Skip to main content

Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Parkinson’s Disease

Structural vs Functional Changes

  • Chapter
Bioimaging in Neurodegeneration

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 747 Accesses

Abstract

At present, conventional magnetic resonance imaging (MRI) shows no convincing structural changes in Parkinson’s disease (PD) itself, but it may be useful in helping to distinguish PD from other neurodegenerative parkinsonian syndromes. Magnetic resonance spectroscopy (MRS) also may provide useful information in distinguishing PD from disorders such as multiple system atrophy. The general field of MRI and MRS is evolving rapidly, and a number of new developments may provide relevant information. Novel pulse sequences, for instance, may provide more information regarding substantia nigra pathology in PD. The use of MR technologies to measure regional concentrations of brain iron should provide more information regarding the relationship between iron accumulation and parkinsonian symptoms. MRS provides a sensitive tool to investigate the possible contribution of abnormal brain energy metabolism to the pathogenesis of PD. MRS also allows the assessment of other metabolite changes in PD, for example, providing for the evaluation of associated changes in regional brain glutamate content. Last, functional MRI provides the potential to evaluate, in a noninvasive fashion, the role played by the basal ganglia in motor control and cognition in normal individuals as well as in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rutledge JN, Hilal SK, Schallert T, Silver AJ, Defendini RD, Fahn S. Magnetic resonance imaging of Parkinsonisms. In: Fahn S, Marsden CD, Calne D, Goldstein M, editors. Recent Developments in Parkinson’s Disease. Florham Park, NJ: Macmillan; 1987:123–134.

    Google Scholar 

  2. Olanow CW. Magnetic resonance imaging in parkinsonism. Neurol Clin 1992;10::405–420.

    PubMed  CAS  Google Scholar 

  3. Rutledge JN, Hilal SK, Silver AJ, et al. Study of movement disorders brain iron by MR. AJNR Am J Neuroradiol 1987;8:397–411.

    Google Scholar 

  4. Duguid JR, De la Paz R, DeGroot J. Magnetic resonance imaging of the midbrain in Parkinson’s disease. Ann Neurol 1986;20:744–747.

    Article  PubMed  CAS  Google Scholar 

  5. Braffman BH, Grossman RI, Goldberg HI, et al. MR imaging of Parkinson disease with spin-echo gradient-echo sequences. AJR Am J Roentgenol 1989;152:159–165.

    PubMed  CAS  Google Scholar 

  6. Hutchinson M, Raff U. Structural changes of the subsantia nigra in Parkinson’s disease as revealed by MR imaging. AJNR Am J Neurorad 2000;21:697–701.

    CAS  Google Scholar 

  7. Hu M.T.M., White SJ, Herlihy AH, et al. A comparison of 18F-dopa PET inversion recovery MRI in the diagnosis of Parkinson’s disease. Neurology 2001;56:1195–1200.

    PubMed  CAS  Google Scholar 

  8. Savoiardo M, Strada L, Girotti F, et al. MR imaging in progressive supranuclear palsy Shy-Drager syndrome. J Comput Assist Tomogr 1989;13:555–560.

    Article  PubMed  CAS  Google Scholar 

  9. Warmuth-Metz M, Naumann M, Csoti I, Solymosi L. Measurement of the midbrain diameter on routine magnetic resonance imaging. Arch Neurol 2001;58:1076–1079.

    Article  PubMed  CAS  Google Scholar 

  10. Kato N, Arai K, Hattori T. Study of the rostral midbrain atrophy in progressive supranuclear palsy. J Neurol Sci 2003;210:57–60.

    Article  PubMed  Google Scholar 

  11. Savoiardo M, Girotti F, Strada L, Ciceri E. Magnetic resonance imaging in progressive supranuclear palsy other parkinsonian disorders. J Neural Transm Suppl 1994;42:93–110.

    PubMed  CAS  Google Scholar 

  12. Yagishita A, Oda M. Progressive supranuclear palsy: MRI pathological findings. Neuroradiology 1996;38:(Suppl 1):S60–S66.

    Article  PubMed  Google Scholar 

  13. Dubinsky RM, Jankovic J. Progressive supranuclear palsy a multi-infarct state. Neurology 1987;37:570–576.

    PubMed  CAS  Google Scholar 

  14. Hauser RA, Olanow CW, Gold M, et al. Magnetic resonance imaging of corticobasal degeneration. J Neuroimaging 1996;6:222–226.

    PubMed  CAS  Google Scholar 

  15. Drayer BP, Olanow W, Burger P, et al. Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology 1986;159:493–498.

    PubMed  CAS  Google Scholar 

  16. Stern MB, Braffman BH, Skolnick BE, Hurtig HI, Grossman RI. Magnetic resonance imaging in Parkinson’s disease parkinsonian syndromes. Neurology 1989;39:1524–1526.

    PubMed  CAS  Google Scholar 

  17. Pastakia B, Polinsky R, Di Chiro G, Simmons JT, Brown R, Wener L. Multiple system atrophy (Shy-Drager syndrome): MR imaging. Radiology 1986;159:499–502.

    PubMed  CAS  Google Scholar 

  18. Wakai M, Kume A, Takahashi A, Ando T, Hashizume Y. A study of parkinsonism in multiple system atrophy: clinical MRI correlation. Acta Neurol Scand 1994;90:225–231.

    Article  PubMed  CAS  Google Scholar 

  19. Lang AE, Curran T, Provias J, Bergeron C. Striatonigral degeneration: iron deposition in putamen correlates with the slit-like void signal of magnetic resonance imaging. Can J Neurol Sci 1994;21:311–318.

    PubMed  CAS  Google Scholar 

  20. Konagaya M, Konagaya Y, Iida M. Clinical magnetic resonance imaging study of extrapyramidal symptoms in multiple system atrophy. J Neurol Neurosurg Psychiatry 1994;57:1528–1531.

    PubMed  CAS  Google Scholar 

  21. Kraft E, Schwarz J, Trenkwalder C, Vogl T, Pfluger T, Oertel, WH. The combination of hypointense hyperintense signal changes on T2-weighted magnetic resonance imaging sequences: a specific marker of multiple system atrophy? Arch Neurol 1999;56:225–228.

    Article  PubMed  CAS  Google Scholar 

  22. Schrag A, Kingsley D, Phatouros C, et al. Clinical usefulness of magnetic resonance imaging in multiple system atrophy. J Neurol Neurosurg Psychiatry 1998;65:65–71.

    Article  PubMed  CAS  Google Scholar 

  23. Muqit MMK, Mort D, Miszkiel KA, Shakir RA. “Hot cross bun” sign in a patient with parkinsonism secondary to presumed vasculitis. J Neurol Neurosurg Psychiatry 2001;71:565–566.

    Article  PubMed  CAS  Google Scholar 

  24. Savoiardo M, Strada L, Girotti F, et al. Olivopontocerebellar atrophy: MR diagnosis relationship to multiple system atrophy. Radiology 1990;174:693–696.

    PubMed  CAS  Google Scholar 

  25. Schrag A, Good CD, Miszkiel K, et al. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 2000;54:697–702.

    PubMed  CAS  Google Scholar 

  26. Schulz JB, Skalej M, Wedekind D, et al. Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson’s syndrome from multiple system atrophy progressive supranuclear palsy. Ann Neurol 1999;45:65–74.

    Article  PubMed  CAS  Google Scholar 

  27. Brenneis C, Seppi K, Schocke MF, et al. Voxel-based morphometry detects cortical atrophy in the Parkinson variant of multiple system atrophy. Mov Disord 2003;18:1132–1138.

    Article  PubMed  Google Scholar 

  28. Specht K, Minnerop M, Abele M, Reul J, Wullner U, Klockgether T. In vivo voxel-based morphometry in multiple system atrophy of the cerebellar type. Arch Neurol 2003;60:1431–1435.

    Article  PubMed  Google Scholar 

  29. Schott JMM, Simon JE, Fox NC, et al. Delineating the sites progression of in vivo atrophy in multiple system atrophy using fluid-registered MRI. Mov Disord 2003;18:955–958.

    Article  PubMed  Google Scholar 

  30. Schocke MFH, Seppi K, Esterhammer R, et al. Diffusion-weighted MRI differentiates the Parkinson variant of multiple system atrophy from PD. Neurology 2002;58:575–580.

    PubMed  CAS  Google Scholar 

  31. Seppi K, Schocke MFH, Esterhammer R, et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the Parkinson variant of multiple system atrophy. Neurology 2003;60:922–927.

    Article  PubMed  CAS  Google Scholar 

  32. Davis PL. The magnetic resonance imaging appearances of basal ganglia lesions in carbon monoxide poisoning. Magn Reson Imaging 1986;4:489–490.

    Article  Google Scholar 

  33. Rosenberg NL, Myers JA, Martin WRW. Cyanide-induced parkinsonism: clinical, MRI 6-fluorodopa positron emission tomography studies. Neurology 1989;39:142–144.

    PubMed  CAS  Google Scholar 

  34. Marsden CD, Lang AE, Quinn NP, et al. Familial dystonia visual failure with striatal CT lucencies. J Neurol Neurosurg Psychiatry 1986;49:500–509.

    PubMed  CAS  Google Scholar 

  35. Hallgren B, Sourander P. The effect of age on the nonhaemin iron in the human brain. J Neurochem 1958;3:41–51.

    Article  PubMed  CAS  Google Scholar 

  36. Dexter DT, Wells FR, Lees AJ, et al. Increased nigral iron content alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 1989;52:1830–1836.

    Article  PubMed  CAS  Google Scholar 

  37. Sofic E, Riederer P, Heinsen H, et al. Increased iron (III) total iron content in post mortem substantia niga of parkinsonian brain. J Neural Transm 1988;74:199–205.

    Article  PubMed  CAS  Google Scholar 

  38. Good PF, Olanow CW, Perl DP. Neuromelanin-containing neurons of the substantia nigra accumulate iron aluminum in Parkinson’s disease: a LAMMA study. Brain Res 1992;593:343–364

    Article  PubMed  CAS  Google Scholar 

  39. Griffiths PD, Dobson BR, Jones GR, Clarke DT. Iron in the basal ganglia in Parkinson’s disease: an in vitro study using extended X-ray absorption fine structure cryo-electron microscopy. Brain 1999;122:667–673.

    Article  PubMed  Google Scholar 

  40. Antinoni A, Leenders KL, Meier D, Oertel WH, Boesiger P, Anliker M. T2 relaxation time in patients with Parkinson’s disease. Neurology 1993;43:697–700.

    Google Scholar 

  41. Vymazal J, Righini A, Brooks RA, et al. T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, patients with multiple system atrophy: relation to iron content. Radiology 1999;211:489–495.

    PubMed  CAS  Google Scholar 

  42. Ryvlin P, Broussolle E, Piollet H, Viallet F, Khalfallah Y, Chazot G. Magnetic resonance imaging evidence of decreased putamenal iron content in idiopathic Parkinson’s disease. Arch Neurol 1995;52:583–588

    PubMed  CAS  Google Scholar 

  43. Chen JC, Hardy PA, Kucharczyk W, et al. MR of human postmortem brain tissue: correlative study between T2 assays of iron ferritin in Parkinson Huntington disease. AJNR Am J Neuroradiol 1993;14:275–281.

    PubMed  CAS  Google Scholar 

  44. Bartzokis G, Aravagiri M, Oldendorf WH, Mintz J, Marder SR. Field dependent transverse relaxation rate increase may be a specific measure of tissue iron stores. Magn Reson Med 1993;29:459–464.

    Article  PubMed  CAS  Google Scholar 

  45. Bartzokis G, Cummings JL, Markham CH, et al. MRI evaluation of brain iron in earlier-later-onset Parkinson’s disease normal subjects. Magn Reson Imaging 1999;17:213–222

    Article  PubMed  CAS  Google Scholar 

  46. Ordidge RJ, Gorell JM, Deniau JC, Knight RA, Helpern JA. Assessment of relative brain iron concentrations using T2-weighted T2*-weighted MRI at 3 Tesla. Magn Reson Med 1994;32:335–341.

    Article  PubMed  CAS  Google Scholar 

  47. Ye FQ, Martin WRW, Allen PS. Estimation of the brain iron in vivo by means of the interecho time dependence of image contrast. Magn Reson Med 1996;36:153–158.

    Article  PubMed  CAS  Google Scholar 

  48. Martin WRW, Ye FQ, Allen PS. Increasing striatal iron content associated with normal aging. Mov Disord 1998;13:281–286.

    Article  PubMed  CAS  Google Scholar 

  49. Ye FQ, Allen PS, Martin WRW. Basal ganglia iron content in Parkinson’s disease measured with magnetic resonance. Mov Disord 1996;11:243–249.

    Article  PubMed  CAS  Google Scholar 

  50. Martin WRW, Roberts TE, Ye FQ, Allen PS. Increased basal ganglia iron in striatonigral degeneration: in vivo estimation with magnetic resonance. Can J Neurol Sci 1998;25:44–47.

    PubMed  CAS  Google Scholar 

  51. Gorell JM, Ordidge RJ, Brown GG, Deniau, J-C, Buderer NM, Helpern JA. Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 1995;45:1138–1143.

    PubMed  CAS  Google Scholar 

  52. Graham JM, Paley MNJ, Grunewald RA, Hoggard N, Griffiths PD. Brain iron deposition in Parkinson’s disease imaged using the PRIME magnetic resonance sequence. Brain 2000;123:2423–2431.

    Article  PubMed  Google Scholar 

  53. Vion-Dury J, Meyerhoff DJ, Cozzone PJ, Weiner MW. What might be the impact on neurology of the analysis of brain metabolism by in vivo magnetic resonance spectroscopy? J Neurol 1994;241:354–371.

    Article  PubMed  CAS  Google Scholar 

  54. Unrejak J, Williams SR, Gadian DG, Noble M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 1993;13:981–989.

    Google Scholar 

  55. Matthews PM, Francis G, Antel J, Arnold DL. Proton magnetic resonance spectroscopy for metabolic characterisation of plaques in multiple sclerosis. Neurology 1991;41:1251–1256.

    PubMed  CAS  Google Scholar 

  56. Chong WK, Sweeney B, Wilkinson ID, et al. Proton spectroscopy of the brain in HIV infection: correlation with clinical, immunologic MR imaging findings. Radiology 1993;188:119–124.

    PubMed  CAS  Google Scholar 

  57. Shino A, Matsuda M, Morikawa S, Inubushi T, Akiguchi I, Handa J. Proton magnetic resonance spectroscopy with dementia. Surg Neurol 1993;39:143–147.

    Article  Google Scholar 

  58. Gideon P, Henriksen O, Sperling B, et al. Early time course of N-acetylaspartate, creatine phosphocreatine, compounds containing choline in the brain after acute stroke. A proton magnetic resonance spectroscopy study. Stroke 1992;23:1566–1572.

    PubMed  CAS  Google Scholar 

  59. Cwik V, Hanstock C, Allen PS, Martin WRW. Estimation of brainstem neuronal loss in amyotrophic lateral sclerosis with in vivo proton magnetic resonance spectroscopy. Neurology 1998;50:72–77.

    PubMed  CAS  Google Scholar 

  60. Christiansen P, Henriksen O, Stubgaard M, Gideon P, Larsson HBW. In vivo quantification of brain meabolites by 1H MRS using water as an internal standard. Magn Reson Imaging 1993;11:107–108.

    Article  PubMed  CAS  Google Scholar 

  61. Michaelis T, Merboldt KD, Bruhn H, Hanicke W, Frahm J. Absolute concentrations of metabolites in the adult human brain in vivo: quantification of localized proton MR spectra. Radiology 1993;187:219–227

    PubMed  CAS  Google Scholar 

  62. Davie C. The role of spectroscopy in parkinsonism. Mov Disord 1998;13:2–4.

    Article  PubMed  CAS  Google Scholar 

  63. Clarke CE, Lowry M. Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinsonian syndromes. Eur J Neurol 2001;8:573–577.

    Article  PubMed  CAS  Google Scholar 

  64. Holshauser BA, Komu M, Moller HE, et al. Localised proton NMR spectroscopy in the striatum of patients with idiopathic Parkinson’s disease: a multicenter pilot study. Magn Reson Med 1995;33:589–594.

    Article  Google Scholar 

  65. Davie CA, Wenning GK, Barker GJ, et al. Differentiation of multiple system atrophy from idiopathic Parkinson’s disease using proton magnetic resonance spectroscopy. Ann Neurol 1995;37:204–210.

    Article  PubMed  CAS  Google Scholar 

  66. Cruz CJ, Aminoff MJ, Meyerhoff DJ, Graham SH, Weiner MW. Proton MR spectroscopic imaging of the striatum in Parkinson’s disease. Magn Reson Imaging 1997;15:619–624.

    Article  PubMed  CAS  Google Scholar 

  67. Tedeschi G, Litvan I, Bonavita S,. et al. Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson’s disease corticobasal degeneration. Brain 1997;120:1541–1552.

    Article  PubMed  Google Scholar 

  68. Clarke CE, Lowry M, Horsman A. Unchanged basal ganglia N-acetylaspartate glutamate in idiopathic Parkinson’s disease measured by proton magnetic resonance spectroscopy. Mov Disord 1997;12:297–301.

    Article  PubMed  CAS  Google Scholar 

  69. Ellis CM, Lemmens G, Williams SCR, et al. Changes in putamen N-acetylaspartate choline ratios in untreated levodopa treated Parkinson’s disease: a proton magnetic resonance spectroscopy study. Neurology 1997;49:438–444.

    PubMed  CAS  Google Scholar 

  70. Clarke CE, Lowry M. Basal ganglia metabolite concentrations in idiopathic Parkinson’s disease multiple system atrophy measured by proton magnetic resonance spectroscopy. Eur J Neurol 2000;7:661–665.

    Article  PubMed  CAS  Google Scholar 

  71. O’Neill J, Schuff N, Marks WJ, Feiwell R, Aminoff MJ, Weiner MW. Quantitative 1H magnetic resonance spectroscopy MRI of Parkinson’s disease. Mov Disord 2002;17:917–927.

    Article  PubMed  Google Scholar 

  72. Lucetti C, del Dotto P, Gambaccini G, et al. Proton magnetic resonance spectroscopy (1H-MRS) of motor cortex basal ganglia in de novo Parkinson’s disease patients. Neurol Sci 2001;22:69–70.

    Article  PubMed  CAS  Google Scholar 

  73. Hu MT.M., Taylor-Robinson SD, Chaudhuri KR, et al. Evidence for cortical dysfunction in clinically nondemented patients with Parkinson’s disease: a proton MR spectroscopy study. J Neurol Neurosurg Psychiatry 1999;67:20–26.

    PubMed  CAS  Google Scholar 

  74. Federico F, Simone IL, Lucivero V, et al. Usefulness of proton magnetic resonance spectroscopy in differentiating parkinsonian syndromes. Italian J Neurol Sci 1999;20:223–229.

    Article  CAS  Google Scholar 

  75. Axelson D, Bakken, IJ., Gribbestad IS, Ehrnholm B, Nilsen G, Aasly J. Applications of neural network analyses to in vivo 1H magnetic resonance spectroscopy of Parkinson disease patients. J Magn Reson Imaging 2002;16:13–20.

    Article  PubMed  Google Scholar 

  76. DiMauro S. Mitochondrial involvement in Parkinson’s disease: the controversy continues. Neurology 1993;43:2170–2171.

    PubMed  CAS  Google Scholar 

  77. Gu M, Cooper JM, Taanman JW, Schapira AHV. Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Ann Neurol 1998;44:177–186.

    Article  PubMed  CAS  Google Scholar 

  78. Matthews PM, Allaire C, Shoubridge EA, Karpati G, Carpenter S, Arnold DL. In vivo muscle magnetic resonance spectroscopy in the clinical investigation of mitochondrial disease. Neurology 1991;41:114–120.

    PubMed  CAS  Google Scholar 

  79. Penn AMW, Roberts T, Hodder J, Allen PS, Zhu G, Martin WRW. Generalized mitochondrial dysfunction in Parkinson’s disease detected by magnetic resonance spectroscopy of muscle. Neurology 1995;45:2097–2099.

    PubMed  CAS  Google Scholar 

  80. Barbiroli B, Martinelli P, Patuelli A, et al. Phosphorus magnetic resonance spectroscopy in multiple system atrophy Parkinson’s disease. Mov Disord 1999;14:430–435.

    Article  PubMed  CAS  Google Scholar 

  81. Hu MTM, Taylor-Robinson SD, Chaudhuri KR, et al. Cortical dysfunction in non-demented Parkinson’s disease patients. A combined 31P-MRS 18FDG-PET study. Brain 2000;123:340–352.

    Article  PubMed  Google Scholar 

  82. Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 1993;43:2689–2695.

    PubMed  CAS  Google Scholar 

  83. Hoang TQ, Bluml S, Dubowitz DJ, et al. Quantitative proton-decoupled 31P MRS 1H MRS in the evaluation of Huntington’s Parkinson’s diseases. Neurology 1998;50:1033–1040.

    PubMed  CAS  Google Scholar 

  84. Samuel M, Ceballos-Baumann AO, Blin J, et al. Evidence for lateral premotor parietal overactivity in Parkinson’s disease during sequential biamanual movements. A PET study. Brain 1997;120:963–976.

    Article  PubMed  Google Scholar 

  85. Jahanshahi M, Jenkins, IH., Brown RG, Marsden CD, Passingham RE, Brooks DJ. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET movement-related potentials in normal Parkinson’s disease subjects. Brain 1995;118:913–933.

    Article  PubMed  Google Scholar 

  86. Playford ED, Jenkins IH, Passingham RE, Nutt J, Frackowiak RS, Brooks DJ. Impaired mesial frontal putamen activation in Parkinson’s disease: a positron emission tomography study. Ann Neurol 1992;32:151–161.

    Article  PubMed  CAS  Google Scholar 

  87. Sabatini U, Boulanouar K, Fabre N, et al. Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain 2000;123:394–403.

    Article  PubMed  Google Scholar 

  88. Haslinger B, Erhard P, Kampfe N, et al. Event related functional magnetic resonance imaging in Parkinson’s disease before after levodopa. Brain 2001;124:558–570.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Martin, W.R.W. (2005). Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Parkinson’s Disease. In: Broderick, P.A., Rahni, D.N., Kolodny, E.H. (eds) Bioimaging in Neurodegeneration. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-59259-888-5_1

Download citation

Publish with us

Policies and ethics