Skip to main content

Ventricular Function

  • Chapter
Essential Cardiology

Abstract

The basic cardiac events of Wiggers’ cycle (Fig. 1) are: (1) left ventricular (LV) contraction, (2) LV relaxation, and (3) LV filling. A natural starting point is with the arrival of calcium ions at the contractile protein that starts actin-myosin interaction and left ventricular contraction. During the initial phase of contraction, the LV pressure builds up until it exceeds that in the left atrium (normally 10 to 15 mmHg), whereupon the mitral valve closes. With the aortic and mitral valves both shut, the LV volume cannot change and contraction must be isovolumic (iso = the same) until the aortic valve is forced open as the LV pressure exceeds that in the aorta. Once the aortic valve is open, blood is vigorously ejected from the LV into the aorta, which is the phase of maximal or rapid ejection. The speed of ejection of blood is determined both by the pressure gradient across the aortic valve and by the elastic properties of the aorta, which undergoes systolic expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Katz AM. Physiology of the Heart, 2nd ed. Raven Press, New York, 1992, p. 453.

    Google Scholar 

  2. Brutsaert DL, Sys SU, Gilbert TC. Diastolic failure: pathophysiology and therapeutic implications. J Am Coll Cardiol 1993;22:318–325.

    Article  PubMed  CAS  Google Scholar 

  3. Starling EH. The Linacre Lecture on the Law of the Heart. Longmans, Green and Co., London, 1918.

    Google Scholar 

  4. Frank O. Zur dynamik des Herzmuskels. Z Biol 1895;32:370–447.

    Google Scholar 

  5. Fuchs F. Mechanical modulation of the Ca2+ regulatory protein complex in cardiac muscle. News Physiol Sci 1995;10:6–12.

    CAS  Google Scholar 

  6. Solaro RJ, Rarick HM. Troponin and tropomysin: proteins that switch on and tune in the activity of cardiac myofilaments. Circ Res 1998;83:471–480.

    PubMed  CAS  Google Scholar 

  7. Fitzsimons DP, Moss RL. Strong binding of myosin modulates length-dependent Ca2+ activation or rat ventricular myocytes. Circ Res 1998;83:602–607.

    PubMed  CAS  Google Scholar 

  8. Luo W, Grupp IL, Harrer J, et al. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 1994;75:401–409.

    PubMed  CAS  Google Scholar 

  9. Mulieri LA, Leavitt BJ, Martin BJ. Myocardial force-frequency defect in mitral regurgitation heart failure is reversed by forskolin. Circulation 1993;88:2700–2704.

    PubMed  CAS  Google Scholar 

  10. Fenelon G, Wijns W, Andries E, Brugada P. Tachycardiomyopathy: mechanisms and clinical implications. PACE 1996;19:95–105.

    PubMed  CAS  Google Scholar 

  11. Flamm SD, Taki J, Moore R, et al. Redistribution of regional and organ blood volume and effect on cardiac function in relation to upright exercise intensity in healthy human subjects. Circulation 1990;81:1550–1559.

    PubMed  CAS  Google Scholar 

  12. Poliner LR, Dehmer GJ, Lewis SE, et al. Left ventricular performance in normal subjects: a comparison of the responses to exercise in the upright and supine positions. Circulation 1980;62:528–534.

    PubMed  CAS  Google Scholar 

  13. Iskandrian AS, Hakki AH, DePace NL, Manno B, Segal BL. Evaluation of left ventricular function by radionuclide angiography during exercise in normal subjects and in patients with chronic coronary heart disease. J Am Coll Cardiol 1983;1:1518–1529.

    PubMed  CAS  Google Scholar 

  14. Upton M, Rerych SK, Roeback JR Jr, et al. Effect of brief and prolonged exercise on left ventricular function. Am J Cardiol 1980;45:1154–1160.

    Article  PubMed  CAS  Google Scholar 

  15. Bar-Shlomo B-Z, Druck MN, Morch JE, et al. Left ventricular function in trained and untrained healthy subjects. Circulation 1982;65:484–488.

    PubMed  CAS  Google Scholar 

  16. Vahl CF, Bonz A, Timek T, Hagl S. Intracellular calcium transient of working human myocardium of seven patients transplanted for congestive heart failure. Circ Res 1994;74:952–958.

    PubMed  CAS  Google Scholar 

  17. Schiller NB, Foster E. Analysis of left ventricular systolic function. Heart 1996;(Suppl 2)75:17–26.

    Article  PubMed  CAS  Google Scholar 

  18. Hoit BD, Shao Y, Gabel M, Walsh RA. In vivo assessment of left atrial contractile performance in normal and pathological conditions using a time-varying elastance model. Circulation 1994;89:1829–1838.

    PubMed  CAS  Google Scholar 

  19. Wiggers CJ. Modern Aspects of Circulation in Health and Disease. Lea and Febiger, Philadelphia, 1915.

    Google Scholar 

  20. Lind AR, McNicol GW. Muscular factors which determine the cardiovascular responses to sustained and rhythmic exercise. Canad Med Ass J 1967;96:703–713.

    Google Scholar 

  21. Waldrop TG, Eldridge FL, Iwamoto GA, Mitchell JH. Central neural control of respiration and circulation during exercise. In: Rowell LB, Shepherd JT, eds. Handbook in Physiology, section 12. Oxford University Press, New York, 1996, pp. 333–380.

    Google Scholar 

  22. Granzier HL, Labeit S. The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 2004;94:284–295.

    Article  PubMed  CAS  Google Scholar 

  23. Lew WYW. Time-dependent increase in left ventricular contractility following acute volume loading in the dog. Circ Res 1988;63:635.

    PubMed  CAS  Google Scholar 

  24. Suga H. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 1973;32:314.

    PubMed  CAS  Google Scholar 

  25. Cheng CP, et al. Effect of loading conditions, contractile state and heart rate on early diastolic left ventricular filling in conscious dogs. Circ Res 1990;66:814.

    PubMed  CAS  Google Scholar 

Recommended Reading

  1. Katz AM. Physiology of the Heart, 3rd ed. Chapters 8 and 11. Lippincott Williams & Wilkins, Philadelphia, 2001.

    Google Scholar 

  2. Opie LH. Heart Physiology: From Cell to Circulation. Chapter 12. Lippincott Williams & Wilkins, Philadelphia, 2004.

    Google Scholar 

  3. Opie LH. Mechanisms of cardiac contraction and relaxation. In: Zipes DP, Libby P, Bonow RD, Braunwald E, eds. Heart Disease, 7th ed. W. B. Saunders, Philadelphia, 2005, pp. 457–489.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Opie, L.H. (2005). Ventricular Function. In: Rosendorff, C. (eds) Essential Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-918-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-918-9_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-370-1

  • Online ISBN: 978-1-59259-918-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics