Skip to main content

Heterotrimeric G Proteins and Their Effector Pathways

  • Chapter
The G Protein-Coupled Receptors Handbook

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 1397 Accesses

Abstract

Almost 30 yr have passed since the discovery of the heptahelical transmembrane (TM) receptors and their connection to heterotrimeric G proteins and sequential signal flow to intracellular effectors (13). Many hormones, sensory stimuli, and neurotransmitters use this signaling system to convert chemical or physical information from the G protein-coupled receptor (GPCR) through a transducer (G protein) to an effector into an intracellular language that the cell can comprehend and to which it can respond. In the liver, epinephrine signals via the β-adrenergic receptor (AR) through Gαs to adenylyl cyclase to increase cyclic adenosine monophosphate (cAMP) production such that it leads to stimulation of glycogen breakdown and inhibition of glycogen synthesis, resulting in glucose production. In the eye, light stimulates the GPCR rhodopsin, which activates the G protein transducin, to stimulate the activity of cyclic guanosine monophosphate (cGMP) phosphodiesterase (PDE). This results in decreased cGMP levels and changes in the activity of the cyclic nucleotide-gated Na2+ channels, thereby converting photons into electrical impulses and transmitting information to the visual cortex. These cascades of events allow for processing of the initial signal, including amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross EM, Gilman AG. Biochemical properties of hormone-sensitive adenylate cyclase. Annu Rev Biochem 1980;49:533–564.

    PubMed  CAS  Google Scholar 

  2. Rodbell M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 1980;284:17–22.

    PubMed  CAS  Google Scholar 

  3. Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987;56: 615–649.

    PubMed  CAS  Google Scholar 

  4. Schoneberg T. GPCR Superfamily and Its Structural Characterization. In: Pangalos MaD, CH, ed. Understanding G Protein-Coupled Receptors and Their Role in the CNS. 1st ed. New York: Oxford University Press, 2002, pp. 3–27.

    Google Scholar 

  5. George SR, O’Dowd BF, Lee SP. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 2002;1:808–820.

    PubMed  CAS  Google Scholar 

  6. Ulrich CD 2nd, Holtmann M, Miller LJ. Secretin and vasoactive intestinal peptide receptors: members of a unique family of G protein-coupled receptors. Gastroenterology 1998;114:382–897.

    PubMed  CAS  Google Scholar 

  7. Horn F, Weare J, Beukers MW, et al. GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res 1998;26:275–279.

    PubMed  CAS  Google Scholar 

  8. Horn F, Bettler E, Oliveira L, Campagne F, Cohen FE, Vriend G. GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res 2003;31:294–297.

    PubMed  CAS  Google Scholar 

  9. Hollinger S, Hepler JR. Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 2002;54:527–559.

    PubMed  CAS  Google Scholar 

  10. Cismowski MJ, Takesono A, Bernard ML, Duzic E, Lanier SM. Receptor-independent activators of heterotrimeric G-proteins. Life Sci 2001;68:2301–2308.

    PubMed  CAS  Google Scholar 

  11. Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 2001;53:1–24.

    PubMed  CAS  Google Scholar 

  12. Ho MaW, YH. G Protein Structure Diversity. In: Pangalos MaD, CH, ed. Understanding G Protein-Coupled Receptors and Their Role in the CNS. 1st ed. New York: Oxford University Press, 2002, pp. 63–86.

    Google Scholar 

  13. Offermanns S. G-proteins as transducers in transmembrane signalling. Prog Biophys Mol Biol 2003;83: 101–130.

    PubMed  CAS  Google Scholar 

  14. Cabrera-Vera TM, Vanhauwe J, Thomas TO, et al. Insights into G protein structure, function, and regulation. Endocr Rev 2003;24:765–781.

    PubMed  CAS  Google Scholar 

  15. Weinstein LS, Chen M, Liu J. Gs(alpha) mutations and imprinting defects in human disease. Ann NY Acad Sci 2002;968:173–197.

    PubMed  CAS  Google Scholar 

  16. Kehlenbach RH, Matthey J, Huttner WB. XL alpha s is a new type of G protein. Nature 1994;372: 804–809.

    PubMed  CAS  Google Scholar 

  17. Klemke M, Pasolli HA, Kehlenbach RH, Offermanns S, Schultz G, Huttner WB. Characterization of the extra-large G protein alpha-subunit XLalphas. II. Signal transduction properties. J Biol Chem 2000;275: 33,633–33,640.

    PubMed  CAS  Google Scholar 

  18. Bastepe M, Gunes Y, Perez-Villamil B, Hunzelman J, Weinstein LS, Juppner H. Receptor-mediated adenylyl cyclase activation through XLalpha(s), the extra-large variant of the stimulatory G protein alpha-subunit. Mol Endocrinol 2002;16:1912–1919.

    PubMed  CAS  Google Scholar 

  19. Jones DT, Reed RR. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 1989;244:790–795.

    PubMed  CAS  Google Scholar 

  20. Jones DT, Masters SB, Bourne HR, Reed RR. Biochemical characterization of three stimulatory GTP-binding proteins. The large and small forms of Gs and the olfactory-specific G-protein, Golf. J Biol Chem 1990;265: 2671–2676.

    PubMed  CAS  Google Scholar 

  21. Belluscio L, Gold GH, Nemes A, Axel R. Mice deficient in G(olf) are anosmic. Neuron 1998;20: 69–81.

    PubMed  CAS  Google Scholar 

  22. Ebrahimi FA, Chess A. Olfactory G proteins: simple and complex signal transduction. Curr Biol 1998; 8:R431–R433.

    PubMed  CAS  Google Scholar 

  23. Regnauld K, Nguyen QD, Vakaet L, et al. G-protein alpha(olf) subunit promotes cellular invasion, survival, and neuroendocrine differentiation in digestive and urogenital epithelial cells. Oncogene 2002;21:4020–4031.

    PubMed  CAS  Google Scholar 

  24. Itoh H, Toyama R, Kozasa T, Tsukamoto T, Matsuoka M, Kaziro Y. Presence of three distinct molecular species of Gi protein alpha subunit. Structure of rat cDNAs and human genomic DNAs. J Biol Chem 1988;263: 6656–6664.

    PubMed  CAS  Google Scholar 

  25. Sunahara RK, Dessauer CW, Gilman AG. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 1996;36:461–480.

    PubMed  CAS  Google Scholar 

  26. Dalwadi H, Wei B, Schrage M, Su TT, Rawlings DJ, Braun J. B cell developmental requirement for the G alpha i2 gene. J Immunol 2003;170:1707–1715.

    PubMed  CAS  Google Scholar 

  27. Huang TT, Zong Y, Dalwadi H, et al. TCR-mediated hyper-responsiveness of autoimmune Galphai2(−/−) mice is an intrinsic naive CD4(+) T cell disorder selective for the Galphai2 subunit. Int Immunol 2003;15: 1359–1367.

    PubMed  CAS  Google Scholar 

  28. Strathmann M, Wilkie TM, Simon MI. Alternative splicing produces transcripts encoding two forms of the alpha subunit of GTP-binding protein Go. Proc Natl Acad Sci USA 1990;87:6477–6481.

    PubMed  CAS  Google Scholar 

  29. Hsu WH, Rudolph U, Sanford J, et al. Molecular cloning of a novel splice variant of the alpha subunit of the mammalian Go protein. J Biol Chem 1990;265:11,220–11,226.

    PubMed  CAS  Google Scholar 

  30. Exner T, Jensen ON, Mann M, Kleuss C, Nurnberg B. Posttranslational modification of Galphao1 generates Galphao3, an abundant G protein in brain. Proc Natl Acad Sci USA 1999;96:1327–1332.

    PubMed  CAS  Google Scholar 

  31. Strittmatter SM, Valenzuela D, Kennedy TE, Neer EJ, Fishman MC. G0 is a major growth cone protein subject to regulation by GAP-43. Nature 1990;344:836–841.

    PubMed  CAS  Google Scholar 

  32. Strittmatter SM, Fishman MC, Zhu XP. Activated mutants of the alpha subunit of G(o) promote an increased number of neurites per cell. J Neurosci 1994;14:2327–2338.

    PubMed  CAS  Google Scholar 

  33. Jordan JD, Carey KD, Stork PJ, Iyengar R. Modulation of rap activity by direct interaction of Galpha(o) with Rap1 GTPase-activating protein. J Biol Chem 1999;274:21,507–21,510.

    PubMed  CAS  Google Scholar 

  34. Chen LT, Gilman AG, Kozasa T. A candidate target for G protein action in brain. J Biol Chem 1999; 274:26,931–26,938.

    PubMed  CAS  Google Scholar 

  35. Ho MK, Wong YH. G(z) signaling: emerging divergence from G(i) signaling. Oncogene 2001;20: 1615–1625.

    PubMed  CAS  Google Scholar 

  36. Wong YH, Conklin BR, Bourne HR. Gz-mediated hormonal inhibition of cyclic AMP accumulation. Science 1992;255:339–342.

    PubMed  CAS  Google Scholar 

  37. Jeong SW, Ikeda SR. G protein alpha subunit G alpha z couples neurotransmitter receptors to ion channels in sympathetic neurons. Neuron 1998;21:1201–1212.

    PubMed  CAS  Google Scholar 

  38. Fong HK, Yoshimoto KK, Eversole-Cire P, Simon MI. Identification of a GTP-binding protein alpha subunit that lacks an apparent ADP-ribosylation site for pertussis toxin. Proc Natl Acad Sci USA 1988;85:3066–3070.

    PubMed  CAS  Google Scholar 

  39. Matsuoka M, Itoh H, Kozasa T, Kaziro Y. Sequence analysis of cDNA and genomic DNA for a putative pertussis toxin-insensitive guanine nucleotide-binding regulatory protein alpha subunit. Proc Natl Acad Sci USA 1988; 85: 5384–5388.

    PubMed  CAS  Google Scholar 

  40. Casey PJ, Fong HK, Simon MI, Gilman AG. Gz, a guanine nucleotide-binding protein with unique biochemical properties. J Biol Chem 1990;265:2383–2390.

    PubMed  CAS  Google Scholar 

  41. Fields TA, Casey PJ. Phosphorylation of Gz alpha by protein kinase C blocks interaction with the beta gamma complex. J Biol Chem 1995;270:23,119–23,125.

    PubMed  CAS  Google Scholar 

  42. Wang J, Frost JA, Cobb MH, Ross EM. Reciprocal signaling between heterotrimeric G proteins and the p21-stimulated protein kinase. J Biol Chem 1999;274:31,641–31,647.

    PubMed  CAS  Google Scholar 

  43. Wong GT, Gannon KS, Margolskee RF. Transduction of bitter and sweet taste by gustducin. Nature 1996; 381:796–800.

    PubMed  CAS  Google Scholar 

  44. Margolskee RF. Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 2002;277: 1–4.

    PubMed  CAS  Google Scholar 

  45. Zhang Y, Hoon MA, Chandrashekar J, et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 2003;112:293–301.

    PubMed  CAS  Google Scholar 

  46. Burns ME, Baylor DA. Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu Rev Neurosci 2001;24:779–805.

    PubMed  CAS  Google Scholar 

  47. Fain GL, Matthews HR, Cornwall MC, Koutalos Y. Adaptation in vertebrate photoreceptors. Physiol Rev 2001;81:117–151.

    PubMed  CAS  Google Scholar 

  48. Arshavsky VY, Lamb TD, Pugh EN Jr. G proteins and phototransduction. Annu Rev Physiol 2002;64: 153–187.

    PubMed  CAS  Google Scholar 

  49. Exton JH. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol 1996;36:481–509.

    PubMed  CAS  Google Scholar 

  50. Rebecchi MJ, Pentyala SN. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 2000;80:1291–1335.

    PubMed  CAS  Google Scholar 

  51. Rhee SG. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 2001;70: 281–312.

    PubMed  CAS  Google Scholar 

  52. Wilkie TM, Scherle PA, Strathmann MP, Slepak VZ, Simon MI. Characterization of G-protein alpha subunits in the Gq class: expression in murine tissues and in stromal and hematopoietic cell lines. Proc Natl Acad Sci USA 1991; 88:10,049–10,053.

    PubMed  CAS  Google Scholar 

  53. Amatruda TT 3rd, Steele DA, Slepak VZ, Simon MI. G alpha 16, a G protein alpha subunit specifically expressed in hematopoietic cells. Proc Natl Acad Sci USA 1991; 88:5587–5591.

    PubMed  CAS  Google Scholar 

  54. Kuang Y, Wu Y, Jiang H, Wu D. Selective G protein coupling by C-C chemokine receptors. J Biol Chem 1996;271:3975–3978.

    PubMed  CAS  Google Scholar 

  55. Strathmann MP, Simon MI. G alpha 12 and G alpha 13 subunits define a fourth class of G protein alpha subunits. Proc Natl Acad Sci USA 1991;88:5582–5586.

    PubMed  CAS  Google Scholar 

  56. Milligan G, Mullaney I, Mitchell FM. Immunological identification of the alpha subunit of G13, a novel guanine nucleotide binding protein. FEBS Lett 1992;297:186–188.

    PubMed  CAS  Google Scholar 

  57. Kurose H. Galpha12 and Galpha13 as key regulatory mediator in signal transduction. Life Sci 2003;74: 155–161.

    PubMed  CAS  Google Scholar 

  58. Collins LR, Minden A, Karin M, Brown JH. Galpha12 stimulates c-Jun NH2-terminal kinase through the small G proteins Ras and Rac. J Biol Chem 1996;271:17,349–17,353.

    PubMed  CAS  Google Scholar 

  59. Voyno-Yasenetskaya TA, Faure MP, Ahn NG, Bourne HR. Galpha12 and Galpha13 regulate extracellular signal-regulated kinase and c-Jun kinase pathways by different mechanisms in COS-7 cells. J Biol Chem 1996; 271:21,081–21,087.

    PubMed  CAS  Google Scholar 

  60. Hooley R, Yu CY, Symons M, Barber DL. G alpha 13 stimulates Na+-H+ exchange through distinct Cdc42-dependent and RhoA-dependent pathways. J Biol Chem 1996;271:6152–6158.

    PubMed  CAS  Google Scholar 

  61. Lin X, Voyno-Yasenetskaya TA, Hooley R, Lin CY, Orlowski J, Barber DL. Galpha12 differentially regulates Na+-H+ exchanger isoforms. J Biol Chem 1996;271:22,604–22,610.

    PubMed  CAS  Google Scholar 

  62. Plonk SG, Park SK, Exton JH. The alpha-subunit of the heterotrimeric G protein G13 activates a phospholipase D isozyme by a pathway requiring Rho family GTPases. J Biol Chem 1998;273:4823–4826.

    PubMed  CAS  Google Scholar 

  63. Nagao M, Kaziro Y, Itoh H. The Src family tyrosine kinase is involved in Rho-dependent activation of c-Jun N-terminal kinase by Galpha12. Oncogene 1999;18:4425–4434.

    PubMed  CAS  Google Scholar 

  64. Dhanasekaran N, Dermott JM. Signaling by the G12 class of G proteins. Cell Signal 1996;8: 235–245.

    PubMed  CAS  Google Scholar 

  65. Fromm C, Coso OA, Montaner S, Xu N, Gutkind JS. The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. Proc Natl Acad Sci USA 1997; 94:10,098–10,103.

    PubMed  CAS  Google Scholar 

  66. Fukuhara S, Chikumi H, Gutkind JS. RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho? Oncogene 2001;20:1661–1668.

    PubMed  CAS  Google Scholar 

  67. Offermanns S. In vivo functions of heterotrimeric G-proteins: studies in Galpha-deficient mice. Oncogene 2001;20:1635–1642.

    PubMed  CAS  Google Scholar 

  68. Suzuki N, Nakamura S, Mano H, Kozasa T. Galpha 12 activates Rho GTPase through tyrosine-phosphorylated leukemia-associated RhoGEF. Proc Natl Acad Sci USA 2003;100:733–738.

    PubMed  CAS  Google Scholar 

  69. Clapham DE, Neer EJ. G protein beta gamma subunits. Annu Rev Pharmacol Toxicol 1997;37:167–203.

    PubMed  CAS  Google Scholar 

  70. Gautam N, Downes GB, Yan K, Kisselev O. The G-protein betagamma complex. Cell Signal 1998;10: 447–455.

    PubMed  CAS  Google Scholar 

  71. Schwindinger WF, Robishaw JD. Heterotrimeric G-protein betagammadimers in growth and differentiation. Oncogene 2001;20:1653–1660.

    PubMed  CAS  Google Scholar 

  72. Yan K, Kalyanaraman V, Gautam N. Differential ability to form the G protein betagamma complex among members of the beta and gamma subunit families. J Biol Chem 1996;271:7141–7146.

    PubMed  CAS  Google Scholar 

  73. Wang Q, Mullah BK, Robishaw JD. Ribozyme approach identifies a functional association between the G protein beta1gamma7 subunits in the beta-adrenergic receptor signaling pathway. J Biol Chem 1999;274: 17,365–17,371.

    PubMed  CAS  Google Scholar 

  74. Asano T, Morishita R, Ueda H, Kato K. Selective association of G protein beta(4) with gamma(5) and gamma(12) subunits in bovine tissues. J Biol Chem 1999;274:21,425–21,429.

    PubMed  CAS  Google Scholar 

  75. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 1987;325:321–326.

    PubMed  CAS  Google Scholar 

  76. Hanoune J, Defer N. Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 2001; 41:145–174.

    PubMed  CAS  Google Scholar 

  77. de Rooij J, Zwartkruis FJ, Verheijen MH, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 1998;396:474–477.

    PubMed  Google Scholar 

  78. Kawasaki H, Springett GM, Mochizuki N, et al. A family of cAMP-binding proteins that directly activate Rap1. Science 1998;282:2275–2279.

    PubMed  CAS  Google Scholar 

  79. Defer N, Best-Belpomme M, Hanoune J. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol Renal Physiol 2000;279:F400–F416.

    PubMed  CAS  Google Scholar 

  80. Hieble JaRJ, RR. Adrenergic Receptors. In: Pangalos MN and Davies CH, ed. Understanding G Protein-Coupled Receptors and Their Role in the CNS. 1st ed. New York: Oxford University Press, 2002, pp. 205–220.

    Google Scholar 

  81. Fukami K. Structure, regulation, and function of phospholipase C isozymes. J Biochem (Tokyo) 2002; 131:293–299.

    PubMed  CAS  Google Scholar 

  82. Lopez I, Mak EC, Ding J, Hamm HE, Lomasney JW. A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem 2001;276: 2758–2765.

    PubMed  CAS  Google Scholar 

  83. Wing MR, Houston D, Kelley GG, Der CJ, Siderovski DP, Harden TK. Activation of phospholipase C-epsilon by heterotrimeric G protein betagammasubunits. J Biol Chem 2001;276:48,257–48,261.

    PubMed  CAS  Google Scholar 

  84. Kelley GG, Reks SE, Smrcka AV. Hormonal regulation of phospholipase Cepsilon through distinct and overlapping pathways involving G12 and Ras family G proteins. Biochem J 2004;378:129–139.

    PubMed  CAS  Google Scholar 

  85. Song C, Hu CD, Masago M, et al. Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J Biol Chem 2001;276:2752–2757.

    PubMed  CAS  Google Scholar 

  86. Kelley GG, Reks SE, Ondrako JM, Smrcka AV. Phospholipase C(epsilon): a novel Ras effector. EMBO J 2001;20:743–754.

    PubMed  CAS  Google Scholar 

  87. Sadja R, Alagem N, Reuveny E. Gating of GIRK channels: details of an intricate, membrane-delimited signaling complex. Neuron 2003;39:9–12.

    PubMed  CAS  Google Scholar 

  88. Mirshahi T, Jin T, Logothetis DE. G beta gamma and KACh: old story, new insights. Sci STKE 2003; 2003(194):E32.

    Google Scholar 

  89. Kaneko S, Akaike A, Satoh M. Receptor-mediated modulation of voltage-dependent Ca2+ channels via heterotrimeric G-proteins in neurons. Jpn J Pharmacol 1999;81:324–331.

    PubMed  CAS  Google Scholar 

  90. Ikeda SR. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature 1996;380:255–258.

    PubMed  CAS  Google Scholar 

  91. Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA. Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature 1996;380:258–262.

    PubMed  CAS  Google Scholar 

  92. Zhong J, Hume JR, Keef KD. beta-Adrenergic receptor stimulation of L-type Ca2+ channels in rabbit portal vein myocytes involves both alphas and betagamma G protein subunits. J Physiol 2001;531:105–115.

    PubMed  CAS  Google Scholar 

  93. Viard P, Macrez N, Mironneau C, Mironneau J. Involvement of both G protein alphas and beta gamma subunits in beta-adrenergic stimulation of vascular L-type Ca(2+) channels. Br J Pharmacol 2001;132:669–676.

    PubMed  CAS  Google Scholar 

  94. Mattingly RR, Macara IG. Phosphorylation-dependent activation of the Ras-GRF/CDC25Mm exchange factor by muscarinic receptors and G-protein beta gamma subunits. Nature 1996;382:268–272.

    PubMed  CAS  Google Scholar 

  95. Kiyono M, Satoh T, Kaziro Y. G protein beta gamma subunit-dependent Rac-guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm). Proc Natl Acad Sci USA 1999;96:4826–4831.

    PubMed  CAS  Google Scholar 

  96. Pumiglia KM, LeVine H, Haske T, Habib T, Jove R, Decker SJ. A direct interaction between G-protein beta gamma subunits and the Raf-1 protein kinase. J Biol Chem 1995;270:14,251–14,254.

    PubMed  CAS  Google Scholar 

  97. Luttrell LM, Hawes BE, van Biesen T, Luttrell DK, Lansing TJ, Lefkowitz RJ. Role of c-Src tyrosine kinase in G protein-coupled receptor-and Gbetagamma subunit-mediated activation of mitogen-activated protein kinases. J Biol Chem 1996;271:19,443–19,450.

    PubMed  CAS  Google Scholar 

  98. Kozasa T, Jiang X, Hart MJ, et al. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 1998;280:2109–2111.

    PubMed  CAS  Google Scholar 

  99. Hart MJ, Jiang X, Kozasa T, et al. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science 1998;280:2112–2114.

    PubMed  CAS  Google Scholar 

  100. Jiang Y, Ma W, Wan Y, Kozasa T, Hattori S, Huang XY. The G protein G alpha12 stimulates Bruton’s tyrosine kinase and a rasGAP through a conserved PH/BM domain. Nature 1998;395:808–813.

    PubMed  CAS  Google Scholar 

  101. Ito A, Satoh T, Kaziro Y, Itoh H. G protein beta gamma subunit activates Ras, Raf, and MAP kinase in HEK 293 cells. FEBS Lett 1995;368:183–187.

    PubMed  CAS  Google Scholar 

  102. Martegani E, Vanoni M, Zippel R, et al. Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. EMBO J 1992;11:2151–2157.

    PubMed  CAS  Google Scholar 

  103. Shou C, Farnsworth CL, Neel BG, Feig LA. Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21. Nature 1992;358:351–354.

    PubMed  CAS  Google Scholar 

  104. Fukuhara S, Murga C, Zohar M, Igishi T, Gutkind JS. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem 1999;274:5868–5879.

    PubMed  CAS  Google Scholar 

  105. Fukuhara S, Chikumi H, Gutkind JS. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho. FEBS Lett 2000;485:183–188.

    PubMed  CAS  Google Scholar 

  106. Mochizuki N, Ohba Y, Kiyokawa E, et al. Activation of the ERK/MAPK pathway by an isoform of rap1GAP associated with G alpha(i). Nature 1999;400:891–894.

    PubMed  CAS  Google Scholar 

  107. Tsygankova OM, Feshchenko E, Klein PS, Meinkoth JL. TSH/cAMP and GSK3beta elicit opposing effects on Rap1GAP stability. J Biol Chem 2004;279:5501–5507.

    PubMed  CAS  Google Scholar 

  108. Jordan JD, He CJ, Eungdamrong NJ, et al. Cannabinoid receptor induced neurite outgrowth is mediated by Rap1 activation through Galphao/i-triggered proteasomal degradation of Rap1GAPII. J Biol Chem, 2005; in press.

    Google Scholar 

  109. Gratacap MP, Payrastre B, Nieswandt B, Offermanns S. Differential regulation of Rho and Rac through heterotrimeric G-proteins and cyclic nucleotides. J Biol Chem 2001;276:47,906–47,913. [Epub Sep 17, 2001.]

    PubMed  CAS  Google Scholar 

  110. Usui I, Imamura T, Huang J, Satoh H, Olefsky JM. Cdc42 is a Rho GTPase family member that can mediate insulin signaling to glucose transport in 3T3-L1 adipocytes. J Biol Chem 2003;278:13,765–13,774.

    PubMed  CAS  Google Scholar 

  111. Strittmatter SM, Fishman MC. The neuronal growth cone as a specialized transduction system. Bioessays 1991;13:127–134.

    PubMed  CAS  Google Scholar 

  112. Simkowitz P, Ellis L, Pfenninger KH. Membrane proteins of the nerve growth cone and their developmental regulation. J Neurosci 1989;9:1004–1017.

    PubMed  CAS  Google Scholar 

  113. Edmonds BT, Moomaw CR, Hsu JT, Slaughter C, Ellis L. The p38 and p34 polypeptides of growth cone particle membranes are the alpha-and beta-subunits of G proteins. Brain Res Dev Brain Res 1990;56:131–136.

    PubMed  CAS  Google Scholar 

  114. Strittmatter SM, Vartanian T, Fishman MC. GAP-43 as a plasticity protein in neuronal form and repair. J Neurobiol 1992;23:507–520.

    PubMed  CAS  Google Scholar 

  115. Strittmatter SM, Fankhauser C, Huang PL, Mashimo H, Fishman MC. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell 1995;80:445–452.

    PubMed  CAS  Google Scholar 

  116. Igarashi M, Strittmatter SM, Vartanian T, Fishman MC. Mediation by G proteins of signals that cause collapse of growth cones. Science 1993;259:77–79.

    PubMed  CAS  Google Scholar 

  117. Christofori G. Split personalities: the agonistic antagonist Sprouty. Nat Cell Biol 2003;5: 377–379.

    PubMed  CAS  Google Scholar 

  118. Dikic I, Giordano S. Negative receptor signalling. Curr Opin Cell Biol 2003;15:128–135.

    PubMed  CAS  Google Scholar 

  119. Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci 1998;21:127–148.

    PubMed  CAS  Google Scholar 

  120. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2001;2: 119–128.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Hwangpo, T.N., Iyengar, R. (2005). Heterotrimeric G Proteins and Their Effector Pathways. In: Devi, L.A. (eds) The G Protein-Coupled Receptors Handbook. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-919-6_5

Download citation

Publish with us

Policies and ethics