Skip to main content

Statistical Theory in QTL Mapping

  • Chapter
Book cover Computational Genetics and Genomics

Abstract

Variability may be introduced in an observed phenotype by a range of elements. Inherited genetic factors, as well as environmental and behavioral conditions, may affect the phenotype. The blend of all these interactions gives rise to the unique being every living creature is. Experimental genetics has traditionally been, and still is, a very powerful tool for dissecting the genetic factors out of the blend that results in the observed phenotype complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cormier RT, Hong KH, Halberg RB, et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nat Genet 1997;17:88–91.

    Article  PubMed  CAS  Google Scholar 

  2. Darvasi A. Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 1998;18:19–23.

    Article  PubMed  CAS  Google Scholar 

  3. Darvasi A, Soller M. Advanced intercross lines, an experimental population for fine genetic mapping. Genetics 1995;141:943–951.

    Google Scholar 

  4. Dietrich W, Katz H, Lincoln SE, et al. A genetic map of the mouse suitable for typing intraspecific crosses. Genetics 1992;131:423–447.

    PubMed  CAS  Google Scholar 

  5. Dupuis J, Siegmund D. Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 1999;151:373–386.

    PubMed  CAS  Google Scholar 

  6. Eppig JT, Nadeau JH. Comparative maps: the mammalian jigsaw puzzle. Curr Opin Genet Dev 1995;5: 709–716.

    Article  PubMed  CAS  Google Scholar 

  7. Frary A, Nesbitt TC, Grandillo S, et al. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 2000;289:85–88.

    Article  PubMed  CAS  Google Scholar 

  8. Haldane JBS, Waddington CH. Inbreeding and linkage. Genetics 1931;16:357–374.

    PubMed  CAS  Google Scholar 

  9. Kimura M. A probability method for treating inbreeding systems, especially with linked genes. Biometrics 1963;19:1–17.

    Article  CAS  Google Scholar 

  10. Korol AB, Ronin YI, Kirzhner VM. Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 1995;140:1137–1147.

    PubMed  CAS  Google Scholar 

  11. Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [published erratum appears in Genetics 1994;136:705]. Genetics 1989;121:185–199.

    PubMed  CAS  Google Scholar 

  12. Manly KF, Olson JM. Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 1999;10:327–334.

    Article  PubMed  CAS  Google Scholar 

  13. Moore KJ, Nagle DL. Complex trait analysis in the mouse: the strengths, the limitations and the promise yet to come. Annu Rev Genet 2000;34:653–686.

    Article  PubMed  CAS  Google Scholar 

  14. Morse HC, III. The laboratory mouse: a historical perspective. In: Foster HL, Small JD, Fox JG, eds. The mouse in biomedical research. vol. 1. History, genetics, and wildmice. New York: Academic, 1981.

    Google Scholar 

  15. O’Brien SJ, Menotti-Raymond M, Murphy WJ, et al. The promise of comparative genomics in mammals. Science 1999;286:458–462, 479–481.

    Article  PubMed  CAS  Google Scholar 

  16. Siegmund D. Sequential analysis: tests and confidence intervals. New York: Springer, 1985.

    Google Scholar 

  17. Silver LM. Mouse genetics: concepts and applications. New York, Oxford: Oxford University Press, 1995. http://www.princeton.edu/lsilver/book/MGcontents.html.

    Google Scholar 

  18. Steinmetz LM, Sinha H, Richards DR, et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 2002;416:326–330.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Yakir, B., Pisanté, A., Darvasi, A. (2005). Statistical Theory in QTL Mapping. In: Peltz, G. (eds) Computational Genetics and Genomics. Humana Press. https://doi.org/10.1007/978-1-59259-930-1_2

Download citation

Publish with us

Policies and ethics