Skeletal Myoblast Transplantation for Cardiac Repair

  • Audrey Rosinberg
  • Jamal S. Rana
  • Roger J. Laham
Part of the Contemporary Cardiology book series (CONCARD)


Coronary heart disease remains the single largest killer of American men and women. The American Heart Association statistics show that approx 1.1 million Americans suffer a myocardial infarction (MI) annually. Of those who survive, 22% of men and 46% of women are disabled with heart failure (1). Although cardiomyocytes of infarcted or failing human hearts have been shown to undergo mitoses (2,3), this regenerative capacity is by far too limited to compensate for the loss of cardiac cells resulting from a large infarct. In areas of ischemia, cell death ensues and scar forms in the place of myocardium. The remaining myocardial cells respond to mitotic signals by hypertrophy rather than hyperplasia. Necrotized myocardial cells are replaced by fibroblasts. If no viable myocardium is present, scar formation ensues with ventricular wall thinning and dilation of the ventricular cavity. This leads to symptoms of heart failure in a significant number of patients. For conventional coronary revascularization to be beneficial, viable myocardium must be present. The prognosis for these patients is poor, with a 1-yr mortality rate of 20% and a 5-yr mortality rate of close to 50% (1).


Vascular Endothelial Growth Factor Satellite Cell Skeletal Myoblast Myoblast Transplantation Ventricular Tachycar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    2003 Heart and Stroke Statistical Update. American Heart Association, 2003.Google Scholar
  2. 2.
    Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci 1998;95:8801–8805.PubMedCrossRefGoogle Scholar
  3. 3.
    Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750–1757.PubMedCrossRefGoogle Scholar
  4. 4.
    URREA; UNOS. 2002 Annual Report of the U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1992–2001 [Internet]. Rockville (MD): HHS/HRSA/OSP/DOT; 2003 [modified 2003 Feb 18]. Available from: Google Scholar
  5. 5.
    Rose EA, Gelijns AC, Moskowitz AJ, et al. Long term mechanical left ventricular assist device for endstage heart failure. N Engl J Med 2001;345:1435–1443.PubMedCrossRefGoogle Scholar
  6. 6.
    Li R-K, Jia Z-Q, Weisel RD, et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg 1996;62:654–661.PubMedCrossRefGoogle Scholar
  7. 7.
    Scorsin M, Hagège A.A, Marotte F, et al. Does transplantation of cardiomyocytes improve function of infarcted myocardium. Circulation 1997;96(Suppl II):188–193.Google Scholar
  8. 8.
    Müller-Ehmsen J, Peterson KL, Kedes L, et al. Long term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation 2002;105:1720–1726.PubMedCrossRefGoogle Scholar
  9. 9.
    Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763–776.PubMedCrossRefGoogle Scholar
  10. 10.
    Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiomyocytes divide after myocardial infarction. N Engl J Med 2001;344:1750–1757.PubMedCrossRefGoogle Scholar
  11. 11.
    Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961;9:493–495.PubMedCrossRefGoogle Scholar
  12. 12.
    Mannion JD, Bitto T, Hammond NA, et al. Histochemical and fatigue characteristics of conditioned canine latissimus dorsi muscle. Circ Res 1986;58:298–304.PubMedGoogle Scholar
  13. 13.
    Murry CE, Wiseman RW, Schwartz SM, et al. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 1996:98:2512–2523.PubMedCrossRefGoogle Scholar
  14. 14.
    Alberts B, Bray D, Lewis J, et al. Differentiated cells and the maintenance of tissues. In: Molecular Biology of the Cell, 3d ed. Garland, New York:1994;1161–1175.Google Scholar
  15. 15.
    Eckert P, Schnackerz K. Ischemic tolerance of human skeletal muscle. Ann Plast Surg 1991;26:77–84.PubMedCrossRefGoogle Scholar
  16. 16.
    Wolff KD, Stiller D. Ischemic Tolerance of free-muscle flaps: an NMR-spectroscopic study in the rat. Plast Reconstr Surg 1993;91:485–491.PubMedCrossRefGoogle Scholar
  17. 17.
    Jennings RB, Reimer KA. Lethal myocardial ischemic injury. Am J Pathol 1981;102:241–255.PubMedGoogle Scholar
  18. 18.
    Verheule S, van Kempen MJ, Welscher PH, et al. Characterization of gap junction channels in adult rabbit atrial and ventricular myocardium. Circ Res 1997;80:673–681.PubMedGoogle Scholar
  19. 19.
    Reinecke H, Macdonald GH, Hauschka SD, et al. Electromechanical coupling between skeletal and cardiac muscle: Implications for infarct repair. J Cell Biol 2000;149:731–740.PubMedCrossRefGoogle Scholar
  20. 20.
    Marelli D, Desrosiers C, el-Alfy M, et al. Cell Transplantation for myocardial repair: an experimental approach. Cell Transplant 1992;1(6):383–390.PubMedGoogle Scholar
  21. 21.
    Irintchev A, Zweyer M, Wernig A. Cellular and molecular reactions in mouse muscles after myoblast transplantation. J Neurocytol 1995;24:319–331.PubMedCrossRefGoogle Scholar
  22. 22.
    Fan Y, Maley M, Beilharz M, et al. Rapid death of injected myoblasts in myoblast transfer therapy. Muscle Nerve 1996;19:853–860.PubMedCrossRefGoogle Scholar
  23. 23.
    Ghostine S, Carrion C, Souza LCG, et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 2002;106(Suppl 1):I131–I136.PubMedGoogle Scholar
  24. 24.
    Yoon PD, Kao RL, Magovern GJ. Myocardial regeneration: transplanting satellite cells into damaged myocardium. Texas Heart Inst J 1995;22:119–125.Google Scholar
  25. 25.
    Chiu RCJ, Zibaitis A, Kao RL. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg 1995;60:12–18.PubMedGoogle Scholar
  26. 26.
    Reinecke H, Poppa V, Murry CE. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J Mol Cell Cardiol 2002;34:241–249.PubMedCrossRefGoogle Scholar
  27. 27.
    Reinecke H, Macdonald GH, Hauschka SD, et al. Electromechanical coupling between skeletal and cardiac muscle: implications for infarct repair. J Cell Biol 2000;149:731–740.PubMedCrossRefGoogle Scholar
  28. 28.
    Leobon B, Garcin I, Menasche P, et al. Myoblasts transplanted into rat infracted myocardium are functionally isolated from their host. PNAS 2003;100:7808–7811.PubMedCrossRefGoogle Scholar
  29. 29.
    Atkins BZ, Hueman MT, Meuchel J, et al. Cellular cardiomyoplasty improves diastolic properties of injured hearts. J Surg Res 1999;85:234–242.PubMedCrossRefGoogle Scholar
  30. 30.
    Jain M, DerSimonian H, Brenner DA, et al. Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation 2001;103:1920–1927.PubMedGoogle Scholar
  31. 31.
    Menasche P, Hagege AA, Scoesin M, et al. Myoblast transplantation for Heart failure. Lancet 2001;357:279–280.PubMedCrossRefGoogle Scholar
  32. 32.
    Hagege AA, Carrion C, Menasche P, et al. Viability and differentiation of autologous skeletal myoblast grafts in ischemic cardiomyopathy. Lancet 2003;361:491–492.PubMedCrossRefGoogle Scholar
  33. 33.
    Menasche P, Hagege AA, Vilquin JT, et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 2003;41:1078–1083.PubMedCrossRefGoogle Scholar
  34. 34.
    Pagani FD, DerSimonian H, Zawadzka A, et al. Autologous skeletal myoblast transplanted to ischemia-damaged myocardium in humans. J Am Coll Cardiol 2003;41:879–888.PubMedCrossRefGoogle Scholar
  35. 35.
    Smits PC, van Geuns RJM, Poldermans D, et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure. J Am Coll Cardiol 2003;42:2063–2069.PubMedCrossRefGoogle Scholar
  36. 36.
    Siminiak T, et al. Transplantation of autologous skeletal myoblasts in the treatment of patients with post infarction heart failure. Circulation 2002;106:II636 (Abstract 3137).Google Scholar
  37. 37.
    Dib N, et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: interim results from the United States experience. Circulation 2002;106(Suppl II):II463 (Abstract 2291).Google Scholar
  38. 38.
    Zhang FM, et al. Clinical cellular cardiomyoplasty: technical considerations. J Cardiovasc Surg 2003;18:268–273.Google Scholar
  39. 39.
    Law PK, Fang G, Chua F, Kakuchaya T, Bockeria LA. First-in-man myoblast allografts for heart degeneration. Int J Med Implants Devices 2003;1:100–155.Google Scholar
  40. 40.
    Siminiak T, Fiszer D, Jerzykowska O, et al. Percutaneous autologous myoblast transplantation in the treatment of post-infarction myocardial contractility impairment—report on two cases. Kardiol Pol 2003;59(12):492–501.PubMedGoogle Scholar
  41. 41.
    Herreros J, Prosper F, Perez A, et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. Eur Heart J 2003;(22):2012–2020.Google Scholar
  42. 42.
    Cleland JGF, Chattopaddhyay S, Khand A, et al. Prevalence and incidence of arrhythmias and sudden death in heart failure. Hear Fail Rev 2002;7:229–242.CrossRefGoogle Scholar
  43. 43.
    Scorsin M, Hagege AA, Vilquin JT, et al. Comparison of the effects of fetal cardiomyocytes and skeletal myoblast transplantation on post-infarction left ventricular function. J Thorac Cardiovasc Surg 2000;119:1169–1175.PubMedCrossRefGoogle Scholar
  44. 44.
    Spinale FG, Coker ML, Krombach D, et al. Matrix metalloproteinase inhibition during the development of congestive heart failure. Circ Res 1999;85:364–376.PubMedGoogle Scholar
  45. 45.
    Tatsumi R, Anderson JE, Nevoret CJ, et al. HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 1998;194:114–128.PubMedCrossRefGoogle Scholar
  46. 46.
    Pouzet B, Vilquin JT, Hagege AA, et al. Factors affecting functional outcome after autologous skeletal myoblast transplantation. Ann Thorac Surg 2001;71:844–851.PubMedCrossRefGoogle Scholar
  47. 47.
    Tambara K, Sakakibara Y, Sakaguchi G, et al. Transplanted skeletal myoblasts can fully replace the infracted myocardium when they survive in the host in large numbers. Circulation 2003;108(Suppl II):II259–II263.PubMedGoogle Scholar
  48. 48.
    Beauchamp RJ, Morgan JE, Pagel CN, et al. Dynamics of myoblast transplantation reveal a discrete minority of recursors with stem cell like properties as the myogenic source. J Cell Biol 1999;144:1113–1121.PubMedCrossRefGoogle Scholar
  49. 49.
    Thompson RB, Emani SM, Davis BH, et al. Comparison of Intracardiac Cell transplantation: Autologous skeletal myoblasts versus bone marrow cells. Circulation 2003;108(Suppl II):II264–II271.PubMedGoogle Scholar
  50. 50.
    Grossman PM, Han ZG, Palasis M, Barry JJ, Lederman RJ. Incomplete retention after direct myocardial injection. Cath Cardiovasc Intervent 2002;55:392–397.CrossRefGoogle Scholar
  51. 51.
    Qu Z, Balkir L, van Deutekom JCT, et al. Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 1998;142:1257–1267.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang M, Methot D, Poppa V, et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 2001;33:907–921.PubMedCrossRefGoogle Scholar
  53. 53.
    Suzuki K, Brand NJ, Allen S, et al. Overexpression of connexin 43 in skeletal yoblasts: relevance to cell transplantation to the heart. J Thorac Cardiovasc Surg 2001;122:759–766.PubMedCrossRefGoogle Scholar
  54. 54.
    Suzuki K, Murtuza B, Smolenski RT, et al. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation 2001;104(Suppl 1):I207–I212.PubMedGoogle Scholar
  55. 55.
    Taylor DA, Silvestry SC, Bishop SP, et al. Delivery of primary autologous skeletal myoblasts into rabbit heart by coronary infusion: a potential approach to myocardial repair. Proc Assoc Am Phys 1997;109(3):245–253.PubMedGoogle Scholar
  56. 56.
    Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 1998;4:929–933.PubMedCrossRefGoogle Scholar
  57. 57.
    Dorfman J, Duong M, Zibaitis A et al. Myocardial tissue engineering with autologous myoblast implantation. J Thorac Cardiovasc Surg 1998;116:744–751.PubMedCrossRefGoogle Scholar
  58. 58.
    Rajnoch C, Chachques JC, Berrebi A, et al. Cellular therapy reverses myocardial dysfunction. J Thorac Cardiovasc Surg 2001;121:871–878.PubMedCrossRefGoogle Scholar
  59. 59.
    Dib N, Diethrich EB, Campbell A. Endoventricular transplantation of allogeneic skeletal myoblasts in a porcine model of myocardial infarction. J Endovasc Ther 2002;9:313–319.PubMedCrossRefGoogle Scholar
  60. 60.
    Siminiak T, Kalawski R, Kurpisz M. Myoblast transplantation in the treatment of post infarction myocardial contractility impairment—a case report. Kardiol Pol 2002;53:131.Google Scholar
  61. 61.
    Chachques JC, Gonzalez JH, Trainini JC. Cardiomioplastia celular. Rev Arg Cardiol 2003;71:138–145.Google Scholar
  62. 62.
    Haider HKh, Tan AC, Aziz S, Chachques JC, Sim EK. Myoblast transplantation for cardiac repair: a clinical perspective. Mol Ther 2004;9:14–23.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Audrey Rosinberg
    • 1
  • Jamal S. Rana
    • 1
  • Roger J. Laham
    • 2
  1. 1.Division of Cardiology and Cardiothoracic SurgeryAngiogenesis Research Center, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBoston
  2. 2.Department of Medicine, Angiogenesis Research CenterBeth Israel Deaconess Medical Center and Harvard Medical SchoolBoston

Personalised recommendations