Skip to main content

Heme Oxygenase-1 and Carbon Monoxide in Vascular Regulation

  • Chapter
Cell Signaling in Vascular Inflammation

Abstract

The gaseous signaling molecules nitric oxide (NO) and carbon monoxide (CO), which are generated endogenously by the heme oxygenase (HO) and nitric oxide synthase (NOS) systems, respectively, play significant roles in the regulation of vascular function. The HO enzymes exist in both constitutive (HO-2, HO-3) and inducible (HO-1) isoforms, the latter identified as a component of the cellular stress response. HO converts heme to CO, biliverdin, and iron; and these metabolites may all contribute to the apparent cytoprotective effects of HO. Like NO, CO has potent vasodilator properties, and may regulate other vascular functions such as the aggregation of platelets and the proliferation of smooth muscle. These effects of CO typically depend on the activation of soluble guanylate cyclase activity. Although toxic at elevated concentrations, exogenous CO may exert anti-inflammatory and anti-apoptotic properties at low concentration, which depend on the modulation of mitogen-activated protein kinase pathways. Manipulation of the HO-1/CO system, either by gene transfer or application of low-dose CO, could be applied in the treatment of vascular disease. Beneficial effects of HO/CO have recently been demonstrated in the limitation of ischemia/reperfusion injury during organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kourembanas, S. (2002) Hypoxia and carbon monoxide in the vasculature. Antioxid. Redox Signal 4, 291–299.

    Article  PubMed  CAS  Google Scholar 

  2. Lowenstein, C. J., Dinerman, J. L., and Snyder, S. H. (1994) Nitric oxide: a physiologic messenger. Ann. Intern. Med. 120, 227–237.

    PubMed  CAS  Google Scholar 

  3. Felley-Bosco, E., Buzard, G. S., Billiar, T. R., and Keefer, L. K. (1998) Nitric oxide, altered DNA, and mammalian disease. In Aruoma, O. I., and Halliwell, B. (eds), Molecular Biology of Free Radicals in Human Diseases. Oica International, Saint Lucia, London, pp. 287–325.

    Google Scholar 

  4. Andersson, K. E. (2003) Erectile physiological and pathophysiological pathways involved in erectile dysfunction. J. Urol. 70, S6–13.

    Article  Google Scholar 

  5. Gianetti, J., Bevilacqua, S., and De Caterina, R. (2002) Inhaled nitric oxide: more than a selective pulmonary vasodilator. Eur. J. Clin. Invest. 32, 628–635.

    Article  PubMed  CAS  Google Scholar 

  6. Jugdutt, B. I. (2003) Nitric oxide and cardiovascular protection. Heart Fail. Rev. 8, 29–34

    Article  PubMed  CAS  Google Scholar 

  7. Ryter, S., Otterbein, L. E., Morse, D., and Choi, A. M. K. (2002) Heme oxygenase/ carbon monoxide signaling pathways: regulation and functional significance. Mol. Cell Biochem. 234/235, 249–263.

    Article  CAS  Google Scholar 

  8. Wink, D. A. and Mitchell, J. B. (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 25, 434–456.

    Article  PubMed  CAS  Google Scholar 

  9. Maines, M. D. (1997) The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37, 517–554.

    Article  PubMed  CAS  Google Scholar 

  10. Furchgott, R. F. and Jothianandan, D. (1991) Endothelium-dependent and-independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 28, 52–61.

    PubMed  CAS  Google Scholar 

  11. Verma, A., Hirsch, D. J., Glatt, C. E., Ronnett, G. V., and Snyder, S. H. (1993) Carbon monoxide: a putative neural messenger. Science 259, 381–384.

    Article  PubMed  CAS  Google Scholar 

  12. Otterbein, L. E., Zuckerbraun, B. S., Haga, M., et al. (2003) Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat. Med. 9, 183–190.

    Article  PubMed  CAS  Google Scholar 

  13. Duckers, H. J., Boehm, M., True, A. L., et al. (2001) Heme oxygenase-1 protects against vascular constriction and proliferation. Nat. Med. 7, 693–698.

