Skip to main content

Positron Emission Tomography and Single-Photon Emission Tomography in the Diagnosis of Parkinson’s Disease

Differential Diagnosis From Parkinson-Like Degenerative Diseases

  • Chapter
Book cover Bioimaging in Neurodegeneration

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 724 Accesses

Abstract

Parkinsonian symptoms are associated with a number of neurodegenerative disorders, such as Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Positron emission tomography (PET) and single-photon emission tomography (SPECT) now are able to visualize and quantify changes in cerebral blood flow, glucose metabolism, and neurotransmitter function produced by parkinsonian disorders. Both PET and SPECT have become important tools in the differential diagnosis of these diseases and may have sufficient sensitivity to detect neuronal changes before the onset of clinical symptoms. Imaging is now being used to elucidate the genetic contribution to Parkinson’s disease and in longitudinal studies to assess the efficacy and mode of action of neuroprotective drug and surgical treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raiput AH, Rozdilsky B, Raiput A. Accuracy of clinical diagnosis in parkinsonism—a prospective study. Can J Neurol Sci 1991;12:219–228.

    Google Scholar 

  2. Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopathalogic study of 100 cases of Parkinson’s disease. Arch Neurol 1993;50:140–148.

    PubMed  CAS  Google Scholar 

  3. Testa D, Filippini G, Farinotti M, Palazzini E, Caraceni T. Survival in multiple system atrophy: a study of prognostic factors in 59 cases. J Neurol 1996;243:401–404.

    Article  PubMed  CAS  Google Scholar 

  4. Brooks DJ. The early diagnosis of Parkinson’s disease. Ann Neurol 1998;44:S10–S18.

    Article  PubMed  CAS  Google Scholar 

  5. Schrag A, Kingsley D, Phatouros C, et al. Clinical usefulness of magnetic resonance imaging in multiple system atrophy. J Neurol Neurosurg Psych 1998;65:65–71.

    CAS  Google Scholar 

  6. Kuhl DE, Metter EJ, Riege WH, Markham CH. Patterns of cerebral glucose utilisation in Parkinson’s disease and Huntingdon’s disease. Ann Neurol 1984;15:119–125.

    Article  Google Scholar 

  7. Smith FW, Gemmell HG, Sharp PF, Besson JA. Technetium-99m HMPAO imaging in patients with basal ganglia disease. Br J Radiol 1988;61:914–920.

    PubMed  CAS  Google Scholar 

  8. Wang SJ, Liu RS, Liu HC, et al. Technetium-99m hexamethylpropylene amine oxime single photon emission tomography of the brain in early Parkinson’s disease: correlation with dementia and lateralization. Eur J Nucl Med 1993;20:339–344.

    Article  PubMed  CAS  Google Scholar 

  9. Markus HS, Lees AJ, Lennox G, Marsden CD, Costa DC. Patterns of regional cerebral blood flow in corticobasal degenration studied using HMPAO SPECT; comparison with Parkinson’s disease and normal controls. Mov Disord 1995;10:179–187.

    Article  PubMed  CAS  Google Scholar 

  10. Otsuka M, Ichiya Y, Kuwabara Y, et al K. Glucose metabolism in the cortical and subcortical brain structures in multiple system atrophy and Parkinson’s disease: a positron emission tomography study. J Neurol Sci 1996;144:77–83.

    Article  PubMed  CAS  Google Scholar 

  11. Dethy S, Van Blercom N, Damhaut P, Wikler D, Hilderbrand J, Goldman S. Asymmetry of basal ganglia glucose metabolism and dopa responsiveness in parkinsonism. Mov Disord 1998;13:275–280.

    Article  PubMed  CAS  Google Scholar 

  12. Antonini A, Kazumata K, Feigin A, et al. Differential diagnosis of parkinsonism with [18F]fluorodeoxyglucose and PET. Mov Disord 1998;13:268–274.

    Article  PubMed  CAS  Google Scholar 

  13. Pizzolato G, Dam M, Borsato N, et al. [99mTc]-HM-PAO SPECT in Parkinson’s disease. J Cerebral Blood Flow Metab 1988;8:S101–S108.

    CAS  Google Scholar 

  14. Liu RS, Lin KN, Wang SJ, et al. Cognition and 99mTc-HMPAO SPECT in Parkinson’s disease. Nucl Med Commun 1992;13:744–748.

    Article  PubMed  CAS  Google Scholar 

  15. Eberling JL, Richardson BC, Reed BR, Wolfe N, Jagust WJ. Cortical glucose metabolism in Parkinson’s disease without dementia. Neurobiol Aging 1994;15:329–335.

    Article  PubMed  CAS  Google Scholar 

  16. Eidelberg D, Moeller JR, Ishikawa T, et al. Early differential diagnosis of Parkinson’s disease with 18F-fluorodeoxyglucose and positron emission tomography. Neurology 1995;45:1995–2004.

    PubMed  CAS  Google Scholar 

  17. Piert M, Koeppe RA, Giordani B, Minoshima S, Kuhl DE. Determination of regional rate constants from dynamic FDG-PET studies in Parkinson’s disease. J Nucl Med 1996;37:1115–1122.

    PubMed  CAS  Google Scholar 

  18. Berding G, Odin P, Brooks DJ, et al. Resting regional cerebral glucose metabolism in advanced Parkinson’s disease studied in the off and on conditions with [(18)F]FDG-PET. Movement Disorders 2001;16:1014–1022.

    Article  PubMed  CAS  Google Scholar 

  19. Otsuka M, Kuwabara Y, Ichiya Y, et al. Differentiating between multiple system atrophy and Parkinson’s disease by positron emission tomography with 18F-dopa and 18F-FDG. Ann Nucl Med 1997;11:251–257.

    PubMed  CAS  Google Scholar 

  20. Defebvre L, Lecouffe P, Destee A, Houdart P, Steinling M. Tomographic measurements of regional cerebral blood flow in progressive supranuclear palsy and Parkinson’s disease. Acta Neurol Scand 1995;92:235–241.

    Article  PubMed  CAS  Google Scholar 

  21. Jagust WJ, Reed BR, Martin EM, Eberling JL, Nelson-Abbott RA. Cognitive function and regional cerebral blood flow in Parkinson’s disease. Brain 1992;115:521–537.

    Article  PubMed  Google Scholar 

  22. Samuel M, Ceballos-Baumann AO, Boecker H, Brooks DJ. Motor imagery in normal subjects and Parkinson’s disease patients: an H215O PET study. Neuroreport 2001;12:821–828.

    Article  PubMed  CAS  Google Scholar 

  23. Sawada H, Udaka F, Kameyama M, et al. SPECT findings in Parkinson’s disease associated with dementia. J Neurol Neurosurg Psychiatry 1992;55:960–963.

    PubMed  CAS  Google Scholar 

  24. Wu JC, Iacono R, Ayman M, et al. Correlation of intellectual impairment in Parkinson’s disease with FDG PET scan. Neuroreport 2000;11:2139–2144.

    Article  PubMed  CAS  Google Scholar 

  25. Antonini A, De Notaris R, Benti R, De Gaspari D, Pezzoli G. Perfusion ECD/SPECT in the characterization of cognitive deficits in Parkinson’s disease. Neuroll Sci 2001;22:45–46.

    Article  CAS  Google Scholar 

  26. Agniel A, Celsis P, Viallard G, et al. Cognition and cerebral blood flow in lateralised parkinsonism: lack of functional lateral asymmetries. J Neurol Neurosurg Psychiatry 1991;54:783–786.

    PubMed  CAS  Google Scholar 

  27. Arahata Y, Hirayama M, Ieda T, et al. Parieto-occipital glucose hypometabolism in Parkinson’s disease with autonomic failure. J Neurol Sci 1999;163:119–126.

    Article  PubMed  CAS  Google Scholar 

  28. Bissessur S, Tissingh G, Wolters EC, Scheltens P. rCBF SPECT in Parkinson’s disease patients with mental dysfunction. J Neural Transmission Suppl 1997;50:25–30.

    CAS  Google Scholar 

  29. Ceballos-Baumann AO. Functional imaging in Parkinson’s disease: activation studies with PET, fMRI and SPECT. J Neurol 2003;250Suppl 1:15–23.

    Google Scholar 

  30. Costa DC, Ell PJ, Burns A, Philpot M, Levy R. CBF tomograms with [99mTc-HM-PAO in patients with dementia (Alzheimer type and HIV) and Parkinson’s disease—initial results. J Cerebral Blood Flow Metab 1988; 8:S109–S115.

    CAS  Google Scholar 

  31. De Reuck J, Siau B, Decoo D, et al. Parkinsonism in patients with vascular dementia: clinical, computed-and positron emission-tomographic findings. Cerebrovascr Dis 2001;11:51–58.

    Article  Google Scholar 

  32. Albani G, Kunig G, Soelch CM, et al. The role of language areas in motor control dysfunction in Parkinson’s disease. Neurol Sci 2001;22:43–44.

    Article  PubMed  CAS  Google Scholar 

  33. Liotti M, Ramig LO, Vogel D, et al. Hypophonia in Parkinson’s disease: neural correlates of voice treatment revealed by PET. Neurology 2003;60:432–440.

    PubMed  CAS  Google Scholar 

  34. Feigin A, Fukuda M, Dhawan V, et al. Metabolic correlates of levodopa response in Parkinson’s disease. Neurology 2001;57:2083–2088.

    PubMed  CAS  Google Scholar 

  35. Rougemont D, Baron JC, Collard P, Bustany P, Comar D, Agid Y. Local cerebral glucose utilisation in treated and untreated patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1984;47:824–830.

    PubMed  CAS  Google Scholar 

  36. Markus HS, Costa DC, Lees AJ. HMPAO SPECT in Parkinson’s disease before and after levodopa: correlation with dopaminergic responsiveness. J Neurol Neurosurg Psychiatry 1994;57:180–185.

    PubMed  CAS  Google Scholar 

  37. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Map 1995;2:189–210.

    Article  Google Scholar 

  38. Acton PD, Friston KJ. Statistical parametric mapping in functional neuroimaging: beyond PET and fMRI activation studies. Eur J Nucl Med 1998;25:663–667.

    PubMed  CAS  Google Scholar 

  39. Imon Y, Matsuda H, Ogawa M, Kogure D, Sunohara N. SPECT image analysis using statistical parametric mapping in patients with Parkinson’s disease. J Nuclear Med 1999;40:1583–1589.

    CAS  Google Scholar 

  40. Lozza C, Marie RM, Baron JC. The metabolic substrates of bradykinesia and tremor in uncomplicated Parkinson’s disease. Neuroimage 2002;17:688–699.

    Article  PubMed  CAS  Google Scholar 

  41. Acton PD, Mozley PD, Kung HF. Logistic discriminant parametric mapping: a novel method for the pixel-based differential diagnosis of Parkinson’s disease. Eur J Nucl Med 1999;26:1413–1423.

    Article  PubMed  CAS  Google Scholar 

  42. Slomka PJ, Radau PE, Hurwitz GA, Dey D. Automated three-dimensional quantification of myocardial perfusion and brain SPECT. Comput Med Imaging Graph 2001;25:153–164.

    Article  PubMed  CAS  Google Scholar 

  43. Garnett ES, Firnau G, Chan PKH, Sood S, Belbeck LW. [18F]-Fluoro-dopa, an analogue of dopa, and its use in direct external measurements of storage, degradation, and turnover of intracerebral dopamine. Proc Natl Acad Sci USA 1978;75:464.

    Article  PubMed  CAS  Google Scholar 

  44. Garnett ES, Firnau G, Nahmias C. Dopamine visualised in the basal ganglia of living man. Nature 1983;305:137.

    Article  PubMed  CAS  Google Scholar 

  45. Snow BJ, Tooyama I, McGeer EG. Human positron emission tomographic (fluorine-18)fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol 1993;34:324–330.

    Article  PubMed  CAS  Google Scholar 

  46. Dhawan V, Ma Y, Pillai V, et al. Comparative analysis of striatal FDOPA uptake in Parkinson’s disease: ratio method versus graphical approach. J Nucl Med 2002;43:1324–1330.

    PubMed  Google Scholar 

  47. Antonini A, Vontobel P, Psylla M, et al. Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Arch Neurol 1995;52:1183–1190.

    PubMed  CAS  Google Scholar 

  48. Antonini A, Leenders KL, Vontobel P, Maguire RP, Missimer J, Psylla M, Gunther I. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 1997;120:2187–2195.

    Article  PubMed  Google Scholar 

  49. Dhawan V, Ishikawa T, Patlak C, et al. Combined FDOPA and 3OMFD PET studies in Parkinson’s disease. J Nucl Med 1996;37:209–216.

    PubMed  CAS  Google Scholar 

  50. Doudet DJ, Chan GL, Holden JE, et al. 6-(18F)Fluoro-L-DOPA PET studies of the turnover of dopamine in MPTP-induced parkinsonism in monkeys. Synapse 1998;29:225–232.

    Article  PubMed  CAS  Google Scholar 

  51. Eidelberg D, Moeller JR, Dhawan V, et al. The metabolic anatomy of Parkinson’s disease: complementary (18F)fluordeoxyglucose and (18F)fluorodopa positron emission tomographic studies. Mov Disord 1990;5:203–213.

    Article  PubMed  CAS  Google Scholar 

  52. Ghaemi M, Rudolf J, Hilker R, Herholz K, Heiss WD. Increased pineal Fdopa uptake is related to severity of Parkinson’s disease—a PET study. J Pineal Res 2001;30:213–219.

    Article  PubMed  CAS  Google Scholar 

  53. Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD. Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry 2002;73:517–523.

    Article  PubMed  CAS  Google Scholar 

  54. Hoshi H, Kuwabara H, Leger G, Cumming P, Guttman M, Gjedde A. 6-(18F)fluoro-L-dopa metabolism in living human brain: a comparison of six analytical methods. J Cerebral Blood Flow Metab 1993;13:57–69.

    CAS  Google Scholar 

  55. Huang WS, Chiang YH, Lin JC, Chou YH, Cheng CY, Liu RS. Crossover study of (99m)Tc-TRODAT-1 SPECT and (18)F-FDOPA PET in Parkinson’s disease patients. J Nucl Med 2003;44:999–1005.

    PubMed  Google Scholar 

  56. Huang WS, Ma KH, Chou YH, Chen CY, Liu RS, Liu JC. 99mTc-TRODAT-1 SPECT in healthy and 6-OHDA lesioned parkinsonian monkeys: comparison with 18F-FDOPA PET. Nucl Med Commun 2003;24:77–83.

    Article  PubMed  Google Scholar 

  57. Kawatsu S, Kato T, Nagano-Saito A, Hatano K, Ito K, Ishigaki T. New insight into the analysis of 6-(18F)fluoro-L-DOPA PET dynamic data in brain tissue without an irreversible compartment: comparative study of the Patlak and Logan analyses. Radiat Med 2003;21:47–54.

    PubMed  Google Scholar 

  58. Kuwabara H, Cumming P, Yasuhara Y, et al. Regional striatal DOPA transport and decarboxylase activity in Parkinson’s disease. J Nucl Med 1995;36:1226–1231.

    PubMed  CAS  Google Scholar 

  59. Laureys S, Salmon E, Garraux G, et al. Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration. J Neurol 1999;246:1151–1158.

    Article  PubMed  CAS  Google Scholar 

  60. Melega WP, Raleigh MJ, Stout DB, et al. Longitudinal behavioral and 6-(18F)fluoro-L-DOPA-PET assessment in MPTP-hemiparkinsonian monkeys. Exp Neurol 1996;141:318–329.

    Article  PubMed  CAS  Google Scholar 

  61. Nurmi E, Ruottinen HM, Bergman J, et al. Rate of progression in Parkinson’s disease: a 6-[18F]fluoro-L-dopa PET study. Mov Disord 2001;16:608–615.

    Article  PubMed  CAS  Google Scholar 

  62. Rousset OG, Deep P, Kuwabara H, Evans AC, Gjedde AH, Cumming P. Effect of partial volume correction on estimates of the influx and cerebral metabolism of 6-[(18)F]fluoro-L-dopa studied with PET in normal control and Parkinson’s disease subjects. Synapse 2000;37:81–89.

    Article  PubMed  CAS  Google Scholar 

  63. Ruottinen HM, Partinen M, Hublin C, et al. An FDOPA PET study in patients with periodic limb movement disorder and restless legs syndrome. Neurology 2000;54:502–504.

    PubMed  CAS  Google Scholar 

  64. Takikawa S, Dhawan V, Chaly T, et al. Input functions for 6-(fluorine-18)fluorodopa quantitation in parkinsonism: comparative studies and clinical correlations. J Nucl Med 1994;35:955–963.

    PubMed  CAS  Google Scholar 

  65. Broussolle E, Dentresangle C, Landais P, et al. The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson’s disease. J Neurol Sci 1999;166:141–151.

    Article  PubMed  CAS  Google Scholar 

  66. de la Fuente-Fernandez R, Pal PK, Vingerhoets FJ, et al. Evidence for impaired presynaptic dopamine function in parkinsonian patients with motor fluctuations. J Neural Transmission 2000;107:49–57.

    Article  Google Scholar 

  67. De La Fuente-Fernandez R, Lim AS, Sossi V, et al. Age and severity of nigrostriatal damage at onset of Parkinson’s disease. Synapse 2003;47:152–158.

    Article  CAS  Google Scholar 

  68. Frey KA. Can SPET imaging of dopamine uptake sites replace PET imaging in Parkinson’s disease? Eur J Nucl Med Mol Imaging 2002;29:715–717.

    Article  PubMed  CAS  Google Scholar 

  69. Tatsch K. Can SPET imaging of dopamine uptake sites replace PET imaging in Parkinson’s disease? For. Eur J Nucl Med Mol Imaging 2002;29:711–714.

    Article  CAS  Google Scholar 

  70. Brucke T, Djamshidian S, Bencsits G, Pirker W, Asenbaum S, Podreka I. SPECT and PET imaging of the dopaminergic system in Parkinson’s disease. J Neurol 2000;247(Suppl 4):2–7.

    Google Scholar 

  71. Fernandez HH, Friedman JH, Fischman AJ, Noto RB, Lannon MC. Is altropane SPECT more sensitive to fluoroDOPA PET for detecting early Parkinson’s disease? Medical Sci Monitor 2001;7:1339–1343.

    CAS  Google Scholar 

  72. Cumming P, Boyes BE, Martin WRW, et al. The metabolism of (18F)6-fluoro-L-3,4-dihydroxyphenylalanine in the hooded rat. J Neurochem 1987;48:601.

    Article  PubMed  CAS  Google Scholar 

  73. Cumming P, Hausser M, Martin WR, Grierson J, Adam MJ, Ruth TJ. Kinetics of in vitro decarboxylation and the in vivo metabolism of 2-18F-and 6-18F-fluorodopa in the hooded rat. Biochem Pharmacol 1988;37:247–250.

    Article  PubMed  CAS  Google Scholar 

  74. Cumming P, Brown E, Damsma G, Fibiger HC. Formation and clearance of interstitial metabolites of dopamine and serotonin in rat striatum: an in vivo microdialysis study. J Neurochem 1992;59:1905–1914.

    Article  PubMed  CAS  Google Scholar 

  75. Cumming P, Kuwabara H, Gjedde AH. A kinetic analysis of 6-[18F]fluoro-L-dihydroxyphenylalanine metabolism in the rat. J Neurochem 1994;63:1675–1682.

    Article  PubMed  CAS  Google Scholar 

  76. Yee RE, Huang SC, Stout DB, et al. Nigrostriatal reduction of aromatic L-amino acid decarboxylase activity in MPTP-treated squirrel monkeys: in vivo and in vitro investigations. J Neurochem 2000;74:1147–1157.

    Article  PubMed  CAS  Google Scholar 

  77. Fowler JS, Volkow ND, Wolf AP, et al. Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 1989;4:371–377.

    Article  PubMed  CAS  Google Scholar 

  78. Bergstrom KA, Kuikka JT, Ahonen A, Vanninen E. [123I] β-CIT, a tracer for dopamine and serotonin re-uptake sites: preparation and preliminary SPECT studies in humans. J Nucl Biol Med 1994;38:128–131.

    PubMed  CAS  Google Scholar 

  79. Madras BK, Spealman RD, Fahey MA, Neumeyer JL, Saha JK, Milius RA. Cocaine receptors labeled by [3H]2b-carbomethoxy-3b-(4-fluorophenyl)tropane. Mol Pharmacol 1989;36:518–524.

    PubMed  CAS  Google Scholar 

  80. Neumeyer JL, Wang S-Y, Milius RA, et al. [123I]-2b-Carbomethoxy-3b-(4-iodophenyl)tropane: high-affinity SPECT radiotracer of monoamine reuptake sites in brain [letter]. J Med Chem 1991;34:3144–3146.

    Article  PubMed  CAS  Google Scholar 

  81. Kung M-P, Essman WD, Frederick D, et al. IPT: a novel iodinated ligand for the CNS dopamine transporter. Synapse 1995;20:316–324.

    Article  PubMed  CAS  Google Scholar 

  82. Madras BK, Meltzer PC, Liang AY, Elmaleh DR, Babich J, Fischman AJ. Altropane, a SPECT or PET imaging probe for dopamine neurons: I. Dopamine transporter binding in primate brain. Synapse 1998;29:93–104.

    Article  PubMed  CAS  Google Scholar 

  83. Canfield DR, Spealman RD, Kaufman MJ, Madras BK. Autoradiographic localization of cocaine binding sites by [3H]CFT ([3H]WIN 35,428) in the monkey brain. Synapse 1990;6:189–195.

    Article  PubMed  CAS  Google Scholar 

  84. Volkow ND, Ding YS, Fowler JS, et al. A new PET ligand for the dopamine transporter: studies in the human brain. J Nucl Med 1995;36:2162–2168.

    PubMed  CAS  Google Scholar 

  85. Kung HF, Kim H-J, Kung M-P, Meegalla SK, Plössl K, Lee H-K. Imaging of dopamine transporters in humans with technetium-99m TRODAT-1. Eur J Nucl Med 1996;23:1527–1530.

    Article  PubMed  CAS  Google Scholar 

  86. Kung M-P, Stevenson DA, Plössl K, et al. [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med 1997;24:372–380.

    PubMed  CAS  Google Scholar 

  87. Acton PD, Kushner SA, Kung MP, Mozley PD, Plössl K, Kung HF. Simplified reference region model for the kinetic analysis of [99mTc]TRODAT-1 binding to dopamine transporters in non-human primates using SPET. Eur J Nucl Med 1999;26:518–526.

    Article  PubMed  CAS  Google Scholar 

  88. Kung HF, Billings JJ, Guo Y-Z, et al. Preparation and biodistribution of (125I)IBZM: a potential CNS D2 dopamine receptor imaging agent. Nucl Med Biol 1988;15:195–201.

    CAS  Google Scholar 

  89. Kung HF, Pan S, Kung M-P, Billings JJ, et al. In vitro and in vivo evaluation of (123I)IBZM: a potential CNS D2 dopamine receptor imaging agent. J Nucl Med 1989;30:88–92.

    PubMed  CAS  Google Scholar 

  90. Kung HF, Alavi A, Chang W, et al. In vivo SPECT imaging of CNS D2 dopamine receptors: initial studies with iodine-123-IBZM in humans. J Nucl Med 1990;31:573–579.

    PubMed  CAS  Google Scholar 

  91. Kung MP, Kung HF, Billings J, Yang Y, Murphy RA, Alavi A. The characterization of IBF as a new selective dopamine D-2 receptor imaging agent. J Nucl Med 1990;31:648–654.

    PubMed  CAS  Google Scholar 

  92. Billings JJ, Guo YZ, Kung MP, Kung HF. Localization of IBF as a D-2 dopamine receptor imaging agent in nonhuman primates. Eur J Nucl Med 1993;20:1146–1153.

    Article  PubMed  CAS  Google Scholar 

  93. Kessler RM, Ansari MS, Schmidt DE, et al. High affinity dopamine D2 receptor radioligands. 2. [125I]Epidepride, a potent and specific radioligand for the characterization of striatal and extrastriatal dopamine D2 receptors. Life Sci 1991;49:617–628.

    Article  PubMed  CAS  Google Scholar 

  94. Kessler RM, Mason NS, Votaw JR, et al. Visualization of extrastriatal dopamine D2 receptors in the human brain. Eur J Pharmacol 1992;223:105–107.

    Article  PubMed  CAS  Google Scholar 

  95. Ehrin E, Farde L, de Paulis T. Preparation of 11C-labelled raclopride, a new potent dopamine receptor antagonist: preliminary PET studies of cerebral dopamine receptors in the monkey. Int J Appl Rad Isot 1985;36:269–273.

    Article  CAS  Google Scholar 

  96. Arnett CD, Wolf AP, Shiue C-Y, et al. Improved delineation of human dopamine receptors using (18F)-N-methylspiroperidol and PET. J Nucl Med 1986;27:1878–1882.

    PubMed  CAS  Google Scholar 

  97. Shiue C-Y, Fowler JS, Wolf AP, McPherson DW, Arnett CD, Zecca L. No-carrier-added fluorine-18-labeled N-methylspiroperidol: synthesis and biodistribution in mice. J Nucl Med 1986;27:226–234.

    PubMed  CAS  Google Scholar 

  98. Volkow ND, Fowler JS, Wang G-J, et al. Decreased dopamine transporters with age in healthy human subjects. Ann Neurol 1994;36:237–239.

    Article  PubMed  CAS  Google Scholar 

  99. Vandyck CH, Seibyl JP, Malison RT, et al. Age-related decline in striatal dopamine transporter binding with iodine-123-β-CIT SPECT. J Nucl Med 1995;36:1175–1181.

    CAS  Google Scholar 

  100. Volkow ND, Ding YS, Fowler JS, et al. Dopamine transporters decrease with age. J Nucl Med 1996;37:554–559.

    PubMed  CAS  Google Scholar 

  101. Mozley PD, Kim HJ, Gur RC, et al. [I-123]IPT SPECT imaging of CNS dopamine transporters: non-linear effects of normal aging on striatal uptake values. J Nucl Med 1996;37:1965–1970.

    PubMed  CAS  Google Scholar 

  102. Martin WRW, Palmer MR, Patlak CS, Calne DB. Nigrostriatal function in man studied with positron emission tomography. Ann Neurol 1989;26:535–542.

    Article  PubMed  CAS  Google Scholar 

  103. Sawle GV, Colebatch JG, Shah A, Brooks DJ, Marsden CD, Frackowiak RSJ. Striatal function in normal aging: implications for Parkinson’s disease. Ann Neurol 1990;28:799–804.

    Article  PubMed  CAS  Google Scholar 

  104. Cordes M, Snow BJ, Cooper S, et al. Age-dependent decline of nigrostriatal dopaminergic function: a positron emission tomographic study of grandparents and their grandchildren. Ann Neurol 1994;36:667–670.

    Article  PubMed  CAS  Google Scholar 

  105. Antonini A, Leenders KL, Reist H, Thomann R, Beer HF, Locher J. Effect of age on D2 dopamine receptors in normal human brain measured by positron emission tomography and 11C-raclopride. Arch Neurol 1993;50:474–480.

    PubMed  CAS  Google Scholar 

  106. Mozley PD, Acton PD, Barraclough ED, et al. Effects of age on the cerebral distribution of (Tc-99m)TRODAT-1 in healthy humans. J Nucl Med 1999;40:1812–1817.

    PubMed  CAS  Google Scholar 

  107. van Dyck CH, Seibyl JP, Malison RT, et al. Age-related decline in dopamine transporters: analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries. Am J Geriatric Psychiatry 2002;10:36–43.

    Article  Google Scholar 

  108. Leenders KL. The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 1990;47:1290.

    PubMed  CAS  Google Scholar 

  109. Brooks DJ. Detection of preclinical Parkinson’s disease with PET. Neurology 1991;41(5 Suppl 2):24–27; discussion 28.

    PubMed  CAS  Google Scholar 

  110. Brooks DJ, Ibanez V, Sawle GV, et al. Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 1990;28:547.

    Article  PubMed  CAS  Google Scholar 

  111. Brooks DJ. PET and SPECT studies in Parkinson’s disease. Baillieres Clin Neurol 1997;6:69–87.

    PubMed  CAS  Google Scholar 

  112. Seibyl JP, Marek KL, Quinlan D, et al. Decreased single-photon emission computed tomographic [123I]β-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 1995;38:589–598.

    Article  PubMed  CAS  Google Scholar 

  113. Tatsch K, Schwarz J, Oertel WH, Kirsch C-M. SPECT imaging of dopamine D2 receptors with [123I]IBZM in Parkinsonian syndromes. J Nucl Med 1991;32:1014–1015.

    Google Scholar 

  114. Tatsch K, Schwarz J, Mozley PD, et al. Relationship between clinical features of Parkinson’s disease and presynaptic dopamine transporter binding assessed with [123I]IPT and single-photon emission tomography. Eur J Nucl Med 1997;24:415–421.

    PubMed  CAS  Google Scholar 

  115. Booij J, Tissingh G, Boer GJ, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 1997;62:133–140.

    PubMed  CAS  Google Scholar 

  116. Tissingh G, Booij J, Winogrodzka A, van Royen EA, Wolters EC. IBZM-and CIT-SPECT of the dopaminergic system in parkinsonism. Neural Transmission Suppl 1997;50:31–37.

    CAS  Google Scholar 

  117. Asenbaum S, Brücke T, Pirker W, et al. Imaging of dopamine transporters with iodine-123-β-CIT and SPECT in Parkinson’s disease. J Nucl Med 1997;38:1–6.

    PubMed  CAS  Google Scholar 

  118. Kim HJ, Im JH, Yang SO, et al. Imaging and quantitation of dopamine transporters with iodine-123-IPT in normal and Parkinson’s disease subjects. J Nucl Med 1997;38:1703–1711.

    PubMed  CAS  Google Scholar 

  119. Fischman AJ, Bonab AA, Babich JW, et al. Rapid detection of Parkinson’s disease by SPECT with altropane: a selective ligand for dopamine transporters. Synapse 1998;29:128–141.

    Article  PubMed  CAS  Google Scholar 

  120. Muller T, Farahati J, Kuhn W, et al. [123I]β-CIT SPECT visualizes dopamine transporter loss in de novo Parkinsonian patients. Eur Neurol 1998;39:44–48.

    Article  PubMed  CAS  Google Scholar 

  121. Booij J, Tissingh G, Winogrodzka A, van Royen EA. Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med 1999;26:171–182.

    Article  PubMed  CAS  Google Scholar 

  122. Prunier C, Bezard E, Montharu J, et al. Presymptomatic diagnosis of experimental Parkinsonism with 123I-PE2I SPECT. Neuroimage 2003;19:810–816.

    Article  PubMed  Google Scholar 

  123. Prunier C, Payoux P, Guilloteau D, et al. Quantification of dopamine transporter by 123I-PE2I SPECT and the noninvasive Logan graphical method in Parkinson’s disease. J Nuclear Med 2003;44:663–670.

    CAS  Google Scholar 

  124. Radau PE, Linke R, Slomka PJ, Tatsch K. Optimization of automated quantification of 123I-IBZM uptake in the striatum applied to parkinsonism. J Nucl Med 2000;41:220–227.

    PubMed  CAS  Google Scholar 

  125. Ransmayrl G, Seppi K, Donnemiller E, et al. Striatal dopamine transporter function in dementia with Lewy bodies and Parkinson’s disease. Eur J Nucl Med 2001;28:1523–1528.

    Article  CAS  Google Scholar 

  126. Anonymous. A multicenter assessment of dopamine transporter imaging with DOPASCAN/SPECT in parkinsonism. Parkinson Study Group. Neurology 2000;55:1540–1547.

    Google Scholar 

  127. Antonini A, Moresco RM, Gobbo C, et al. The status of dopamine nerve terminals in Parkinson’s disease and essential tremor: a PET study with the tracer (11-C)FE-CIT. Neurol Sci 2001;22:47–48.

    Article  PubMed  CAS  Google Scholar 

  128. Bao SY, Wu JC, Luo WF, Fang P, Liu ZL, Tang J. Imaging of dopamine transporters with technetium-99m TRODAT-1 and single photon emission computed tomography. J Neuroimaging 2000;10:200–203.

    PubMed  CAS  Google Scholar 

  129. Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord 2000;15:692–698.

    Article  PubMed  CAS  Google Scholar 

  130. Berendse HW, Booij J, Francot CM, et al. Subclinical dopaminergic dysfunction in asymptomatic Parkinson’s disease patients’ relatives with a decreased sense of smell. Ann Neurol 2001;50:34–41.

    Article  PubMed  CAS  Google Scholar 

  131. Booij J, Habraken JB, Bergmans P,-etal. Imaging of dopamine transporters with iodine-123-FP-CIT SPECT in healthy controls and patients with Parkinson’s disease. J Nucl Med 1998;39:1879–1884.

    PubMed  CAS  Google Scholar 

  132. Booij J, Hemelaar TG, Speelman JD, de Bruin K, Janssen AG, van Royen EA. One-day protocol for imaging of the nigrostriatal dopaminergic pathway in Parkinson’s disease by (123I)FP-CIT SPECT. J Nucl Med 1999;40:753–761.

    PubMed  CAS  Google Scholar 

  133. Booij J, Speelman JD, Horstink MW, Wolters EC. The clinical benefit of imaging striatal dopamine transporters with (123I)FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur J Nucl Med 2001;28:266–272.

    Article  PubMed  CAS  Google Scholar 

  134. Chouker M, Tatsch K, Linke R, Pogarell O, Hahn K, Schwarz J. Striatal dopamine transporter binding in early to moderately advanced Parkinson’s disease: monitoring of disease progression over 2 years. Nucl Med Commun 2001;22:721–725.

    Article  PubMed  CAS  Google Scholar 

  135. Davis MR, Votaw JR, Bremner JD, et al. Initial human PET imaging studies with the dopamine transporter ligand 18F-FECNT. J Nucl Med 2003;44:855–861.

    PubMed  CAS  Google Scholar 

  136. Dentresangle C, Veyre L, Le Bars D, et al. Striatal D2 dopamine receptor status in Parkinson’s disease: an (18F)dopa and (11C)raclopride PET study. MovDisord 1999;14:1025–1030.

    Article  CAS  Google Scholar 

  137. Duchesne N, Soucy JP, Masson H, Chouinard S, Bedard MA. Cognitive deficits and striatal dopaminergic denervation in Parkinson’s disease: a single photon emission computed tomography study using 123iodine-β-CIT in patients on and off levodopa. Clin Neuropharmacol 2002;25:216–224.

    Article  PubMed  Google Scholar 

  138. Eising EG, Muller TH, Freudenberg L, et al. SPECT imaging with [123I]-β-CIT in Parkinsonism: comparison of SPECT images obtained by a single-headed and a three-headed gamma camera. Nucl Med Commun 2001;22:145–150.

    Article  PubMed  CAS  Google Scholar 

  139. Haapaniemi TH, Ahonen A, Torniainen P, Sotaniemi KA, Myllyla VV. [123I]β-CIT SPECT demonstrates decreased brain dopamine and serotonin transporter levels in untreated parkinsonian patients. Mov Disord 2001;16:124–130.

    Article  PubMed  CAS  Google Scholar 

  140. Happe S, Pirker W, Klosch G, Sauter C, Zeitlhofer J. Periodic leg movements in patients with Parkinson’s disease are associated with reduced striatal dopamine transporter binding. J Neurol 2003;250:83–86.

    Article  PubMed  Google Scholar 

  141. Huang WS, Lin SZ, Lin JC, Wey SP, Ting G, Liu RS. Evaluation of early-stage Parkinson’s disease with 99mTc-TRODAT-1 imaging. J Nucl Med 2001;42:1303–1308.

    PubMed  CAS  Google Scholar 

  142. Ichise M, Kim YJ, Ballinger JR, Vines D, Erami SS, Tanaka F, et al. SPECT imaging of pre-and postsynaptic dopaminergic alterations in L-dopa-untreated PD. Neurology 1999;52:1206–1214.

    PubMed  CAS  Google Scholar 

  143. Ilgin N, Zubieta J, Reich SG, Dannals RF, Ravert HT, Frost JJ. PET imaging of the dopamine transporter in progressive supranuclear palsy and Parkinson’s disease. Neurology 1999;52:1221–1226.

    PubMed  CAS  Google Scholar 

  144. Kaasinen V, Nagren K, Hietala J, et al. Extrastriatal dopamine D2 and D3 receptors in early and advanced Parkinson’s disease. Neurology 2000;54:1482–1487.

    PubMed  CAS  Google Scholar 

  145. Kaasinen V, Ruottinen HM, Nagren K, Lehikoinen P, Oikonen V, Rinne JO. Upregulation of putaminal dopamine D2 receptors in early Parkinson’s disease: a comparative PET study with [11C] raclopride and [11C]N-methylspiperone. J Nucl Med 2000;41:65–70.

    PubMed  CAS  Google Scholar 

  146. Kaasinen V, Rinne JO. Functional imaging studies of dopamine system and cognition in normal aging and Parkinson’s disease. Neurosci Biobehav Rev 2002;26:785–793.

    Article  PubMed  CAS  Google Scholar 

  147. Kaasinen V, Aalto S, K NA, Hietala J, Sonninen P, Rinne JO. Extrastriatal dopamine D(2) receptors in Parkinson’s disease: a longitudinal study. J Neural Transmission 2003;110:591–601.

    Article  CAS  Google Scholar 

  148. Kao PF, Tzen KY, Yen TC, et al. The optimal imaging time for (99Tcm)TRODAT-1/SPET in normal subjects and patients with Parkinson’s disease. Nucl Med Commun 2001;22:151–154.

    Article  PubMed  CAS  Google Scholar 

  149. Linke R, Gostomzyk J, Hahn K, Tatsch K. [123I]IPT binding to the presynaptic dopamine transporter: variation of intra-and interobserver data evaluation in parkinsonian patients and controls. Eur J Nucl Med 2000;27:1809–1812.

    Article  PubMed  CAS  Google Scholar 

  150. Lokkegaard A, Werdelin LM, Friberg L. Clinical impact of diagnostic SPET investigations with a dopamine re-uptake ligand. Eur J Nucl Med Mol Imaging 2002;29:1623–1629.

    Article  PubMed  CAS  Google Scholar 

  151. Marek K, Innis R, van Dyck C, et al. [123I]β-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology 2001;57:2089–2094.

    PubMed  CAS  Google Scholar 

  152. Mozley PD, Schneider JS, Acton PD, et al. Binding of (Tc-99m)TRODAT-1 to dopamine transporters in patients with Parkinson’s disease and healthy volunteers. J Nucl Med 2000;41:584–589.

    PubMed  CAS  Google Scholar 

  153. Muller U, Wachter T, Barthel H, Reuter M, von Cramon DY. Striatal (123I)β-CIT SPECT and prefrontal cognitive functions in Parkinson’s disease. J Neural Transmission 2000;107:303–319.

    Article  CAS  Google Scholar 

  154. Nakabeppu O, Nakajo M, Mitsuda M, Tsuchimochi S, Tani A, Osame M. Iodine-123 iodobenzofuran (I-123 IBF) SPECT in patients with parkinsonism. Ann Nucl Med 1999;13:447–452.

    Article  PubMed  CAS  Google Scholar 

  155. Nurmi E, Ruottinen HM, Kaasinen V, et al. Progression in Parkinson’s disease: a positron emission tomography study with a dopamine transporter ligand [18F]CFT. Ann Neurol 2000;47:804–808.

    Article  PubMed  CAS  Google Scholar 

  156. Rinne JO, Bergman J, Ruottinen H, et al. Striatal uptake of a novel PET ligand, (18F)β-CFT, is reduced in early Parkinson’s disease. Synapse 1999;31:119–124.

    Article  PubMed  CAS  Google Scholar 

  157. Rinne JO, Ruottinen H, Bergman J, Haaparanta M, Sonninen P, Solin O. Usefulness of a dopamine transporter PET ligand ((18)F)β-CFT in assessing disability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1999;67:737–741.

    PubMed  CAS  Google Scholar 

  158. Sakakibara R, Shinotoh H, Uchiyama T, Yoshiyama M, Hattori T, Yamanishi T. SPECT imaging of the dopamine transporter with ((123)I)-β-CIT reveals marked decline of nigrostriatal dopaminergic function in Parkinson’s disease with urinary dysfunction. J Neurol Sci 2001;187:55–59.

    Article  PubMed  CAS  Google Scholar 

  159. Shinotoh H, Uchida Y, Ito H, Harrori T. Relationship between striatal [123I]β-CIT binding and four major clinical signs in Parkinson’s disease. Ann Nucl Med 2000;14:199–203.

    PubMed  CAS  Google Scholar 

  160. Staffen W, Mair A, Unterrainer J, Trinka E, Ladurner G. Measuring the progression of idiopathic Parkinson’s disease with (123I) β-CIT SPECT. J Neural Transmission 2000;107:543–552.

    Article  CAS  Google Scholar 

  161. Staffen W, Mair A, Unterrainer J, Trinka E, Bsteh C, Ladurner G. [123I] β-CIT binding and SPET compared with clinical diagnosis in parkinsonism. Nucl Med Commun 2000;21:417–424.

    Article  PubMed  CAS  Google Scholar 

  162. Winogrodzka A, Bergmans P, Booij J, van Royen EA, Janssen AG, Wolters EC. [123I]FP-CIT SPECT is a useful method to monitor the rate of dopaminergic degeneration in early-stage Parkinson’s disease. J Neural Transmission 2001;108:1011–1019.

    Article  CAS  Google Scholar 

  163. Van Royen E, Verhoeff NFLG, Speelman JD, Wolters EC, Kuiper MA, Janssen AGM. Multiple system atrophy and progressive supranuclear palsy. Diminished striatal D2 receptor activity demonstrated by 123IBZM single photon emission computed tomography. Arch Neurol 1993;50:513–516.

    PubMed  Google Scholar 

  164. Burn DJ, Sawle GV, Brooks DJ. Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele-Richardson-Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psych 1994;57:278–284.

    CAS  Google Scholar 

  165. Pirker W, Asenbaum S, Wenger S, et al. Iodine-123-epidepride-SPECT: studies in Parkinson’s disease, multiple system atrophy and Huntington’s disease. J Nucl Med 1997;38:1711–1717.

    PubMed  CAS  Google Scholar 

  166. Brucke T, Asenbaum S, Pirker W, et al. Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I]β-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm 1997;50:9–24.

    CAS  Google Scholar 

  167. Messa C, Volonte MA, Fazio F, et al. Differential distribution of striatal [123I]β-CIT in Parkinson’s disease and progressive supranuclear palsy, evaluated with single photon emission tomography. Eur J Nucl Med 1998;25:1270–1276.

    Article  PubMed  CAS  Google Scholar 

  168. Hierholzer J, Cordes M, Venz S, et al. Loss of dopamine-D2 receptor binding sites in Parkinsonian plus syndromes. J Nucl Med 1998;39:954–960.

    PubMed  CAS  Google Scholar 

  169. Barthel H, Sorger D, Kuhn HJ, Wagner A, Kluge R, Hermann W. Differential alteration of the nigrostriatal dopaminergic system in Wilson’s disease investigated with [123I]ss-CIT and high-resolution SPET. Eur J Nucl Med 2001;28:1656–1663.

    Article  PubMed  CAS  Google Scholar 

  170. Barthel H, Hermann W, Kluge R, et al. Concordant pre-and postsynaptic deficits of dopaminergic neurotransmission in neurologic Wilson disease. Am J Neuroradiol 2003;24:234–238.

    PubMed  Google Scholar 

  171. Brashear A, Mulholland GK, Zheng QH, Farlow MR, Siemers ER, Hutchins GD. PET imaging of the pre-synaptic dopamine uptake sites in rapid-onset dystonia-parkinsonism (RDP). Mov Disord 1999;14:132–137.

    Article  PubMed  CAS  Google Scholar 

  172. Eisensehr I, Linke R, Noachtar S, Schwarz J, Gildehaus FJ, Tatsch K. Reduced striatal dopamine transporters in idiopathic rapid eye movement sleep behaviour disorder. Comparison with Parkinson’s disease and controls. Brain 2000;123:1155–1160.

    Article  PubMed  Google Scholar 

  173. Gerschlager W, Bencsits G, Pirker W, et al. (123I)β-CIT SPECT distinguishes vascular parkinsonism from Parkinson’s disease. Mov Disord 2002;17:518–523.

    Article  PubMed  Google Scholar 

  174. Huang CC, Yen TC, Weng YH, Lu CS. Normal dopamine transporter binding in dopa responsive dystonia. J Neurol 2002;249:1016–1020.

    Article  PubMed  CAS  Google Scholar 

  175. Jeon B, Kim JM, Jeong JM, et al. Dopamine transporter imaging with (123I)-β-CIT demonstrates presynaptic nigrostriatal dopaminergic damage in Wilson’s disease. J Neurol Neurosurg Psychiatry 1998;65:60–64.

    PubMed  CAS  Google Scholar 

  176. Jeon BS, Jeong JM, Park SS, et al. Dopamine transporter density measured by (123I)β-CIT single-photon emission computed tomography is normal in dopa-responsive dystonia. Ann Neurol 1998;43:792–800.

    Article  PubMed  CAS  Google Scholar 

  177. Katzenschlager R, Costa D, Gerschlager W, et al. [123I]-FP-CIT-SPECT demonstrates dopaminergic deficit in orthostatic tremor. Ann Neurol 2003;53:489–496.

    Article  PubMed  Google Scholar 

  178. Oyanagi C, Katsumi Y, Hanakawa T, et al. Comparison of striatal dopamine D2 receptors in Parkinson’s disease and progressive supranuclear palsy patients using [123I] iodobenzofuran single-photon emission computed tomography. J Neuroimaging 2002;12:316–324.

    Article  PubMed  Google Scholar 

  179. Pirker W, Asenbaum S, Bencsits G, et al. [123I]β-CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 2000;15:1158–1167.

    Article  PubMed  CAS  Google Scholar 

  180. Pirker W, Djamshidian S, Asenbaum S, et al. Progression of dopaminergic degeneration in Parkinson’s disease and atypical parkinsonism: a longitudinal β-CIT SPECT study. Mov Disord 2002;17:45–53.

    Article  PubMed  Google Scholar 

  181. Sjoholm H, Sundsfjord J, Mellgren SI. Beta-CIT-SPECT combined with UPDRS appears to distinguish different parkinsonian conditions. Acta Neurol Scand 2002;105:5–7.

    Article  PubMed  CAS  Google Scholar 

  182. Tzen KY, Lu CS, Yen TC, Wey SP, Ting G. Differential diagnosis of Parkinson’s disease and vascular parkinsonism by (99m)Tc-TRODAT-1. J Nucl Med 2001;42:408–413.

    PubMed  CAS  Google Scholar 

  183. Varrone A, Marek KL, Jennings D, Innis RB, Seibyl JP. [(123)I]β-CIT SPECT imaging demonstrates reduced density of striatal dopamine transporters in Parkinson’s disease and multiple system atrophy. Mov Disord 2001;16:1023–1032.

    Article  PubMed  CAS  Google Scholar 

  184. Walker Z, Costa DC, Walker RW, et al. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry 2002;73:134–140.

    Article  PubMed  CAS  Google Scholar 

  185. Morrish PK, Sawle GV, Brooks DJ. Clinical and [18F]dopa PET findings in early Parkinson’s disease. J Neurol Neurosurg Psychiatry 1995;59:597–600.

    PubMed  CAS  Google Scholar 

  186. Tissingh G, Bergmans P, Booij J, et al. Drug-naive patients with Parkinson’s disease in Hoehn and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by [123I]β-CIT SPECT. J Neurol 1998;245:14–20.

    Article  PubMed  CAS  Google Scholar 

  187. Hilker R, Klein C, Ghaemi M, et al. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol 2001;49:367–376.

    Article  PubMed  CAS  Google Scholar 

  188. Laihinen A, Ruottinen H, Rinne JO, et al. Risk for Parkinson’s disease: twin studies for the detection of asymptomatic subjects using [18F]6-fluorodopa PET. J Neurol 2000;247(Suppl 2):110–113.

    Google Scholar 

  189. Morrish PK, Rakshi JS, Bailey DL, Sawle GV, Brooks DJ. Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 1998;64:314–319.

    PubMed  CAS  Google Scholar 

  190. Marek KL, Seibyl JP, Zoghbi SS, et al. [I-123]β-CIT SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 1996;46:231–237.

    PubMed  CAS  Google Scholar 

  191. Rakshi JS, Uema T, Ito K. Statistical parametric mapping of three dimensional 18F-dopa PET in early and advanced Parkinson’s disease (abstract). Mov Disord 1996;11:147.

    Google Scholar 

  192. Maraganore DM, O’Connor MK, et al. Detection of preclinical Parkinson disease in at-risk family members with use of (123I)β-CIT and SPECT: an exploratory study. Mayo Clinic Proc 1999;74:681–685.

    Article  CAS  Google Scholar 

  193. Antonini A, Moresco RM, Gobbo C, et al. Striatal dopaminergic denervation in early and late onset Parkinson’s disease assessed by PET and the tracer [11C]FECIT: preliminary findings in one patient with autosomal recessive parkinsonism (Park2). Neurol Sci 2002;23(Suppl 2):S51–S52.

    Article  PubMed  Google Scholar 

  194. Khan NL, Brooks DJ, Pavese N, et al. Progression of nigrostriatal dysfunction in a parkin kindred: an (18F)dopa PET and clinical study. Brain 2002;125:2248–2256.

    Article  PubMed  Google Scholar 

  195. Wu RM, Shan DE, Sun CM, et al. Clinical, 18F-dopa PET, and genetic analysis of an ethnic Chinese kindred with early-onset parkinsonism and parkin gene mutations. Mov Disord 2002;17:670–675.

    Article  PubMed  Google Scholar 

  196. Khan NL, Valente EM, Bentivoglio AR, et al. Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an 18F-dopa PET study. Ann Neurol 2002;52:849–853.

    Article  PubMed  Google Scholar 

  197. Sawle GV, Playford ED, Burn DJ, Cunningham VJ, Brooks DJ. Separating Parkinson’s disease from normality: discriminant function analysis of [18F]Dopa PET data. Arch Neurol 1993;51:237–243.

    Google Scholar 

  198. Rinne JO, Laihinen A, Nagren K, Ruottinen H, Ruotsalainen U, Rinne UK. PET examination of the monoamine transporter with [11C]β-CIT and [11C]β-CFT in early Parkinson’s disease. Synapse 1995;21:97–103.

    Article  PubMed  CAS  Google Scholar 

  199. Druschky A, Hilz MJ, Platsch G, et al. Differentiation of Parkinson’s disease and multiple system atrophy in early disease stages by means of I-123-MIBG-SPECT. J Neurol Sci 2000;175:3–12.

    Article  PubMed  CAS  Google Scholar 

  200. Berding G, Schrader CH, Peschel T, et al. [N-methyl 11C]meta-Hydroxyephedrine positron emission tomography in Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2003;30:127–131.

    Article  PubMed  CAS  Google Scholar 

  201. Boecker H, Weindl A, Leenders K, et al. Secondary parkinsonism due to focal substantia nigra lesions: a PET study with [18F]FDG and [18F]fluorodopa. Acta Neurol Scand 1996;93:387–392.

    Article  PubMed  CAS  Google Scholar 

  202. Kato T, Kume A, Ito K, Tadokoro M, Takahashi A, Sakuma S. Asymmetrical FDG-PET and MRI findings of striatonigral system in multiple system atrophy. Radiat Med 1992;10:87–93.

    PubMed  CAS  Google Scholar 

  203. Kume A, Shiratori M, Takahashi A, et al. Hemi-parkinsonism in multiple system atrophy: a PET and MRI study. J Neurol Sci 1992;110:37–45.

    Article  PubMed  CAS  Google Scholar 

  204. Hu MT, Taylor-Robinson SD, Chaudhuri KR, et al. Cortical dysfunction in non-demented Parkinson’s disease patients: a combined (31)P-MRS and (18)FDG-PET study. Brain 2000;123:340–352.

    Article  PubMed  Google Scholar 

  205. Ghaemi M, Raethjen J, Hilker R, et al. Monosymptomatic resting tremor and Parkinson’s disease: a multitracer positron emission tomographic study. Mov Disord 2002;17:782–788.

    Article  PubMed  Google Scholar 

  206. Arnold G, Tatsch K, Oertel WH, et al. Clinical progressive supranuclear palsy: differential diagnosis by IBZM-SPECT and MRI. J Neural Transm 1994;42:111–118.

    CAS  Google Scholar 

  207. Schulz JB, Klockgether T, Peterson D, et al. Multiple system atrophy: natural history, MRI morphology, and dopamine receptor imaging with 123IBZM-SPECT. J Neurol Neurosurg Psych 1994;57:1047–1056.

    CAS  Google Scholar 

  208. Acton PD, Mozley PD. Single photon emission tomography imaging in parkinsonian disorders: a review. Behav Neurol 2000;12:11–27.

    PubMed  CAS  Google Scholar 

  209. Wenning GK, Donnemiller E, Granata R, Riccabona G, Poewe W. 123I-β-CIT and 123I-IBZM SPECT scanning in levodopa-naive Parkinson’s disease. Mov Disord 1998;13:438–445.

    Article  PubMed  CAS  Google Scholar 

  210. Kim YJ, Ichise M, Tatschida T, Ballinger JR, Vines D, Lang AE. Differential diagnosis of parkinsonism using dopamine transporter and D2 receptor SPECT. J Nucl Med 1999;5(Suppl):68P.

    Google Scholar 

  211. Kim YJ, Ichise M, Ballinger JR, et al. Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord 2002;17:303–312.

    Article  PubMed  Google Scholar 

  212. Dresel SHJ, Kung MP, Huang XF, et al. Simultaneous SPECT studies of pre-and post-synaptic dopamine binding sites in baboons. J Nucl Med 1999;40:660–666.

    PubMed  CAS  Google Scholar 

  213. Ma KH, Huang WS, Chen CH, et al. Dual SPECT of dopamine system using (99mTc)TRODAT-1 and (123I)IBZM in normal and 6-OHDA-lesioned Formosan rock monkeys. Nucl Med Biol 2002;29:561–567.

    Article  PubMed  CAS  Google Scholar 

  214. Miyawaki E, Meah Y, Koller WC. Serotonin, dopamine, and motor effects in Parkinson’s disease. Clin Neuropharmacol 1997;20:300–310.

    Article  PubMed  CAS  Google Scholar 

  215. Brucke T, Kornhuber J, Angelberger P, Asenbaum S, Frassine H, Podreka I. SPECT imaging of dopamine and serotonin transporters with (123I)β-CIT. Binding kinetics in the human brain. J Neural Transmission 1993;94:137–146.

    Article  CAS  Google Scholar 

  216. Pirker W, Asenbaum S, Hauk M, et al. Imaging serotonin and dopamine transporters with 123I-β-CIT SPECT: binding kinetics and effects of normal aging. J Nucl Med 2000;41:36–44.

    PubMed  CAS  Google Scholar 

  217. Malison RT, Price LH, Berman R, et al. Reduced brain serotonin transporter availability in major depression as measured by (123I)-2b-carbomethoxy-3b-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry 1998;11:1090–1098.

    Article  Google Scholar 

  218. Kim SE, Lee WY, Choe YS, Kim JH. SPECT measurement of iodine-123-β-CIT binding to dopamine and serotonin transporters in Parkinson’s disease: correlation with symptom severity. Neurol Res 1999;21:255–261.

    PubMed  CAS  Google Scholar 

  219. Kim SE, Choi JY, Choe YS, Choi Y, Lee WY. Serotonin transporters in the midbrain of Parkinson’s disease patients: a study with 123I-β-CIT SPECT. J Nucl Med 2003;44:870–876.

    PubMed  CAS  Google Scholar 

  220. Murai T, Muller U, Werheid K, et al. In vivo evidence for differential association of striatal dopamine and midbrain serotonin systems with neuropsychiatric symptoms in Parkinson’s disease. J Neuropsychiatry Clin Neurosci 2001;13:222–228.

    PubMed  CAS  Google Scholar 

  221. Owens MJ, Nemeroff CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 1994;40:288–295.

    PubMed  CAS  Google Scholar 

  222. Acton PD, Kung MP, Mu M, et al. Single photon emission tomography imaging of serotonin transporters in the nonhuman primate brain with the selective radioligand [123I]IDAM. Eur J Nucl Med 1999;26:854–861.

    Article  PubMed  CAS  Google Scholar 

  223. Acton PD, Mu M, Plössl K, et al. Single photon emission tomography imaging of serotonin transporters in the nonhuman primate brain with [123I]ODAM. Eur J Nucl Med 1999;26:1359–1362.

    Article  PubMed  CAS  Google Scholar 

  224. Acton PD, Choi SR, Hou C, Plössl K, Kung HF. Quantification of serotonin transporters in nonhuman primates using [123I]ADAM and single photon emission tomography. J Nucl Med 2001;42:1556–1562.

    PubMed  CAS  Google Scholar 

  225. Choi SR, Hou C, Oya S, et al. Selective in vitro and in vivo binding of [125I]ADAM to serotonin transporters in rat brain. Synapse 2000;38:403–412.

    Article  PubMed  CAS  Google Scholar 

  226. Ginovart N, Wilson AA, Meyer JH, Hussey D, Houle S. Positron emission tomography quantification of (11C)-DASB binding to the human serotonin transporter: modeling strategies. J Cereb Blood Flow Metab 2001;21:1342–1353.

    Article  PubMed  CAS  Google Scholar 

  227. Kung MP, Hou C, Oya S, Mu M, Acton PD, Kung HF. Characterization of (123I)IDAM as a novel single photon emission tomography tracer for serotonin transporters. Eur J Nucl Med 1999;26:844–853.

    Article  PubMed  CAS  Google Scholar 

  228. Oya S, Kung MP, Acton PD, Hou C, Mu M, Kung HF. A new SPECT imaging agent for serotonin transporters, [I-123]IDAM: 5-iodo-2-[[2-2-[(dimethylamino) methyl] phenyl] thio] benzyl alcohol. J Med Chem 1999;42:333–335.

    Article  PubMed  CAS  Google Scholar 

  229. Oya S, Choi SR, Hou C, et al. 2-((2-((dimethylamino)-methyl)phenyl)thio)-5-iodophenylamine (ADAM): an improved serotonin transporter ligand. Nucl Med Biol 2000;27:249–254.

    Article  PubMed  CAS  Google Scholar 

  230. Zhuang ZP, Choi SR, Hou C, et al. A novel serotonin transporter ligand: 5-iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol (ODAM). Nucl Med Biol 2000;27:169–175.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Acton, P.D. (2005). Positron Emission Tomography and Single-Photon Emission Tomography in the Diagnosis of Parkinson’s Disease. In: Broderick, P.A., Rahni, D.N., Kolodny, E.H. (eds) Bioimaging in Neurodegeneration. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-888-5_2

Download citation

Publish with us

Policies and ethics