Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 891 Accesses

Abstract

When vascular integrity is interrupted, the coagulation process is initiated by the contact of plasma factor Vila with tissue factor expressed on extravascular cells, mainly fibroblasts and monocytes. Thrombus formation is complex and involves four major systems: (1) activation of coagulation factors in several steps (initiation, amplification, propagation) (1,2); (2) participation of platelets; (3) limitation of clot extension via the natural anticoagulant system; and (4) dissolution of thrombus through the fibrinolytic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kjalke M, Monroe DM, Hoffman M, Oliver JA, Ezban M, Roberts HR. Active site-inactivated factors Vila, Xa, and IXa inhibit individual steps in a cell-based model of tissue factor-initiated coagulation. Thromb Haemost 1998;80:578–584.

    PubMed  CAS  Google Scholar 

  2. Hoffman M, Monroe DM 3rd. A cell-based model of hemostasis. Thromb Haemost 2001;85:958–965.

    PubMed  CAS  Google Scholar 

  3. Kumar R, Beguin S, Hemker HC. The effect of fibrin clots and clot-bound thrombin on the development of platelet procoagulant activity. Thromb Haemost 1995;74:962–968.

    PubMed  CAS  Google Scholar 

  4. Baglia FA, Walsh PN. Thrombin-mediated feedback activation of factor XI on the activated platelet surface is preferred over contact activation by factor Xlla or factor XIa. J Biol Chem 2000;275:20514–20519.

    Article  PubMed  CAS  Google Scholar 

  5. Mohri M, Sugimoto E, Sata M, Asano T. The inhibitory effect of recombinant human soluble thrombomodulin on initiation and extension of coagulation-a comparison with other anticoagulants. Thromb Haemost 1999;82:1687–1693.

    PubMed  CAS  Google Scholar 

  6. Levin EG, Marzec U, Anderson J, Harker LA. Thrombin stimulates tissue plasminogen activator release from cultured human endothelial cells. J Clin Invest 1984;74:1988–1995.

    PubMed  CAS  Google Scholar 

  7. Francis CW, Marder VJ. Physiologic regulation and pathologic disorders of fibrinolysis. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: Lippincott, Williams & Wilkins; 2001:975–1002.

    Google Scholar 

  8. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–671.

    PubMed  CAS  Google Scholar 

  9. Moreno PR, Bernardi VH, Lopez-Cuellar J, et al. Macrophages, smooth muscle cells, and tissue factor in unstable angina. Implications for cell-mediated thrombogenicity in acute coronary syndromes. Circulation 1996;94:3090–3097.

    PubMed  CAS  Google Scholar 

  10. Ardissino D, Merlini PA, Bauer KA, et al. Thrombogenic potential of human coronary atherosclerotic plaques. Blood 2001;98:2726–2729.

    Article  PubMed  CAS  Google Scholar 

  11. Rapp JH, Pan XM, Ghermay A, Gazetas P, Brady SE, Reilly LM. A blinded trial of local recombinant tissue factor pathway inhibitor versus either local or systemic heparin in a vein bypass model. J Vase Surg 1997;25:726–729.

    Article  CAS  Google Scholar 

  12. Arnljots B, Soderstrom T, Ezban M, Hedner U. Effect of locally-applied active site-blocked activated factor VII (ASIS) on experimental arterial thrombosis. Blood Coagul Fibrinolysis 2000;11:S145–S148.

    PubMed  CAS  Google Scholar 

  13. Soderstrom T, Hedner U, Arnljots B. Active site-inactivated factor Vila prevents thrombosis without increased surgical bleeding: topical and intravenous administration in a rat model of deep arterial injury. J Vase Surg 2001 33:1072–1079.

    Article  CAS  Google Scholar 

  14. Lundell A, Kelly AB, Anderson J, et al. Reduction in vascular lesion formation by hirudin secreted from retrovirus-transduced confluent endothelial cells on vascular grafts in baboons. Circulation 1999;100:2018–2024.

    PubMed  CAS  Google Scholar 

  15. Atsuchi N, Nishida T, Marutsuka K, et al. Combination of a brief irrigation with tissue factor pathway inhibitor (TFPI) and adenovirus-mediated local TFPI gene transfer additively reduces neointima formation in balloon-injured rabbit carotid arteries. Circulation 2001;103:570–575.

    PubMed  CAS  Google Scholar 

  16. Zoldhelyi P, Chen ZQ, Shelat HS, McNatt JM, Willerson JT. Local gene transfer of tissue factor pathway inhibitor regulates intimal hyperplasia in atherosclerotic arteries. Proc Nat Acad Scie USA 2001;98:4078–4083.

    Article  CAS  Google Scholar 

  17. Zoldhelyi P, McNatt J, Xu XM, et al. Prevention of arterial thrombosis by adenovirus-mediated transfer of cyclooxygenase gene. Circulation 1996;93:10–17.

    PubMed  CAS  Google Scholar 

  18. Zoldhelyi P, Beck PJ, Bjercke RJ, et al. Inhibition of coronary thrombosis and local inflammation by a noncarbohydrate selectin inhibitor. Am J Physiol Heart Circ Physiol 2000;279:H3065–H3075.

    PubMed  CAS  Google Scholar 

  19. Chung DW, Harris JE, Davie EW. Nucleotide sequences of the three genes encoding for human fibrinogen. In: Liu CY, Chien S, eds. Fibrinogen, Thrombosis, Coagulation, and Fibrinolysis (Advances in Experimental Medicine and Biology, 281). New York: Plenum; 1991:39–48.

    Google Scholar 

  20. Greenberg DL, Davie EW. Blood coagulation factors: their complementary DNAs, genes, and expression. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: Lippincott, Williams & Wilkins; 2001:21–58.

    Google Scholar 

  21. Hu CH, Harris JE, Davie EW, Chung DW. Characterization of the 5′-flanking region of the gene for the alpha chain of human fibrinogen. J Biol Chem 1995;270:28342–28349.

    Article  PubMed  CAS  Google Scholar 

  22. Meade TW, Mellows S, Brozovic M, et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 1986;2:533–537.

    Article  PubMed  CAS  Google Scholar 

  23. Meade TW, Ruddock V, Stirling Y, Chakrabarti R, Miller GJ. Fibrinolytic activity, clotting factors, and long-term incidence of ischaemic heart disease in the Northwick Park Heart Study. Lancet 1993;342:1076–1079.

    Article  PubMed  CAS  Google Scholar 

  24. Ma J, Hennekens CH, Ridker PM, Stampfer MJ. A prospective study of fibrinogen and risk of myocardial infarction in the Physicians’ Health Study. J Am Coll Cardiol 1999;33:1347–1352.

    Article  PubMed  CAS  Google Scholar 

  25. Wilhelmsen L, Svardsudd K, Korsan-Bengtsen K, Larsson B, Welin L, Tibblin G. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 1984;311:501–505.

    Article  PubMed  CAS  Google Scholar 

  26. Banerjee AK, Pearson J, Gilliland EL, et al. A six year prospective study of fibrinogen and other risk factors associated with mortality in stable claudicants. Thromb Haemost 1992;68:261–263.

    PubMed  CAS  Google Scholar 

  27. Feng D, Lindpaintner K, Larson MG, et al. Platelet glyco-protein Ilia Pl(a) polymorphism, fibrinogen, and platelet aggregability: The Framingham Heart Study. Circulation 2001;104:140–144.

    Article  PubMed  CAS  Google Scholar 

  28. Tracy RP. Epidemiological evidence for inflammation in cardiovascular disease. Thromb Haemost 1999;82:826–831.

    PubMed  CAS  Google Scholar 

  29. van’t Hooft FM, von Bahr SJ, Silveira A, Iliadou A, Eriksson P, Hamsten A. Two common, functional polymorphisms in the promoter region of the beta-fibrinogen gene contribute to regulation of plasma fibrinogen concentration. Arterioscler Thromb Vase Biol 1999;19:3063–3070.

    Google Scholar 

  30. Lane DA, Grant PJ. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 2000;95:1517–1532.

    PubMed  CAS  Google Scholar 

  31. Simmonds RE, Hermida J, Rezende SM, Lane DA. Haemostatic genetic risk factors in arterial thrombosis. Thromb Haemost 2001;86:374–385.

    PubMed  CAS  Google Scholar 

  32. Lee AJ, Fowkes FG, Lowe GD, Connor JM, Rumley A. Fibrinogen, factor VII and PAI-1 genotypes and the risk of coronary and peripheral atherosclerosis: Edinburgh Artery Study. Thromb Haemost 1999;81:553–560.

    PubMed  CAS  Google Scholar 

  33. de Maat MP, Kastelein JJ, Jukema JW, et al. −455G/A polymorphism of the beta-fibrinogen gene is associated with the progression of coronary atherosclerosis in symptomatic men: proposed role for an acute-phase reaction pattern of fibrinogen. REGRESS group. Arterioscler Thromb Vase Biol 1998;18:265–271.

    Google Scholar 

  34. Tybjaerg-Hansen A, Agerholm-Larsen B, Humphries SE, Abildgaard S, Schnohr P, Nordestgaard BG. A common mutation (G-455→A) in the beta-fibrinogen promoter is an independent predictor of plasma fibrinogen, but not of ischemic heart disease. A study of 9,127 individuals based on the Copenhagen City Heart Study. J Clin Invest 1997;99:3034–3039.

    Article  PubMed  CAS  Google Scholar 

  35. Doggen CJ, Bertina RM, Cats VM, Rosendaal FR. Fibrinogen polymorphisms are not associated with the risk of myocardial infarction. Br J Haematol 2000;110:935–938.

    Article  PubMed  CAS  Google Scholar 

  36. Folsom AR, Aleksic N, Ahn C, Boerwinkle E, Wu KK. Beta-fibrinogen gene-455G/A polymorphism and coronary heart disease incidence: the Atherosclerosis Risk in Communities (ARIC) Study. Ann Epidemiol 2001;11:166–170.

    Article  PubMed  CAS  Google Scholar 

  37. Koster T, Rosendaal FR, Reitsma PH, van der Velden PA, Briet E, Vandenbroucke JP. Factor VII and fibrinogen levels as risk factors for venous thrombosis. A case-control study of plasma levels and DNA polymorphisms-the Leiden Thrombophilia Study (LETS). Thromb Haemost 1994;71:719–722.

    PubMed  CAS  Google Scholar 

  38. Blake GJ, Schmitz C, Lindpaintner K, Ridker PM. Mutation in the promoter region of the beta-fibrinogen gene and the risk of future myocardial infarction, stroke and venous thrombosis. Eur Heart J 2001;22:2262–2266.

    Article  PubMed  CAS  Google Scholar 

  39. Austin H, Hooper WC, Lally C, et al. Venous thrombosis in relation to fibrinogen and factor VII genes among African-Americans. J Clin Epidemiol 2000;53:997–1001.

    Article  PubMed  CAS  Google Scholar 

  40. Carter AM, Catto AJ, Kohler HP, Aliens RA, Stickland MH, Grant PJ. alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism. Blood 2000;96:1177–1179.

    PubMed  CAS  Google Scholar 

  41. Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen. Thromb Haemost 1995;73:151–161.

    PubMed  CAS  Google Scholar 

  42. Heinrich J, Balleisen L, Schulte H, Assmann G, van de Loo J. Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler Thromb 1994;14:54–59.

    PubMed  CAS  Google Scholar 

  43. Smith FB, Lee AJ, Fowkes FG, Price JF, Rumley A, Lowe GD. Hemostatic factors as predictors of ischemic heart disease and stroke in the Edinburgh Artery Study. Arterioscler Thromb Vase Biol 1997;17:3321–3325.

    CAS  Google Scholar 

  44. Lane A, Green F, Scarabin PY, et al. Factor VII Arg/Gln353 polymorphism determines factor VII coagulant activity in patients with myocardial infarction (MI) and control subjects in Belfast and in France but is not a strong indicator of MI risk in the ECTIM study. Atherosclerosis 1996;119:119–127.

    Article  PubMed  CAS  Google Scholar 

  45. Moor E, Silveira A, van’t Hooft F, et al. Coagulation factor VII mass and activity in young men with myocardial infarction at a young age. Role of plasma lipoproteins and factor VII genotype. Arterioscler Thromb Vase Biol 1995;15:655–664.

    CAS  Google Scholar 

  46. Danielsen R, Onundarson PT, Thors H, Vidarsson B, Morrissey JH. Activated and total coagulation factor VII, and fibrinogen in coronary artery disease. Scand Cardiovasc J 1998;32:87–95.

    Article  PubMed  CAS  Google Scholar 

  47. Bernardi F, Marchetti G, Pinotti M, et al. Factor VII gene polymorphisms contribute about one third of the factor VII level variation in plasma. Arterioscler Thromb Vase Biol 1996;16:72–76.

    CAS  Google Scholar 

  48. Heywood DM, Ossei-Gerning N, Grant PJ. Association of factor VII:C levels with environmental and genetic factors in patients with ischaemic heart disease and coronary atheroma characterised by angiography. Thromb Haemost 1996;76:161–165.

    PubMed  CAS  Google Scholar 

  49. Doggen CJ, Manger Cats V, Bertina RM, Reitsma PH, Vandenbroucke JP, Rosendaal FR. A genetic propensity to high factor VII is not associated with the risk of myocardial infarction in men. Thromb Haemost 1998;80:281–285.

    PubMed  CAS  Google Scholar 

  50. Iacoviello L, Di Castelnuovo A, De Knijff P, et al. Polymorphisms in the coagulation factor VII gene and the risk of myocardial infarction. N Engl J Med 1998;338:79–85.

    Article  PubMed  CAS  Google Scholar 

  51. Girelli D, Russo C, Ferraresi P, et al. Polymorphisms in the factor VII gene and the risk of myocardial infarction in patients with coronary artery disease. N Engl J Med 2000;343:774–780.

    Article  PubMed  CAS  Google Scholar 

  52. Heywood DM, Carter AM, Catto AJ, Bamford JM, Grant PJ. Polymorphisms of the factor VII gene and circulating FVILC levels in relation to acute cerebrovascular disease and post-stroke mortality. Stroke 1997;28:816–821.

    PubMed  CAS  Google Scholar 

  53. Tuddenham EGD. Factor VIII. In: High KA, Roberts HR, eds. Molecular Basis of Thrombosis and Hemostasis. New York: Marcel Dekker;1995:167–196.

    Google Scholar 

  54. Hollestelle MJ, Thinnes T, Crain K, et al. Tissue distribution of factor VIII gene expression in vivo-a closer look. Thromb Haemost 2001;86:855–861.

    PubMed  CAS  Google Scholar 

  55. Meade TW, Cooper JA, Stirling Y, Howarth DJ, Ruddock V, Miller GJ. Factor VIII, ABO blood group and the incidence of ischaemic heart disease. Br J Haematol 1994;88:601–607.

    PubMed  CAS  Google Scholar 

  56. Rumley A, Lowe GD, Sweetnam PM, Yarnell JW, Ford RP. Factor VIII, von Willebrand factor and the risk of major ischaemic heart disease in the Caerphilly Heart Study. Br J Haematol 1999;105:110–116.

    Article  PubMed  CAS  Google Scholar 

  57. Tracy RP, Arnold AM, Ettinger W, Fried L, Meilahn E, Savage P. The relationship of fibrinogen and factors VII and VIII to incident cardiovascular disease and death in the elderly: results from the cardiovascular health study. Arterioscler Thromb Vase Biol 1999;19:1776–1783.

    CAS  Google Scholar 

  58. Folsom AR, Rosamond WD, Shahar E, et al. Prospective study of markers of hemostatic function with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Circulation 1999;100:736–742.

    PubMed  CAS  Google Scholar 

  59. Folsom AR. Hemostatic risk factors for atherothrombotic disease: an epidemiologic view. Thromb Haemost 2001;86:366–373.

    PubMed  CAS  Google Scholar 

  60. Folsom AR, Wu KK, Rosamond WD, Sharrett AR, Chambless LE. Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 1997;96:1102–1108.

    PubMed  CAS  Google Scholar 

  61. O’Donnell J, Tuddenham EG, Manning R, Kemball-Cook G, Johnson D, Laffan M. High prevalence of elevated factor VIII levels in patients referred for thrombophilia screening: role of increased synthesis and relationship to the acute phase reaction. Thromb Haemost 1997;77:825–828.

    PubMed  CAS  Google Scholar 

  62. Kamphuisen PW, Eikenboom JC, Rosendaal FR, et al. High factor VIII antigen levels increase the risk of venous thrombosis but are not associated with polymorphisms in the von Willebrand factor and factor VIII gene. Br J Haematol 2001;115:156–158.

    Article  PubMed  CAS  Google Scholar 

  63. Kyrle PA, Minar E, Hirschl M, et al. High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N Engl J Med 2000;343:457–462.

    Article  PubMed  CAS  Google Scholar 

  64. Thogersen AM, Jansson JH, Boman K, et al. High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as an independent primary risk factor. Circulation 1998;98:2241–2247.

    PubMed  CAS  Google Scholar 

  65. van der Meer FJ, Koster T, Vandenbroucke JP, Briet E, Rosendaal FR. The Leiden Thrombophilia Study (LETS). Thromb Haemost 1997;78:631–635.

    PubMed  Google Scholar 

  66. van Hylckama Vlieg A, van der Linden IK, Bertina RM, Rosendaal FR. High levels of factor IX increase the risk of venous thrombosis. Blood 2000;95:3678–3682.

    PubMed  Google Scholar 

  67. Meijers JC, Tekelenburg WL, Bouma BN, Bertina RM, Rosendaal FR. High levels of coagulation factor XI as a risk factor for venous thrombosis. N Engl J Med 2000;342:696–701.

    Article  PubMed  CAS  Google Scholar 

  68. Kalafatis M, Rand MD, Mann KG. The mechanism of inactivation of human factor V and human factor Va by activated protein C. J Bid Chem 1994;269:31869–31880.

    CAS  Google Scholar 

  69. Nicolaes GA, Tans G, Thomassen MC, et al. Peptide bond cleavages and loss of functional activity during inactivation of factor Va and factor VaR506Q by activated protein C. J Biol Chem 1995;270:21158–21166.

    Article  PubMed  CAS  Google Scholar 

  70. Bertina RM, Koeleman BP, Koster T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994;369:64–67.

    Article  PubMed  CAS  Google Scholar 

  71. Greengard JS, Sun X, Xu X, Fernandez JA, Griffin JH, Evatt B. Activated protein C resistance caused by Arg506Gln mutation in factor Va. Lancet 1994;343:1361–1362.

    Article  PubMed  CAS  Google Scholar 

  72. Dahlback B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci USA 1993;90:1004–1008.

    Article  PubMed  CAS  Google Scholar 

  73. Rees DC, Cox M, Clegg JB. World distribution of factor V Leiden. Lancet 1995;346:1133–1134.

    Article  PubMed  CAS  Google Scholar 

  74. Ridker PM, Miletich JP, Hennekens CH, Buring JE. Ethnic distribution of factor V Leiden in 4047 men and women. Implications for venous thromboembolism screening. JAMA 1997;277:1305–1307.

    Article  PubMed  CAS  Google Scholar 

  75. Zivelin A, Griffin JH, Xu X, et al. A single genetic origin for a common Caucasian risk factor for venous thrombosis. Blood 1997;89:397–402.

    PubMed  CAS  Google Scholar 

  76. Rosendaal FR, Koster T, Vandenbroucke JP, Reitsma PH. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 1995;85:1504–1508.

    PubMed  CAS  Google Scholar 

  77. Ridker PM, Hennekens CH, Selhub J, Miletich JP, Malinow MR, Stampfer MJ. Interrelation of hyperhomocyst(e)inemia, factor V Leiden, and risk of future venous thromboembolism. Circulation 1997;95:1777–1782.

