Skip to main content

Digital 12-Lead Holter vs Standard Resting Supine Electrocardiogram for the Assessment of Drug-Induced QTc Prolongation

Assessment by Different Recording and Measurement Methods

  • Chapter
Cardiac Safety of Noncardiac Drugs
  • 568 Accesses

Abstract

Ever since it was introduced in routine clinical cardiology practice (1), the continuous ambulatory electrocardiogram (Holter ECG) has been routinely used for diagnostic assessment of patients with different types of heart disease like cardiac arrhythmias, transient ischemic episodes and silent myocardial ischemia. The incidence of cardiac arrhythmia and myocardial ischemia, as well as the assessment of heart rate variability on Holter ECG acquired continuously over 24 h or longer have been useful for predicting clinical disease outcomes (25). Likewise, Holter ECG is often used in clinical drug research for the monitoring of general cardiac safety of novel drugs under development, particularly during the early phase I trials. In contrast, Holter ECG has only rarely been used in drug development for the formal assessment of drug-induced effects on cardiac repolarization, and the experience of central ECG laboratories in measuring ECG intervals on Holter is limited. Pharmaceutical sponsors and patients alike would benefit if reliable QT/QTc assessment were possible by Holter ECG, whereby the continuous ambulatory digital 12-lead ECG would be used to substitute for standard resting supine 12-lead ECGs in the assessment of drug-induced QT/QTc prolongation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holter NJ. New methods for heart studies. Science 1961;134:1214.

    Article  PubMed  CAS  Google Scholar 

  2. Atiga WL, Calkins H, Lawrence JH, et al. Beat-to-beat repolarization lability identifies patients at risk for sudden cardiac death. J Cardiovasc Electrophysiol 1998;9:899–908.

    Article  PubMed  CAS  Google Scholar 

  3. Atiga WL, Fananapazir L, McAreavey D, Calkins H, Berger RD. Temporal repolarization lability in hypertrophic cardiomyopathy caused by beta-myosin heavy-chain gene mutations. Circulation 2000;101:1224–1226.

    Google Scholar 

  4. Berger RD, Kasper EK, Baughman KL, et al. beat-to-beat QT interval variability; novel evidence for repolarization lability in ischemic and nonischemic dilated cardiomyopathy. Circulation 1997;96:1557–1565.

    PubMed  CAS  Google Scholar 

  5. Vrtovec B, Starc V, Starc R. Beat-to-beat QT interval variability in coronary patients. J Electrocardiol 2000;33119-33125.

    Google Scholar 

  6. International Conference on Harmonization. The clinical evaluation of QT/QTc interval prolongation and proaarrhythmic potential for non-antiarrhythmic drugs. Preliminary Concept Paper, Step 1 Draft 4, June 10, 2004.

    Google Scholar 

  7. Yap YG, Camm AJ. Arrhythmogenic mechanisms of non-sedating antihistamines. Clin Exp Allergy 1999;29(Suppl. 3):174–181.

    Article  PubMed  CAS  Google Scholar 

  8. van Haarst AD, van’t Klooster GA, van Gerven JM et al. The influence of cisapride and clarithromycin on QT intervals in healthy volunteers. Clin Pharmacol Ther 1998;64:542–546.

    Article  PubMed  Google Scholar 

  9. Morganroth J, Talbot GH, Dorr MB, et al. Effect of single, ascending, supratherapeutic doses of sparfloxacin on cardiac repolarization (QTc interval). Clin Therapeutics 1999;21:818–828.

    Article  CAS  Google Scholar 

  10. Darpö B. Spectrum of drugs prolonging the QT interval and the incidence of torsades de pointes. Eur Heart J 2001;3(Suppl. K):K70–K80.

    Google Scholar 

  11. Haverkamp W, Breithardt G, Camm AJ, et al. The potential for QT prolongation and proarrhythmia by non-antiarrhythmic drugs: clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. Cardiovascular Research 2000;47:219–233.

    Article  PubMed  CAS  Google Scholar 

  12. Morganroth J. Focus on issues in measuring and interpreting changes in the QTc interval duration. Eur Heart J Supplements 2001;3(Suppl. K):K105–K111.

    Article  Google Scholar 

  13. Malik M, Camm AJ. Evaluation of drug-induced QT interval prolongation. Implications for drug approval and labeling. Drug Safety 2001;24:323–351.

    Article  PubMed  CAS  Google Scholar 

  14. Shah RR. The significance of QT interval in drug development. Brit J Clin Pharmacol, 2002;54:188–202.

    Article  CAS  Google Scholar 

  15. Committee for Proprietary Medicinal Products (CPMP). Points to Consider: The assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products. The European Agency for the Evaluation of Medicinal Products, 17 December 1997.

    Google Scholar 

  16. Merri M, Moss AJ, Benhorin J, et al. Relation between ventricular repolarization duration and cardiac cycle length during 24-hour Holter recordings.

    Google Scholar 

  17. Jensen BT, Larroude CE, Rasmussen LP, et al. beat-to-beat QT dynamics in healthy subjects. Ann Noninvasive Electrocardiol 2004;9:3–11.

    Article  PubMed  Google Scholar 

  18. Pratt CM, Ruberg S, Morganroth J, et al. Dose-response relation between terfenadine (Seldane) and the QTc interval on the scalar electrocardiogram: distinguishing a drug effect from spontaneous variability. Am Heart J 1996;131:472–480.

    Article  PubMed  CAS  Google Scholar 

  19. Lee K-T, Chu C-S, SU H-M,et al. Circadian variation of QT dispersion determined by twelve-lead Holter Electrocardiography. Cardiology 2003;100:101–102.

    Article  PubMed  Google Scholar 

  20. Morganroth J. Relations of QTc prolongation on the electrocardiogram to torsades de pointes: definitions and mechanisms. Am J Cardiol 1993;72:10B–13B.

    Article  PubMed  CAS  Google Scholar 

  21. Extramiana F, Neyroud N, Huikuri HV, et al. QT interval and arrhythmic risk assessment after myocardial infarction. Am J Cardiol 1999;83:266–269.

    Article  PubMed  CAS  Google Scholar 

  22. Bonnemeier H, Hartmann F, Wiegand UK, et al. Course and prognostic implications of QT interval and QT interval variability after primary coronary angioplasty in acute myocardial infarction. J Am Coll Cardiol 2001;37:44–50.

    Article  PubMed  CAS  Google Scholar 

  23. Pohl R, Yeragani VK. QT variability in panic disorder patients after isoproterenol infusion. Int J Neuropsychopharmacol 2001;4:17–20.

    Article  PubMed  CAS  Google Scholar 

  24. Yeragani VK, Pohk R, Jampala VC, et al. Effect of posture and isoproterenol on beat-to-beat HR and QT variability. Neuropsychobiology 2000;41:113–123.

    Article  PubMed  CAS  Google Scholar 

  25. Extramiana F, Maison-Blanche P, Badilini F, et al. Circadian modulation of QT rate dependence in healthy volunteers: Gender and age differences. J Electrocardiol 1999;32:33–43.

    Article  PubMed  CAS  Google Scholar 

  26. Lande G, Funck-Brentano C, Ghadanfar M, et al. Steady-state vs. non-steady-state QT-RR relationships in 24-hour Holter recordings. Pacing Clin Electrophysiol 2000;23:293–302.

    Article  PubMed  CAS  Google Scholar 

  27. Lang CC, Flapan AD, Neilson JM. The impact of QT lag compensation on dynamic measurement of ventricular repolarization: Reproducibility and the impact of lead selection. Pacing Clin Electrophysiol 2001;24:366–373.

    Article  PubMed  CAS  Google Scholar 

  28. Sarma JS, Venkataraman SK, Samant DR, et al. Hysteresis in the human RR-QT relationship during exercise and recovery. Pacing Clin Electrophysiol 1987;10:485–491.

    Article  PubMed  CAS  Google Scholar 

  29. Yamada A, Hayano J, Horie K, et al. Regulation of QT interval during postural transitory changes in heart rate in normal subjects. Am J Cardiol 1993;71:996–998.

    Article  PubMed  CAS  Google Scholar 

  30. Bosner MS, Kleiger RE. Heart rate variability and risk stratification after myocardial infarction. In Malik M, Camm AJ (eds). Heart rate variability. Futura, Armonk, NY, 1995, pp. 331–340.

    Google Scholar 

  31. Atildsen H, Christiansen EH, Pedersen AK, et al. Reproducibility of QT parameters derived from 24-hour ambulatory ECG recordings in healthy subjects. Ann Noninvasive Electrocardiol 2001;6:24–31.

    Article  Google Scholar 

  32. Copie X, Alonso C, Lavergne T, et al. Reproducibility of Qt interval measurements obtained from 24-hour digitized ambulatory three-lead electrocardiograms in patients with acute myocardial infarction and healthy volunteers. Ann Noninvasive Electrocardiol 1998;3:38–45.

    Article  Google Scholar 

  33. Savelieva I, Yap YG, Yi G, et al. Comparative reproducibility of QT, QT peak, and T peak — T end intervals and dispersion in normal subjects, patients with myocardial infarction and patients with hypertrophic cardiomyopathy. Pacing Clin Electrophysiol 1998;21:2376–2381.

    Article  PubMed  CAS  Google Scholar 

  34. Baranowski R, Poplawska W, Buchner T, et al. day-to-day reproducibility of Holter beat-by-beat analysis of repolarization. Acta Cardiol 2003;58:185–189.

    Article  PubMed  Google Scholar 

  35. Sarapa N, Morganroth J, Couderc JP, et al. Electrocardiographic Identification of Drug-Induced QT Prolongation: Assessment by Different Recording and Measurement Methods. Ann Noninvasive Electrocardiol 2004;9:48–57.

    Article  PubMed  Google Scholar 

  36. Morganroth J, Silber SS. How to obtain and analyze electrocardiograms in clinical trials: Focus on issues in measuring and interpreting changes in the QTc interval duration. A N E 1999;4:425–433.

    Google Scholar 

  37. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8:135–160.

    Article  PubMed  CAS  Google Scholar 

  38. Malik M, Bradford A. Human precision of operating a digitizing board: implications for electrocardiogram measurements. PACE 1998;21:1656–1662.

    PubMed  CAS  Google Scholar 

  39. Food and Drug Administration and Health Canada. The clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Preliminary Concept paper, November 15, 2002 http://www.fda.gov/cder/workshop.htm#upcoming.

  40. Kautzner J, Gang Y, Camm AJ, et al. Short-and long-term reproducibility of QT, QTc, and QT dispersion measurement in healthy subjects. PACE 1994;17:928–937.

    PubMed  CAS  Google Scholar 

  41. Kautzner J, Gang Y, Kishore AGR, et al. Interobserver reproducibility of QT interval measurement and QT dispersion in patient after acute myocardial infarction. Ann Noninvas Electrocardiol 1996;1:363–374.

    Article  Google Scholar 

  42. Malik M, Camm AJ. Evaluation of drug-induced QT interval prolongation. Implications for drug approval and labeling. Drug Safety 2001;24:323–351.

    Article  PubMed  CAS  Google Scholar 

  43. Malik M, Färbom P, Batchvarov V, et al. Relation between QT and RR intervals is highly individual among healthy subjects: implications for heart rate correction of the QT interval. Heart 2002;87:220–228.

    Article  PubMed  CAS  Google Scholar 

  44. Darpö B, Almgren O, Bergstrand R, et al. Assessment of frequency-dependency of the class III effects of almokalant. A study using programmed stimulation and recordings of monophasic action potentials and ventricular paced QT-intervals. Cardiovasc Drug Therapy 1996;10:539–554.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Sarapa, N. (2005). Digital 12-Lead Holter vs Standard Resting Supine Electrocardiogram for the Assessment of Drug-Induced QTc Prolongation. In: Morganroth, J., Gussak, I. (eds) Cardiac Safety of Noncardiac Drugs. Humana Press. https://doi.org/10.1007/978-1-59259-884-7_8

Download citation

Publish with us

Policies and ethics