    Article  PubMed  CAS  Google Scholar 

  14. Cardell, L. O., Ueki, I. F., Stjarne, P., et al. (1998) Bronchodilatation in vivo by carbon monoxide, a cyclic GMP related messenger. Br. J. Pharmacol. 124, 1065–1068.

    Article  PubMed  CAS  Google Scholar 

  15. Fujita, T., Toda, K., Karimova, A., et al. (2001) Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat. Med. 7, 598–604.

    Article  PubMed  CAS  Google Scholar 

  16. Morita, T., Mitsialis, S. A., Koike, H., Liu, Y., and Kourembanas, S. (1997) Carbon monoxide controls the proliferation of hypoxic vascular smooth muscle cells. J. Biol. Chem. 272, 32,804–32,809.

    Article  PubMed  CAS  Google Scholar 

  17. Morita, T., Perrella, M. A., Lee, M. E., and Kourembanas, S. (1995) Smooth muscle cell-derived carbon monoxide is a regulator of vascular cGMP. Proc. Natl. Acad. Sci. USA 92, 1475–1479.

    Article  PubMed  CAS  Google Scholar 

  18. Brune, B. and Ullrich, V. (1987) Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol. Pharmacol. 32, 497–504.

    PubMed  CAS  Google Scholar 

  19. Utz, J. and Ullrich, V. (1991) Carbon monoxide relaxes ilial smooth muscle through activation of guanylate cyclase. Biochem. Pharmacol. 41, 1195–2001.

    Article  PubMed  CAS  Google Scholar 

  20. Otterbein, L. E., Bach, F. H., Alam, J., et al. (2000) Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6, 422–428.

    Article  PubMed  CAS  Google Scholar 

  21. Brouard, S., Otterbein, L. E., Anrather, J., et al. (2000) Carbon monoxide generated by heme oxygenase-1 suppresses endothelial cell apoptosis. J. Exp. Med. 192, 1015–1026.

    Article  PubMed  CAS  Google Scholar 

  22. Song, R., Kubo, M., Morse, D., et al. (2003) Carbon monoxide induces cytoprotection in rat orthotopic lung transplantation via anti-inflammatory and anti-apoptotic effects. Am. J. Pathol. 163, 231–242.

    PubMed  CAS  Google Scholar 

  23. Sato, K., Balla, J., Otterbein, L., et al. (2001) Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J. Immunol. 166, 4185–4194.

    PubMed  CAS  Google Scholar 

  24. Zhang, X., Shan, P., Otterbein, L. E., et al. (2003) Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. J. Biol. Chem. 278, 1248–1258.

    Article  PubMed  CAS  Google Scholar 

  25. Vremen, H. J., Wong, R. J., and Stevenson, D. K. (2000) Carbon monoxide in breath, blood, and other tissues. In Penney, D. G. (ed), Carbon Monoxide Toxicity, CRC, Boca Raton, pp. 19–60.

    Google Scholar 

  26. Tenhunen, R., Marver, H., and Schmid, R. (1969) Microsomal heme oxygenase, characterization of the enzyme. J. Biol. Chem. 244, 6388–6394.

    PubMed  CAS  Google Scholar 

  27. Tenhunen, R., Ross, M. E., Marver, H. S., and Schmid, R. (1970) Reduced nicotinamide adenine dinucleotide phosphate dependent biliverdin reductase: partial purification and characterization. Biochemistry 9, 298–323.

    Article  PubMed  CAS  Google Scholar 

  28. Ryter, S. and Tyrrell, R. M. (2000) The heme synthesis and degradation pathways, role in oxidant sensitivity. Heme oxygenase has both pro-and anti-oxidant properties. Free Radic. Biol. Med. 28, 289–309.

    Article  PubMed  CAS  Google Scholar 

  29. Otterbein, L. E., Soares, M. P., Yamashita, K., and Bach, F. H. (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24, 449–455.

    Article  PubMed  CAS  Google Scholar 

  30. Soares, M. P., Lin, Y., Anrather, J., et al. (1998) Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat. Med. 4, 1073–1077.

    Article  PubMed  CAS  Google Scholar 

  31. Maines, M. D., Trakshel, G. M., and Kutty, R. K. (1986) Characterization of two constitutive forms of rat liver microsomal heme oxygenase. J. Biol. Chem. 261, 411–419.

    PubMed  CAS  Google Scholar 

  32. Trakshel, G. M., Kutty, R. K., and Maines, M. D. (1986) Purification and characterization of the major constitutive form of testicular heme oxygenase. J. Biol. Chem. 261, 11,131–11,137.

    PubMed  CAS  Google Scholar 

  33. Maines, M. D. (1992) Heme Oxygenase: Clinical Applications and Functions, CRC, Boca Raton, FL.

    Google Scholar 

  34. Maines, M. D. (1988) Heme Oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 2, 2557–2568.

    PubMed  CAS  Google Scholar 

  35. McCoubrey, W. K., Huang, T. J., and Maines, M. D. (1997) Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur. J. Biochem. 247, 725–732.

    Article  PubMed  CAS  Google Scholar 

  36. Zakhary, R., Gaine, S. P., Dinerman, J. L., Ruat, M., Flavahan, N. A., and Snyder, S. H. (1996) Heme oxygenase 2: endothelial and neuronal localization and role in endothelium-dependent relaxation. Proc. Natl. Acad. Sci. USA 93, 795–798.

    Article  PubMed  CAS  Google Scholar 

  37. Raju, V. S., McCoubrey, W. K., Jr., and Maines, M. D. (1997) Regulation of heme oxygenase-2 by glucocorticoids in neonatal rat brain: characterization of a functional glucocorticoid response element. Biochim. Biophys. Acta 1351, 89–104.

    PubMed  CAS  Google Scholar 

  38. Maines, M. D. (1996) Corticosterone promotes increased heme oxygenase-2 protein and transcript expression in the newborn rat brain. Brain Res. 722, 83–94.

    Article  PubMed  CAS  Google Scholar 

  39. Keyse, S. M., Applegate, L. A., Tromvoukis, Y., and Tyrrell, R. M. (1990) Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts. Mol. Cell Biol. 10, 4967–4969.

    PubMed  CAS  Google Scholar 

  40. Ryter, S. W. and Tyrrell, R. M. (1997) The role of heme oxygenase-1 in the mammalian stress response: Molecular aspects of regulation and function. In Forman, H. J., and Cadenas, E. (eds), Oxidative Stress and Signal Transduction. Chapman and Hall, New York, pp. 343–386.

    Google Scholar 

  41. Alam, J., Shibahara, S., and Smith, A. (1989) Transcriptional activation of the heme oxygenase gene by heme and cadmium in mouse hepatoma cells. J. Biol. Chem. 264, 6371–6375.

    PubMed  CAS  Google Scholar 

  42. Balla, J., Jacob, H. S., Balla, G., Nath, K., Eaton, J. W., and Vercellotti, G. M. (1993) Endothelial-cell heme uptake from heme proteins: Induction of sensitization and desensitization to oxidant damage. Proc. Natl. Acad. Sci. USA 90, 9285–9289.

    Article  PubMed  CAS  Google Scholar 

  43. Alam, J., Cai, J., and Smith, A. (1994) Isolation and characterization of the mouse heme oxygenase-1 gene. J. Biol. Chem. 269, 1001–1009.

    PubMed  CAS  Google Scholar 

  44. Alam, J. (1994) Multiple elements within the 5′ distal enhancer of the mouse heme oxygenase-1 gene mediate induction by heavy metals. J. Biol. Chem. 269, 25,049–25,056.

    PubMed  CAS  Google Scholar 

  45. Alam, J., Camhi, S., and Choi, A. M. (1995) Identification of a second region upstream of the mouse heme oxygenase-1 gene that functions as a basal level and inducer-dependent transcription enhancer. J. Biol. Chem. 270, 11,977–11,984

    Article  PubMed  CAS  Google Scholar 

  46. Alam, J., Wicks, C., Stewart, D., et al. (2000) Mechanism of heme oxygenase-1 gene activation by cadmium in MCF-7 mammary epithelial cells. Role of p38 kinase and Nrf2 transcription factor. J. Biol. Chem. 275, 27,694–27,702.

    PubMed  CAS  Google Scholar 

  47. Sun, J., Hoshino, H., Takaku, K., et al. (2002) Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 21, 5216–5224.

    Article  PubMed  CAS  Google Scholar 

  48. Ogawa, K., Sun, J., Taketani, S., et al. (2001) Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J. 20, 2835–2843.

    Article  PubMed  CAS  Google Scholar 

  49. Haddad, J. J. (2002) Oxygen-sensing mechanisms and the regulation of redox-responsive transcription factors in the development and pathophysiology. Respir. Res. 3, 26.

    Article  PubMed  Google Scholar 

  50. Semenza, G. L., Agani, F., Feldser, D., et al. (2000) Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv. Exp. Med. Biol. 475, 123–130.

    PubMed  CAS  Google Scholar 

  51. Heacock, C. S. and Sutherland, R. M. (1986) Induction characteristics of oxygen regulated proteins. Int. J. Radiat. Oncol. Biol. Phys. 12, 1287–1290.

    PubMed  CAS  Google Scholar 

  52. Graven, K. K. and Farber, H. W. (1998) Endothelial cell hypoxic stress proteins. J. Lab. Clin. Med. 132, 456–463.

    Article  PubMed  CAS  Google Scholar 

  53. Zimmerman, L. H., Levine, R. A., and Farber, H. W. (1991) Hypoxia induces a specific set of stress proteins in cultured endothelial cells. J. Clin. Invest. 87, 908–914.

    PubMed  CAS  Google Scholar 

  54. Lee, P. J., Jiang, B. H., Chin, B. Y., et al. (1997) Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J. Biol. Chem. 272, 5375–5381.

    Article  PubMed  CAS  Google Scholar 

  55. Murphy, B. J., Laderoute, K. R., Short, S. M., and Sutherland, R. M. (1991) The identification of heme oxygenase as a major hypoxic stress protein in Chinese hamster ovary cells. Br. J. Cancer 64, 69–73.

    PubMed  CAS  Google Scholar 

  56. Ryter, S., Si, M. L., Lai, C-C., and Su, C. Y. (2000) Regulation of endothelial heme oxygenase activity during hypoxia is dependent on intracellular chelatable iron. Am. J. Physiol. Heart Circ. Physiol. 279, H2889–H2897.

    PubMed  CAS  Google Scholar 

  57. Morita, T. and Kourembanas, S. (1995) Endothelial cell expression of vasoconstrictors and growth factors is regulated by smooth muscle cell-derived carbon monoxide. J. Clin. Invest. 96, 2676–2682.

    PubMed  CAS  Google Scholar 

  58. Hartsfield, C. L., Alam, J., and Choi, A. M. (1999) Differential signaling pathways of HO-1 gene expression in pulmonary and systemic vascular cells. Am. J. Physiol. 277, L1133–L1141.

    PubMed  CAS  Google Scholar 

  59. Wood, S. M., Wiesener, M. S., Yeates, K. M., et al. (1998) Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1 alpha-subunit (HIF-1alpha). Characterization of hif-1 alpha-dependent and independent hypoxia-inducible gene expression. J. Biol. Chem. 273, 8360–8368.

    Article  PubMed  CAS  Google Scholar 

  60. Motterlini, R., Foresti, R., Bassi, R., Calabrese, V., Clark, J. E., and Green, C. J. (2000) Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthease and S-nitrosothiols. J. Biol. Chem. 275, 13,613–13,620.

    Article  PubMed  CAS  Google Scholar 

  61. Katayose, D., Isoyama, S., Fujita, H., and Shibahara, S. (1993) Separate regulation of heme oxygenase and heat shock protein 70 mRNA expression in the rat heart by hemodynamic stress. Biochem. Biophys. Res. Commun. 191, 587–594

    Article  PubMed  CAS  Google Scholar 

  62. Yet, S. F., Perrella, M. A., Layne, M. D., et al. (1999) Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J. Clin. Invest. 103, R23–R29.

    Article  PubMed  CAS  Google Scholar 

  63. Minamino, T., Christou, H., Hsieh, C. M., et al. (2001) Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc. Natl. Acad. Sci. USA 98, 8798–8803.

    Article  PubMed  CAS  Google Scholar 

  64. Nakayama, M., Takahashi, K., Kitamuro, T., et al. (2000) Repression of heme oxygenase-1 by hypoxia in vascular endothelial cells. Biochem. Biophys. Res. Commun. 271, 665–671.

    Article  PubMed  CAS  Google Scholar 

  65. Kitamuro, T., Takahashi, K., Ogawa, K., et al. (2003) Bach1 functions as a hypoxia-inducible repressor for the heme oxygenase-1 gene in human cells. J. Biol. Chem. 278, 9125–9133.

    Article  PubMed  CAS  Google Scholar 

  66. Kajimura, M., Goda, N., and Suematsu, M. (2002) Organ design for generation and reception of CO: lessons from the liver. Antioxid. Redox Signal 4, 633–637.

    Article  PubMed  CAS  Google Scholar 

  67. Suematsu, M., Kashiwagi, S., Sano, T., Goda, N., Shinoda, Y., and Ishimura, Y: (1994) Carbon monoxide as an endogenous modulator of hepatic vascular perfusion. Biochem. Biophys. Res. Commun. 205, 1333–1337.

    Article  PubMed  CAS  Google Scholar 

  68. Caudill, T. K., Resta, T. C., Kanagy, N. L., and Walker, B. R. (1998) Role of endothelial carbon monoxide in attenuated vasoreactivity following chronic hypoxia. Am. J. Physiol. 275, R1025–R1030.

    PubMed  CAS  Google Scholar 

  69. Koehler, R. C. and Traystman, R. J. (2002) Cerebrovascular effects of carbon monoxide. Antioxid. Redox Signal 4, 279–290.

    Article  PubMed  CAS  Google Scholar 

  70. Wang, R., Wu, L., and Wang, Z. (1997) The direct effect of carbon monoxide on KCa channels in vascular smooth muscle cells. Eur. J. Physiol. 434, 285–291.

    Article  CAS  Google Scholar 

  71. Kaide, J. I., Zhang, F., Wei, Y., et al. (2001) Carbon monoxide of vascular origin attenuates the sensitivity of renal arterial vessels to vasoconstrictors. J. Clin. Invest. 107, 1163–1171.

    PubMed  CAS  Google Scholar 

  72. Jaggar, J. H., Leffler, C. W., Cheranov, S. Y., Tcheranova, D., Shuyu, E., and Cheng, X. (2002) Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+-activated K+ channels. Circ. Res. 91, 610–617.

    Article  PubMed  CAS  Google Scholar 

  73. Kyriakis, J. M. and Avruch, J. (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J. Biol. Chem. 271, 24,313–24,316.

    Article  PubMed  CAS  Google Scholar 

  74. Sethi, J. M., Otterbein, L. E., and Choi, A. M. (2002) Differential modulation by exogenous carbon monoxide of TNF-alpha stimulated mitogen-activated protein kinases in rat pulmonary artery endothelial cells. Antioxid. Redox Signal 4, 241–248.

    Article  PubMed  CAS  Google Scholar 

  75. Kroemer, G., Dallaporta, B., and Resche-Rigon, M. (1998) The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619–642.

    Article  PubMed  CAS  Google Scholar 

  76. Petrache, I., Otterbein, L. E., Alam, J., Wiegand, G. W., and Choi, A. M. (2000) Heme oxygenase-1 inhibits TNF-alpha-induced apoptosis in cultured fibroblasts. Am. J. Physiol. Lung Cell Mol. Physiol. 278, L312–L319.

    PubMed  CAS  Google Scholar 

  77. Brouard, S., Berberat, P. O., Tobiasch, E., Seldon, M. P., Bach, F. H., Soares, M. P. (2002) Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J. Biol. Chem. 277, 17,950–17,961.

    Article  PubMed  CAS  Google Scholar 

  78. Liu, X. M., Chapman, G. B., Peyton, K. J., Schafer, A. I., and Durante, W. (2003) Antiapoptotic action of carbon monoxide on cultured vascular smooth muscle cells. Exp. Biol. Med. 228, 572–575.

    CAS  Google Scholar 

  79. Soncul, H., Oz, E., and Kalaycioglu, S. (1999) Role of ischemic preconditioning on ischemia-reperfusion injury of the lung. Chest 115, 1672–1677.

    Article  PubMed  CAS  Google Scholar 

  80. Katori, M., Anselmo, D. M., Busuttil, R. W., Kupiec-Weglinski, J. W. (2002) A novel strategy against ischemia and reperfusion injury: cytoprotection with heme oxygenase system. Transplant Immunol. 9, 227–233.

    Article  CAS  Google Scholar 

  81. Katori, M., Buelow, R., Ke, B., et al. (2002) Heme oxygenase-1 overexpression protects rat hearts from cold ischemia/reperfusion injury via an anti-apoptotic pathway. Transplantation 73, 287–292.

    Article  PubMed  CAS  Google Scholar 

  82. Zhang, X., Shan, P., Alam, J., Davis, R. J., Flavell, R. A., Lee, P. J. (2003) Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38alpha mitogen-activated protein kinase pathway during ischemia-reperfusion lung injury. J. Biol. Chem. 278, 22,061–22,070.

    Article  PubMed  CAS  Google Scholar 

  83. Nakao, A., Kimizuka, K., Stolz, D. B., et al. (2003) Protective effect of carbon monoxide inhalation for cold-preserved small intestinal grafts. Surgery 134, 285–292.

    Article  PubMed  Google Scholar 

  84. Amersi, F., Shen, X. D., Anselmo, D., et al. (2002) Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology 35, 815–823.

    Article  PubMed  CAS  Google Scholar 

  85. Siow, R. C., Sato, H., and Mann, G. E. (1999) Heme oxygenase-carbon monoxide signalling pathway in atherosclerosis: anti-atherogenic actions of bilirubin and carbon monoxide? Cardiovasc. Res. 41, 385–394.

    Article  PubMed  CAS  Google Scholar 

  86. Wang, L. J., Lee, T. S., Lee, F. Y., Pai, R. C., and Chau, L. Y. (1998) Expression of heme oxygenase-1 in atherosclerotic lesions. Am. J. Pathol. 152, 711–720.

    PubMed  CAS  Google Scholar 

  87. Ishikawa, K., Sugawara, D., Wang, X. P., et al. (2001) Heme oxygenase-1 inhibits atherosclerotic lesion formation in ldl-receptor knockout mice. Circ. Res. 88, 506–512.

    PubMed  CAS  Google Scholar 

  88. Juan, S. H., Lee, T. S., Tseng, K. W., et al. (2001) Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 104, 1519–1525.

    Article  PubMed  CAS  Google Scholar 

  89. Tulis, D. A., Durante, W., Liu, X., Evans, A. J., Peyton, K. J., and Schafer, A. I. (2001) Adenovirus-mediated heme oxygenase-1 gene delivery inhibits injury-induced vascular neointima formation. Circulation 104, 2710–2715.

    Article  PubMed  CAS  Google Scholar 

  90. Avihingsanon, Y., Ma, N., Csizmadia, E., et al. (2002) Expression of protective genes in human renal allografts: a regulatory response to injury associated with graft rejection. Transplantation 73, 1079–1085.

    Article  PubMed  CAS  Google Scholar 

  91. Ke, B., Buelow, R., Shen, X. D., et al. (2002) Heme oxygenase-1 gene transfer prevents CD95/Fas ligand-mediated apoptosis and improves liver allograft survival via carbon monoxide signaling pathway. Hum. Gene Ther. 13, 1189–1199.

    Article  PubMed  CAS  Google Scholar 

  92. Pileggi, A., Molano, R. D., Berney, T., et al. (2001) Heme oxygenase-1 induction in islet cells results in protection from apoptosis and improved in vivo function after transplantation. Diabetes 50, 1983–1991.

    Article  PubMed  CAS  Google Scholar 

  93. Tobiasch, E., Gunther, L., and Bach, F. H. (2001) Heme oxygenase-1 protects pancreatic beta cells from apoptosis caused by various stimuli. J. Invest. Med. 49, 566–571.

    Article  CAS  Google Scholar 

  94. Ke, B., Shen, X. D., Melinek, J., et al. (2001) Heme oxygenase-1 gene therapy: a novel immunomodulatory approach in liver allograft recipients? Transplant. Proc. 33, 581–582.

    Article  PubMed  CAS  Google Scholar 

  95. Amersi, F., Buelow, R., Kato, H., et al. (1999) Upregulation of heme oxygenase-1 protects genetically fat Zucker rat livers from ischemia/reperfusion injury. J. Clin. Invest. 104, 1631–1639.

    PubMed  CAS  Google Scholar 

  96. Hosenpud, J. D., Bennett, L. E., Keck, B. M., Boucek, M. M., and Novick, R. J. (2000) The registry of the international society for heart and lung transplantation: seventeenth official report. J. Heart Lung Transplant. 19, 909–931.

    Article  PubMed  CAS  Google Scholar 

  97. Bando, K., Paradis, I. L., Similo, S., et al. (1995) Obliterative bronchiolitis after lung and heart-lung transplantation. An analysis of risk factors and management. J. Thorac. Cardiovasc. Surg. 110, 4–13.

    Article  PubMed  CAS  Google Scholar 

  98. Girgis, R. E., Tu, I., Berry, G. J. et al. (1996) Risk factors for the development of obliterative bronchiolitis after lung transplantation. J. Heart Lung Transplant. 15, 1200–1208.

    PubMed  CAS  Google Scholar 

  99. Sibley, R. K., Berry, G. J., Tazelaar, H. D. et al. (1993) The role of transbronchial biopsies in the management of lung transplant recipients. J. Heart Lung Transplant. 12, 308–324.

    PubMed  CAS  Google Scholar 

  100. Trulock, E. P. (1993) Management of lung transplant rejection. Chest 103, 1566–1576.

    Article  PubMed  CAS  Google Scholar 

  101. Estenne, M. and Hertz, M. I. (2002) Bronchiolitis obliterans after human lung transplantation. Am. J. Respir. Crit. Care Med. 166, 440–444.

    Article  PubMed  Google Scholar 

  102. Lu, F., Zander, D. S., and Visner, G. A. (2002) Increased expression of heme oxygenase-1 in human lung transplantation. J. Heart Lung Transplant. 21, 1120–1126.

    Article  PubMed  Google Scholar 

  103. Keyse, S. M. and Tyrrell, R. M. (1989) Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl. Acad. Sci. USA 86, 99–103.

    Article  PubMed  CAS  Google Scholar 

  104. Motterlini, R., Clark, J. E., Foresti, R., Sarathchandra, P., Mann, B. E., and Green, C. J. (2002) Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ. Res. 90, E17–E24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ryter, S.W., Choi, A.M.K. (2005). Heme Oxygenase-1 and Carbon Monoxide in Vascular Regulation. In: Bhattacharya, J. (eds) Cell Signaling in Vascular Inflammation. Humana Press. https://doi.org/10.1007/978-1-59259-909-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-909-7_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-525-5

  • Online ISBN: 978-1-59259-909-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics