevance to cell transplantation to the heart. J Thorac Cardiovasc Surg 2001;122:759–766.

    Article  PubMed  CAS  Google Scholar 

  54. Suzuki K, Murtuza B, Smolenski RT, et al. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation 2001;104(Suppl 1):I207–I212.

    PubMed  CAS  Google Scholar 

  55. Taylor DA, Silvestry SC, Bishop SP, et al. Delivery of primary autologous skeletal myoblasts into rabbit heart by coronary infusion: a potential approach to myocardial repair. Proc Assoc Am Phys 1997;109(3):245–253.

    PubMed  CAS  Google Scholar 

  56. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 1998;4:929–933.

    Article  PubMed  CAS  Google Scholar 

  57. Dorfman J, Duong M, Zibaitis A et al. Myocardial tissue engineering with autologous myoblast implantation. J Thorac Cardiovasc Surg 1998;116:744–751.

    Article  PubMed  CAS  Google Scholar 

  58. Rajnoch C, Chachques JC, Berrebi A, et al. Cellular therapy reverses myocardial dysfunction. J Thorac Cardiovasc Surg 2001;121:871–878.

    Article  PubMed  CAS  Google Scholar 

  59. Dib N, Diethrich EB, Campbell A. Endoventricular transplantation of allogeneic skeletal myoblasts in a porcine model of myocardial infarction. J Endovasc Ther 2002;9:313–319.

    Article  PubMed  Google Scholar 

  60. Siminiak T, Kalawski R, Kurpisz M. Myoblast transplantation in the treatment of post infarction myocardial contractility impairment—a case report. Kardiol Pol 2002;53:131.

    Google Scholar 

  61. Chachques JC, Gonzalez JH, Trainini JC. Cardiomioplastia celular. Rev Arg Cardiol 2003;71:138–145.

    Google Scholar 

  62. Haider HKh, Tan AC, Aziz S, Chachques JC, Sim EK. Myoblast transplantation for cardiac repair: a clinical perspective. Mol Ther 2004;9:14–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Rosinberg, A., Rana, J.S., Laham, R.J. (2005). Skeletal Myoblast Transplantation for Cardiac Repair. In: Laham, R.J., Baim, D.S. (eds) Angiogenesis and Direct Myocardial Revascularization. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-934-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-934-9_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-153-0

  • Online ISBN: 978-1-59259-934-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics