No-Option Patients

A Growing Problem
  • Roger J. Laham
  • Donald S. Baim
Part of the Contemporary Cardiology book series (CONCARD)


Despite advances in preventive health care, medical management, interventional cardiology, and cardiovascular surgery, atherosclerotic disease remains the leading cause of morbidity and mortality in the Western Hemisphere. Cardiovascular disease accounted for 38.5% of all deaths or 1 of every 2.6 deaths in the United States in 2001. Cardiovascular disease mortality was about 60% of “total mortality,” i.e., of over 2,400,000 deaths from all causes, cardiovascular disease was listed as a primary or contributing cause on about 1,408,000 death certificates. Since 1900, cardiovascular disease has been the number one killer in the United States every year except 1918 (1). Treatment of coronary artery disease (CAD) includes risk factor modification, use of antiplatelet agents, medical therapy by decreasing myocardial oxygen demand and coronary vasodilation, and restoring myocardial perfusion using percutaneous coronary interventions (PCI) and coronary artery bypass grafting (CABG). Although significant advances have reduced the mortality of cardiovascular disease, the number of cardiac interventions continues to grow: a total of 1.3 million inpatient cardiac catheterizations, 561,000 percutaneous transluminal coronary angioplasty (PTCA) procedures, and 519,000 coronary artery bypass procedures were performed in 2000 in the United States alone (1).


Vascular Endothelial Growth Factor Spinal Cord Stimulation Chronic Total Occlusion Therapeutic Angiogenesis Distal Protection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    American Heart Association. AHA statistics. (
  2. 2.
    McNeer JF, Conley MJ, Starmer CF, et al. Complete and incomplete revascularization at aortocoronary bypass surgery: experience with 392 consecutive patients. Am Heart J 1974;88(2):176–182.PubMedCrossRefGoogle Scholar
  3. 3.
    Jones EL, Craver JM, Guyton RA, et al. Importance of complete revascularization in performance of the coronary bypass operation. Am J Cardiol 1983;51(1):7–12.PubMedCrossRefGoogle Scholar
  4. 4.
    Atwood JE, Myers J, Colombo A, et al. The effect of complete and incomplete revascularization on exercise variables in patients undergoing coronary angioplasty. Clin Cardiol 1990;13(2):89–93.PubMedCrossRefGoogle Scholar
  5. 5.
    de Feyter PJ. PTCA in patients with stable angina pectoris and multivessel disease: is incomplete revascularization acceptable? Clin Cardiol 1992;15(5):317–322.PubMedGoogle Scholar
  6. 6.
    Mukherjee D, Bhatt DL, Roe MT, Patel V, Ellis SG. Direct myocardial revascularization and angiogenesis—how many patients might be eligible? Am J Cardiol 1999;84(5):598–600, A8.PubMedCrossRefGoogle Scholar
  7. 7.
    Laham RJ, Simons M, Tofukuji M, Hung D, Sellke FW. Modulation of myocardial perfusion and vascular reactivity by pericardial basic fibroblast growth factor: insight into ischemia-induced reduction in endothelium-dependent vasodilatation. J Thorac Cardiovasc Surg 1998;116(6):1022–1028.PubMedCrossRefGoogle Scholar
  8. 8.
    Laham RJ, Simons M, Sellke F. Gene transfer for angiogenesis in coronary artery disease. Annu Rev Med 2001;52:485–502.PubMedCrossRefGoogle Scholar
  9. 9.
    Laham RJ, Simons M. Growth Factor Therapy in Ischemic Heart Disease. In: Rubanyi G, ed. Angiogenesis in Health and Disease. New York: Marcel Decker, 2000:451–475.Google Scholar
  10. 10.
    Laham RJ, Post M, Sellke FW, Simons M. Therapeutic angiogenesis using local perivascular and pericardial delivery. Curr Interv Cardiol Rep 2000;2(3):213–217.PubMedGoogle Scholar
  11. 11.
    Laham RJ, Rezaee M, Post M, et al. Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug Metab Dispos 1999;27(7):821–826.PubMedGoogle Scholar
  12. 12.
    Laham RJ, Oettgen P. Bone marrow transplantation for the heart: fact or fiction? Lancet 2003;361(9351):11–12.PubMedCrossRefGoogle Scholar
  13. 13.
    Laham RJ, Hung D, Simons M. Therapeutic myocardial angiogenesis using percutaneous intrapericardial drug delivery. Clin Cardiol 1999;22(1 Suppl 1):I–6–9.Google Scholar
  14. 14.
    Laham RJ, Garcia L, Baim DS, Post M, Simons M. Therapeutic angiogenesis using basic fibroblast growth factor and vascular endothelial growth factor using various delivery strategies. Curr Interv Cardiol Rep 1999;1(3):228–233.PubMedGoogle Scholar
  15. 15.
    Laham RJ, Chronos NA, Pike M, et al. Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I openlabel dose escalation study. J Am Coll Cardiol 2000;36(7):2132–2139.PubMedCrossRefGoogle Scholar
  16. 16.
    Laham R, Rezaee M, Post M, et al. Intrapericardial delivery of fibroblast growth factor-2 induces neovascularization in a porcine model of chronic myocardial ischemia. J Pharmacol Exp Ther 2000;292:795–802.PubMedGoogle Scholar
  17. 17.
    Isner JM. Angiogenesis for revascularization of ischaemic tissues [editorial]. Eur Heart J 1997;18(1):1–2.PubMedGoogle Scholar
  18. 18.
    Isner JM, Pieczek A, Schainfeld R, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 1996;348(9024):370–374.PubMedCrossRefGoogle Scholar
  19. 19.
    Asahara T, Bauters C, Zheng LP, et al. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 1995;92(9 Suppl):II365–371.PubMedGoogle Scholar
  20. 20.
    Baumgartner I, Rauh G, Pieczek A, et al. Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Ann Intern Med 2000;132(11):880–884.PubMedGoogle Scholar
  21. 21.
    Bauters C, Asahara T, Zheng LP, et al. Physiological assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb. Am J Physiol 1994;267:H1263–1271.PubMedGoogle Scholar
  22. 22.
    Bauters C, Asahara T, Zheng LP, et al. Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. J Vasc Surg 1995;21(2):314–325.PubMedCrossRefGoogle Scholar
  23. 23.
    Isner JM, Feldman LJ. Gene therapy for arterial disease. Lancet 1994;344(8938):1653–1654.PubMedCrossRefGoogle Scholar
  24. 24.
    Isner JM. Therapeutic angiogenesis: a new frontier for vascular therapy. Vasc Med 1996;1(1):79–87.PubMedGoogle Scholar
  25. 25.
    Hennebry TA, Saucedo JF. “No-pption” patients: a nightmare today, a future with hope. J Inv Cardiol 2004;17(2):93–94.CrossRefGoogle Scholar
  26. 26.
    Rosinberg A, Khan TA, Sellke FW, Laham RJ. Therapeutic angiogenesis for myocardial ischemia. Expert Rev Cardiovasc Ther 2004;2(2):271–283.PubMedCrossRefGoogle Scholar
  27. 27.
    Waugh J, Wagstaff AJ. The paclitaxel (TAXUS)-eluting stent: a review of its use in the management of de novo coronary artery lesions. Am J Cardiovasc Drugs 2004;4(4):257–268.PubMedCrossRefGoogle Scholar
  28. 28.
    Doggrell SA. Sirolimus-versus paclitaxel-eluting stents in patients with stenosis in a native coronary artery. Expert Opin Pharmacother 2004;5(6):1431–1434.PubMedCrossRefGoogle Scholar
  29. 29.
    Grube E, Gerckens U, Muller R, Bullesfeld L. Drug eluting stents: initial experiences. Z Kardiol 2002;91(Suppl 3):44–48.PubMedCrossRefGoogle Scholar
  30. 30.
    Wong A, Chan C. Drug-eluting stents: the end of restenosis? Ann Acad Med Singapore 2004;33(4):423–431.PubMedGoogle Scholar
  31. 31.
    Serruys PW, Lemos PA, van Hout BA. Sirolimus eluting stent implantation for patients with multivessel disease: rationale for the Arterial Revascularisation Therapies Study part II (ARTS II). Heart 2004;90(9):995–998.PubMedCrossRefGoogle Scholar
  32. 32.
    McClure S, Webb J. Drug-eluting stents and saphenous vein graft intervention. J Invasive Cardiol 2004;16(5):234–235.PubMedGoogle Scholar
  33. 33.
    Hoye A, Tanabe K, Lemos PA, et al. Significant reduction in restenosis after the use of sirolimus-eluting stents in the treatment of chronic total occlusions. J Am Coll Cardiol 2004;43(11):1954–1958.PubMedCrossRefGoogle Scholar
  34. 34.
    Grube E, Buellesfeld L. Everolimus for stent-based intracoronary applications. Rev Cardiovasc Med 2004;5(Suppl 2):S3–8.PubMedGoogle Scholar
  35. 35.
    Reichenspurner H, Boehm DH, Welz A, et al. Minimally invasive coronary artery bypass grafting: port-access approach versus off-pump techniques. Ann Thorac Surg 1998;66(3):1036–1040.PubMedCrossRefGoogle Scholar
  36. 36.
    Medina A, de Lezo JS, Melian F, Hernandez E, Pan M, Romero M. Successful stent ablation with rotational atherectomy. Catheter Cardiovasc Interv 2003;60(4):501–504.PubMedCrossRefGoogle Scholar
  37. 37.
    Mauri L, Reisman M, Buchbinder M, et al. Comparison of rotational atherectomy with conventional balloon angioplasty in the prevention of restenosis of small coronary arteries: results of the Dilatation vs Ablation Revascularization Trial Targeting Restenosis (DART). Am Heart J 2003;145(5):847–854.PubMedCrossRefGoogle Scholar
  38. 38.
    Lev E, Teplitsky I, Fuchs S, Shor N, Assali A, Kornowski R. Clinical experiences using the FilterWire EX for distal embolic protection during complex percutaneous coronary interventions. Int J Cardiovasc Intervent 2004;6(1):28–32.PubMedGoogle Scholar
  39. 39.
    Stone GW, Rogers C, Hermiller J, et al. Randomized comparison of distal protection with a filter-based catheter and a balloon occlusion and aspiration system during percutaneous intervention of diseased saphenous vein aorto-coronary bypass grafts. Circulation 2003;108(5):548–553.PubMedCrossRefGoogle Scholar
  40. 40.
    Baim DS, Wahr D, George B, et al. Randomized trial of a distal embolic protection device during percutaneous intervention of saphenous vein aorto-coronary bypass grafts. Circulation 2002;105(11):1285–1290.PubMedGoogle Scholar
  41. 41.
    Tadros P. Successful revascularization of a long chronic total occlusion of the right coronary artery utilizing the frontrunner X39 CTO catheter system. J Invasive Cardiol 2003;15(11):3.PubMedGoogle Scholar
  42. 42.
    Laham RJ, Simons M, Pearlman JD, Ho KK, Baim DS. Magnetic resonance imaging demonstrates improved regional systolic wall motion and thickening and myocardial perfusion of myocardial territories treated by laser myocardial revascularization. J Am Coll Cardiol 2002;39(1):1–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Laham RJ, Simons M. Basic fibroblast growth factor protein for coronary artery disease. In: Handbook of Myocardial Revascularization and Angiogenesis. New York: Martin Dunitz Ltd, 1999:175–187.Google Scholar
  44. 44.
    Laham RJ, Mannam A, Post MJ, Sellke F. Gene transfer to induce angiogenesis in myocardial and limb ischaemia. Expert Opin Biol Ther 2001;1(6):985–994.PubMedCrossRefGoogle Scholar
  45. 45.
    Laham R, Sellke F, Pearlman J. Magnetic resonance blood-arrival maps provides acccurate assessment of myocardial perfusion and collaterization in therapeutic angiogenesis. Circulation 1998;98:I–373.Google Scholar
  46. 46.
    Folkman J, Shing Y. Angiogenesis. J Biol Chem 1992;267:10931–10934.PubMedGoogle Scholar
  47. 47.
    Folkman J. Angiogenic therapy of the human heart. Circulation 1998;97(7):628–629.PubMedGoogle Scholar
  48. 48.
    Folkman J. Therapeutic angiogenesis in ischemic limbs. Circulation 1998;97(12):1108–1010.PubMedGoogle Scholar
  49. 49.
    Asahara T, Murohara T, Sullivam A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964–967.PubMedCrossRefGoogle Scholar
  50. 50.
    Asahara T, Isner JM. Endothelial progenitor cells for vascular regeneration. J Hematother Stem Cell Res 2002;11(2):171–178.PubMedCrossRefGoogle Scholar
  51. 51.
    Rivard A, Silver M, Chen D, et al. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. Am J Pathol 1999;154(2):355–363.PubMedGoogle Scholar
  52. 52.
    Couffinhal T, Silver M, Kearney M, et al. Impaired collateral vessel development associated with reduced expression of vascular endothelial growth factor in ApoE-/-mice. Circulation 1999;99(24):3188–3198.PubMedGoogle Scholar
  53. 53.
    Simons M, Bonow RO, Chronos NA, et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation 2000;102(11):E73–86.PubMedGoogle Scholar
  54. 54.
    Ruel M, Wu GF, Khan TA, et al. Inhibition of the cardiac angiogenic response to surgical FGF-2 therapy in a swine endothelial dysfunction model. Circulation 2003;108(Suppl 1):II335–340.PubMedGoogle Scholar
  55. 55.
    de Jongste MJ, Staal MJ. Preliminary results of a randomized study on the clinical efficacy of spinal cord stimulation for refractory severe angina pectoris. Acta Neurochir Suppl (Wien) 1993;58:161–164.Google Scholar
  56. 56.
    de Jongste MJ, Haaksma J, Hautvast RW, et al. Effects of spinal cord stimulation on myocardial ischaemia during daily life in patients with severe coronary artery disease. A prospective ambulatory electrocardiographic study. Br Heart J 1994;71(5):413–418.PubMedCrossRefGoogle Scholar
  57. 57.
    Hautvast RW, DeJongste MJ, Staal MJ, van Gilst WH, Lie KI. Spinal cord stimulation in chronic intractable angina pectoris: a randomized, controlled efficacy study. Am Heart J 1998;136(6):1114–1120.PubMedCrossRefGoogle Scholar
  58. 58.
    Murray S, Carson KG, Ewings PD, Collins PD, James MA. Spinal cord stimulation significantly decreases the need for acute hospital admission for chest pain in patients with refractory angina pectoris. Heart 1999;82(1):89–92.PubMedGoogle Scholar
  59. 59.
    Linnemeier G, Rutter MK, Barsness G, Kennard ED, Nesto RW. Enhanced external counterpulsation for the relief of angina in patients with diabetes: safety, efficacy and 1-year clinical outcomes. Am Heart J 2003;146(3):453–458.PubMedCrossRefGoogle Scholar
  60. 60.
    Linnemeier G, Michaels AD, Soran O, Kennard ED. Enhanced external counterpulsation in the management of angina in the elderly. Am J Geriatr Cardiol 2003;12(2):90–96.PubMedCrossRefGoogle Scholar
  61. 61.
    Humphreys DR. Treating angina with EECP therapy. Nurse Pract 2003;28(2):7.PubMedCrossRefGoogle Scholar
  62. 62.
    Blazing MA, Crawford LE. Enhanced external counterpulsation (EECP): enough evidence to support this and the next wave? Am Heart J 2003;146(3):383–384.PubMedCrossRefGoogle Scholar
  63. 63.
    Michaels AD, Accad M, Ports TA, Grossman W. Left ventricular systolic unloading and augmentation of intracoronary pressure and Doppler flow during enhanced external counterpulsation. Circulation 2002;106(10):1237–1242.PubMedCrossRefGoogle Scholar
  64. 64.
    Michaels AD, Linnemeier G, Soran O, Kelsey SF, Kennard ED. Two-year outcomes after enhanced external counterpulsation for stable angina pectoris (from the International EECP Patient Registry [IEPR]). Am J Cardiol 2004;93(4):461–464.PubMedCrossRefGoogle Scholar
  65. 65.
    Arora RR, Chou TM, Jain D, et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol 1999;33(7):1833–1840.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 2004;25(8):634–641.PubMedCrossRefGoogle Scholar
  67. 67.
    Pauly DF, Pepine CJ. Ischemic heart disease: metabolic approaches to management. Clin Cardiol 2004;27(8):439–441.PubMedCrossRefGoogle Scholar
  68. 68.
    Slavov S, Djunlieva M, Ilieva S, Galabov B. Quantitative structure-activity relationship analysis of the substituent effects on the binding affinity of derivatives of trimetazidine. Arzneimittelforschung 2004;54(1):9–14.PubMedGoogle Scholar
  69. 69.
    Feola M, Biggi A, Francini A, et al. Trimetazidine improves myocardial perfusion and left ventricular function in ischemic left ventricular dysfunction. Clin Nucl Med 2004;29(2):117–118.PubMedCrossRefGoogle Scholar
  70. 70.
    Chaitman BR, Pepine CJ, Parker JO, et al. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA 2004;291(3):309–316.PubMedCrossRefGoogle Scholar
  71. 71.
    Louis AA, Manousos IR, Coletta AP, Clark AL, Cleland JG. Clinical trials update: The Heart Protection Study, IONA, CARISA, ENRICHD, ACUTE, ALIVE, MADIT II and REMATCH. Impact of Nicorandil on Angina. Combination Assessment of Ranolazine in Stable Angina. ENhancing Recovery in Coronary Heart Disease Patients. Assessment of Cardioversion Using Transoesophageal Echocardiography. AzimiLide post-Infarct surVival Evaluation. Randomised Evaluation of Mechanical Assistance for Treatment of Chronic Heart failure. Eur J Heart Fail 2002;4(1):111–116.PubMedCrossRefGoogle Scholar
  72. 72.
    Marzilli M, Mariani M. About EMIP-FR and reperfusion damage in AMI: a comment to the comment. Eur Heart J 2001;22(11):973–975; author reply 978.PubMedCrossRefGoogle Scholar
  73. 73.
    Effect of 48-h intravenous trimetazidine on short-and long-term outcomes of patients with acute myocardial infarction, with and without thrombolytic therapy; a double-blind, placebo-controlled, randomized trial. The EMIP-FR Group. European Myocardial Infarction Project—Free Radicals. Eur Heart J 2000;21(18):1537–1546.Google Scholar
  74. 74.
    Guler N, Eryonucu B, Gunes A, Guntekin U, Tuncer M, Ozbek H. Effects of trimetazidine on submaximal exercise test in patients with acute myocardial infarction. Cardiovasc Drugs Ther 2003;17(4):371–374.PubMedCrossRefGoogle Scholar
  75. 75.
    Chaitman BR, Skettino SL, Parker JO, et al. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J Am Coll Cardiol 2004;43(8):1375–1382.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2005

Authors and Affiliations

  • Roger J. Laham
    • 1
  • Donald S. Baim
    • 2
  1. 1.Department of Medicine, Angiogenesis Research CenterBeth Israel Deaconess Medical Center and Harvard Medical SchoolBoston
  2. 2.Division of CardiologyBrigham and Women’s Hospital and Harvard Medical SchoolBoston

Personalised recommendations