    PubMed  CAS  Google Scholar 

  78. De Stefano V, Martinelli I, Mannucci PM, et al. The risk of recurrent deep venous thrombosis among heterozygous carriers of both factor V Leiden and the G20210A prothrombin mutation. N Engl J Med 1999;341:801–806.

    Article  PubMed  Google Scholar 

  79. Middeldorp S, Meinardi JR, Koopman MM, et al. A prospective study of asymptomatic carriers of the factor V Leiden mutation to determine the incidence of venous thromboembolism. Ann Intern Med 2001;135:322–327.

    PubMed  CAS  Google Scholar 

  80. Marchetti M, Pistorio A, Barosi G. Extended anticoagulation for prevention of recurrent venous thromboembolism in carriers of factor V Leiden-cost-effectiveness analysis. Thromb Haemost 2000;84:752–757.

    PubMed  CAS  Google Scholar 

  81. Hyers TM, Agnelli G, Hull RD, et al. Antithrombotic therapy for venous thromboembolic disease. Chest 2001;119:176S–193S.

    Article  PubMed  CAS  Google Scholar 

  82. Ridker PM, Hennekens CH, Lindpaintner K, Stampfer MJ, Eisenberg PR, Miletich JP. Mutation in the gene coding for coagulation factor V and the risk of myocardial infarction, stroke, and venous thrombosis in apparently healthy men. N Engl J Med 1995;332:912–917.

    Article  PubMed  CAS  Google Scholar 

  83. Emmerich J, Poirier O, Evans A, et al. Myocardial infarction, Arg 506 to Gin factor V mutation, and activated protein C resistance. Lancet 1995;345:321.

    Article  PubMed  CAS  Google Scholar 

  84. Catto A, Carter A, Ireland H, et al. Factor V Leiden gene mutation and thrombin generation in relation to the development of acute stroke. Arterioscler Thromb Vase Biol 1995;15:783–785.

    CAS  Google Scholar 

  85. Cushman M, Rosendaal FR, Psaty BM, et al. Factor V Leiden is not a risk factor for arterial vascular disease in the elderly: results from the Cardiovascular Health Study. Thromb Haemost 1998;79:912–915.

    PubMed  CAS  Google Scholar 

  86. Longstreth WT Jr, Rosendaal FR, Siscovick DS, et al. Risk of stroke in young women and two prothrombotic mutations: factor V Leiden and prothrombin gene variant (G20210A). Stroke 1998;29:577–580.

    PubMed  Google Scholar 

  87. Ardissino D, Mannucci PM, Merlini PA, et al. Prothrombotic genetic risk factors in young survivors of myocardial infarction. Blood 1999;94:46–51.

    PubMed  CAS  Google Scholar 

  88. Ridker PM, Hennekens CH, Miletich JP. G20210A mutation in prothrombin gene and risk of myocardial infarction, stroke, and venous thrombosis in a large cohort of US men. Circulation 1999;99:999–1004.

    PubMed  CAS  Google Scholar 

  89. Doggen CJ, Cats VM, Bertina RM, Rosendaal FR. Interaction of coagulation defects and cardiovascular risk factors: increased risk of myocardial infarction associated with factor V Leiden or prothrombin 20210A. Circulation 1998;97:1037–1041.

    PubMed  CAS  Google Scholar 

  90. Rosendaal FR, Siscovick DS, Schwartz SM, et al. Factor V Leiden (resistance to activated protein C) increases the risk of myocardial infarction in young women. Blood 1997;89:2817–2821.

    PubMed  CAS  Google Scholar 

  91. Favaloro EJ, Mirochnik O, McDonald D. Functional activated protein C resistance assays: correlation with factor V DNA analysis is better with RVVT-than APTT-based assays. Br J Biomed Sci 1999,56:23–33.

    PubMed  CAS  Google Scholar 

  92. Van Cott EM, Soderberg BL, Laposata M. Activated protein C resistance, the factor V Leiden mutation, and a laboratory testing algorithm. Arch Pathol Lab Med 2002;126:577–582.

    PubMed  Google Scholar 

  93. Sampram ES, Lindblad B, Dahlback B. Activated protein C resistance in patients with peripheral vascular disease. J Vase Surg 1998;28:624–629.

    Article  CAS  Google Scholar 

  94. Lunghi B, Iacoviello L, Gemmati D, et al. Detection of new polymorphic markers in the factor V gene: association with factor V levels in plasma. Thromb Haemost 1996;75:45–48.

    PubMed  CAS  Google Scholar 

  95. Faioni EM, Franchi F, Bucciarelli P, et al. Coinheritance of the HR2 haplotype in the factor V gene confers an increased risk of venous thromboembolism to carriers of factor V R506Q (factor V Leiden). Blood 1999;94:3062–3066.

    PubMed  CAS  Google Scholar 

  96. Luddington R, Jackson A, Pannerselvam S, Brown K, Baglin T. The factor V R2 allele: risk of venous thromboembolism, factor V levels and resistance to activated protein C. Thromb Haemost 2000;83:204–208.

    PubMed  CAS  Google Scholar 

  97. de Visser MC, Guasch JF, Kamphuisen PW, Vos HL, Rosendaal FR, Bertina RM. The HR2 haplotype of factor V: effects on factor V levels, normalized activated protein C sensitivity ratios and the risk of venous thrombosis. Thromb Haemost 2000;83:577–582.

    PubMed  Google Scholar 

  98. Folsom AR, Cushman M, Tsai MY, et al. A prospective study of venous thromboembolism in relation to factor V Leiden and related factors. Blood 2002;99:2720–2725.

    Article  PubMed  CAS  Google Scholar 

  99. Doggen CJ, de Visser MC, Vos HL, Bertina RM, Cats VM, Rosendaal FR. The HR2 haplotype of factor V is not associated with the risk of myocardial infarction. Thromb Haemost 2000;84:815–818.

    PubMed  CAS  Google Scholar 

  100. Williamson D, Brown K, Luddington R, Baglin C, Baglin T. Factor V Cambridge: a new mutation (Arg306→Thr) associated with resistance to activated protein C. Blood 1998;91:1140–1144.

    PubMed  CAS  Google Scholar 

  101. Franco RF, Maffei FH, Lourenco D, et al. Factor V Arg306→Thr (factor V Cambridge) and factor V Arg306→Gly mutations in venous thrombotic disease. Br J Haematol 1998;103:888–890.

    Article  PubMed  CAS  Google Scholar 

  102. Chan WP, Lee CK, Kwong YL, Lam CK, Liang R. A novel mutation of Arg306 of factor V gene in Hong Kong Chinese. Blood 1998;91:1135–1139.

    PubMed  CAS  Google Scholar 

  103. Franco RF, Elion J, Tavella MH, Santos SE, Zago MA. The prevalence of factor V Arg306→Thr (factor V Cambridge) and factor V Arg306→Gly mutations in different human populations. Thromb Haemost 1999;81:312–313.

    PubMed  CAS  Google Scholar 

  104. Poort SR, Rosendaal FR, Reitsma PH, Bertina RM. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996;88:3698–3703.

    PubMed  CAS  Google Scholar 

  105. Rosendaal FR, Doggen CJ, Zivelin A, et al. Geographic distribution of the 20210 G to A prothrombin variant. Thromb Haemost 1998;79:706–708.

    PubMed  CAS  Google Scholar 

  106. Dilley A, Austin H, Hooper WC, et al. Prevalence of the prothrombin 20210 G-to-A variant in blacks: infants, patients with venous thrombosis, patients with myocardial infarction, and control subjects. J Lab Clin Med 1998;132:452–455.

    Article  PubMed  CAS  Google Scholar 

  107. Souto JC, Mateo J, Soria JM, et al. Homozygotes for prothrombin gene 20210 A allele in a thrombophilic family without clinical manifestations of venous thromboembolism. Haematologica 1999;84:627–632.

    PubMed  CAS  Google Scholar 

  108. Eikelboom JW, Baker RI, Parsons R, Taylor RR, van Bockxmeer FM. No association between the 20210 G/A prothrombin gene mutation and premature coronary artery disease. Thromb Haemost 1998;80:878–880.

    PubMed  CAS  Google Scholar 

  109. Croft SA, Daly ME, Steeds RP, Channer KS, Samani NJ, Hampton KK. The prothrombin 20210A allele and its association with myocardial infarction. Thromb Haemost 1999;81:861–864.

    PubMed  CAS  Google Scholar 

  110. Franco RF, Trip MD, ten Cate H, et al. The 20210 G→A mutation in the 3′-untranslated region of the prothrombin gene and the risk for arterial thrombotic disease. Br J Haematol 1999;104:50–54.

    Article  PubMed  CAS  Google Scholar 

  111. Gardemann A, Arsic T, Katz N, Tillmanns H, Hehrlein FW, Haberbosch W. The factor II G20210A and factor V G1691A gene transitions and coronary heart disease. Thromb Haemost 1999;81:208–213.

    PubMed  CAS  Google Scholar 

  112. Di Scipio RG, Hermodson MA, Yates SG, Davie EW. A comparison of human prothrombin, factor IX (Christmas factor), factor X (Stuart factor), and protein S. Biochemistry 1977;16:698–706.

    Article  PubMed  Google Scholar 

  113. Lundwall A, Dackowski W, Cohen E, et al. Isolation and sequence of the cDNA for human protein S, a regulator of blood coagulation. Proc Natl Acad Sci U S A 1986;83:6716–6720.

    Article  PubMed  CAS  Google Scholar 

  114. Dahlback B. Purification of human C4b-binding protein and formation of its complex with vitamin K-dependent protein S. Biochem J 1983;209:847–856.

    PubMed  CAS  Google Scholar 

  115. Dahlback B, Lundwall A, Stenflo J. Localization of thrombin cleavage sites in the amino-terminal region of bovine protein S. J Biol Chem 1986;261:5111–5115.

    PubMed  CAS  Google Scholar 

  116. Schwarz HP, Fischer M, Hopmeier P, Batard MA, Griffin JH. Plasma protein S deficiency in familial thrombotic disease. Blood 1984;64:1297–1300.

    PubMed  CAS  Google Scholar 

  117. Comp PC, Nixon RR, Cooper MR, Esmon CT. Familial protein S deficiency is associated with recurrent thrombosis. J Clin Invest 1984;74:2082–2088.

    PubMed  CAS  Google Scholar 

  118. Comp PC, Esmon CT. Recurrent venous thromboembolism in patients with a partial deficiency of protein S. N Engl J Med 1984;311:1525–1528.

    Article  PubMed  CAS  Google Scholar 

  119. Gandrille S, Borgel D, Ireland H, et al. Protein S deficiency: a database of mutations. For the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 1997;77:1201–1214.

    PubMed  CAS  Google Scholar 

  120. Gandrille S, Borgel D, Sala N, et al. Protein S deficiency: a database of mutations-summary of the first update. Thromb Haemost 2000;84:918.

    PubMed  CAS  Google Scholar 

  121. Pung-amritt P, Poort SR, Vos HL, et al. Compound heterozy-gosity for one novel and one recurrent mutation in a Thai patient with severe protein S deficiency. Thromb Haemost 1999;81:189–192.

    PubMed  CAS  Google Scholar 

  122. Dykes AC, Walker ID, McMahon AD, Islam SI, Tait RC. A study of Protein S antigen levels in 3788 healthy volunteers: influence of age, sex and hormone use, and estimate for prevalence of deficiency state. Br J Haematol 2001;113:636–641.

    Article  PubMed  CAS  Google Scholar 

  123. Liberti G, Bertina RM, Rosendaal FR. Hormonal state rather than age influences cut-off values of protein S: reevaluation of the thrombotic risk associated with protein S deficiency. Thromb Haemost 1999;82:1093–1096.

    PubMed  CAS  Google Scholar 

  124. Comp PC, Thurnau GR, Welsh J, Esmon CT. Functional and immunologic protein S levels are decreased during pregnancy. Blood 1986;68:881–885.

    PubMed  CAS  Google Scholar 

  125. Vigano-D’Angelo S, D’Angelo A, Kaufman CE Jr, Sholer C, Esmon CT, Comp PC. Protein S deficiency occurs in the nephrotic syndrome. Ann Intern Med 1987;107:42–47.

    CAS  Google Scholar 

  126. D’Angelo A, Vigano-D’Angelo S, Esmon CT, Comp PC. Acquired deficiencies of protein S. Protein S activity during oral anticoagulation, in liver disease, and in disseminated intravascular coagulation. J Clin Invest 1988;81:1445–1454.

    PubMed  CAS  Google Scholar 

  127. Quehenberger P, Loner U, Kapiotis S, et al. Increased levels of activated factor VII and decreased plasma protein S activity and circulating thrombomodulin during use of oral contraceptives. Thromb Haemost 1996;76:729–734.

    PubMed  CAS  Google Scholar 

  128. Oruc S, Saruc M, Koyuncu FM, Ozdemir E. Changes in the plasma activities of protein C and protein S during pregnancy. Aust N Z J Obstet Gynaecol 2000;40:448–450.

    PubMed  CAS  Google Scholar 

  129. Martinelli I, Mannucci PM, De Stefano V, et al. Different risks of thrombosis in four coagulation defects associated with inherited thrombophilia: a study of 150 families. Blood 1998;92:2353–2358.

    PubMed  CAS  Google Scholar 

  130. Mannucci PM, Tripodi A, Bertina RM. Protein S deficiency associated with “juvenile” arterial and venous thromboses. Thromb Haemost 1986;55:440.

    PubMed  CAS  Google Scholar 

  131. Girolami A, Simioni P, Lazzaro AR, Cordiano I. Severe arterial cerebral thrombosis in a patient with protein S deficiency (moderately reduced total and markedly reduced free protein S): a family study. Thromb Haemost 1989;61:144–147.

    PubMed  CAS  Google Scholar 

  132. Allaart CF, Aronson DC, Ruys T, et al. Hereditary protein S deficiency in young adults with arterial occlusive disease. Thromb Haemost 1990;64:206–210.

    PubMed  CAS  Google Scholar 

  133. Faioni EM, Valsecchi C, Palla A, Taioli E, Razzari C, Mannucci PM. Free protein S deficiency is a risk factor for venous thrombosis. Thromb Haemost 1997;78:1343–1346.

    PubMed  CAS  Google Scholar 

  134. Makris M, Leach M, Beauchamp NJ, et al. Genetic analysis, phenotypic diagnosis, and risk of venous thrombosis in families with inherited deficiencies of protein S. Blood 2000;95:1935–1941.

    PubMed  CAS  Google Scholar 

  135. Simmonds RE, Ireland H, Lane DA, Zoller B, Garcia de Frutos P, Dahlback B. Clarification of the risk for venous thrombosis associated with hereditary protein S deficiency by investigation of a large kindred with a characterized gene defect. Ann Intern Med 1998;128:8–14.

    PubMed  CAS  Google Scholar 

  136. Koster T, Rosendaal FR, Briet E, et al. Protein C deficiency in a controlled series of unselected outpatients: an infrequent but clear risk factor for venous thrombosis (Leiden Thrombophilia Study). Blood 1995;85:2756–2761.

    PubMed  CAS  Google Scholar 

  137. Boyer-Neumann C, Bertina RM, Tripodi A, et al. Comparison of functional assays for protein S: European collaborative study of patients with congenital and acquired deficiency. Thromb Haemost 1993,70:946–950.

    PubMed  CAS  Google Scholar 

  138. Griffin JH, Evatt B, Zimmerman TS, Kleiss AJ, Wideman C. Deficiency of protein C in congenital thrombotic disease. J Clin Invest 1981;68:1370–1373.

    PubMed  CAS  Google Scholar 

  139. Reitsma PH. Protein C deficiency: summary of the 1995 database update. Nucleic Acids Res 1996;24:157–159.

    Article  PubMed  CAS  Google Scholar 

  140. http://www.xs4all.nl/~reitsma/Prot_C_home.htm.

  141. Tait RC, Walker ID, Reitsma PH, et al. Prevalence of protein C deficiency in the healthy population. Thromb Haemost 1995;73:87–93.

    PubMed  CAS  Google Scholar 

  142. Sakata T, Kario K, Katayama Y, Matsuyama T, Kato H, Miyata T. Studies on congenital protein C deficiency in Japanese: prevalence, genetic analysis, and relevance to the onset of arterial occlusive diseases. Semin Thromb Hemost 2000;26:11–16.

    Article  PubMed  CAS  Google Scholar 

  143. Allaart CF, Poort SR, Rosendaal FR, Reitsma PH, Bertina RM, Briet E. Increased risk of venous thrombosis in carriers of hereditary protein C deficiency defect. Lancet 1993;341:134–138.

    Article  PubMed  CAS  Google Scholar 

  144. Bovill EG, Bauer KA, Dickerman JD, Callas P, West B. The clinical spectrum of heterozygous protein C deficiency in a large New England kindred. Blood 1989;73:712–717.

    PubMed  CAS  Google Scholar 

  145. Camerlingo M, Finazzi G, Casto L, Laffranchi C, Barbui T, Mamoli A. Inherited protein C deficiency and nonhemorrhagic arterial stroke in young adults. Neurology 1991;41:1371–1373.

    PubMed  CAS  Google Scholar 

  146. Simioni P, Zanardi S, Saracino A, Girolami A. Occurrence of arterial thrombosis in a cohort of patients with hereditary deficiency of clotting inhibitors. J Med 1992;23:61–74.

    PubMed  CAS  Google Scholar 

  147. Egeberg O. Inherited antithrombin deficiency causing thrombophilia. Thromb Diath Haemorrh 1965;13:516–530.

    PubMed  CAS  Google Scholar 

  148. Tait RC, Walker ID, Perry DJ, et al. Prevalence of antithrombin deficiency in the healthy population. Br J Haematol 1994;87:106–112.

    PubMed  CAS  Google Scholar 

  149. Wells PS, Blajchman MA, Henderson P, et al. Prevalence of antithrombin deficiency in healthy blood donors: a cross-sectional study. Am J Hematol 1994;45:321–324.

    Article  PubMed  CAS  Google Scholar 

  150. http://www.med.ic.ac.uk/divisions/7/antifhrombin.

  151. Lane DA, Bayston T, Olds RJ, et al. Antithrombin mutation database: 2nd (1997) update. For the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 1997;77:197–211.

    PubMed  CAS  Google Scholar 

  152. Coller BS, Owen J, Jesty J, et al. Deficiency of plasma protein S, protein C, or antithrombin III and arterial thrombosis. Arteriosclerosis 1987;7:456–462.

    PubMed  CAS  Google Scholar 

  153. Johnson EJ, Prentice CR, Parapia LA. Premature arterial disease associated with familial antithrombin III deficiency. Thromb Haemost 1990;63:13–15.

    PubMed  CAS  Google Scholar 

  154. Mateo J, Oliver A, Borrell M, Sala N, Fontcuberta J. Increased risk of venous thrombosis in carriers of natural anticoagulant deficiencies. Results of the family studies of the Spanish Multicenter Study on Thrombophilia (EMET study). Blood Coagul Fibrinolysis 1998;9:71–78.

    Article  PubMed  CAS  Google Scholar 

  155. Demers C, Ginsberg JS, Hirsh J, Henderson P, Blajchman MA. Thrombosis in antithrombin-III-deficient persons. Report of a large kindred and literature review. Ann Intern Med 1992:116:754–761.

    PubMed  CAS  Google Scholar 

  156. Heijboer H, Brandjes DP, Buller HR, Sturk A, ten Cate JW. Deficiencies of coagulation-inhibiting and fibrinolytic proteins in outpatients with deep-vein thrombosis. N Engl J Med 1990:323:1512–1516.

    Article  PubMed  CAS  Google Scholar 

  157. Lowe GD, Rumley A, Woodward M, et al. Epidemiology of coagulation factors, inhibitors and activation markers: the Third Glasgow MONICA Survey. I. Illustrative reference ranges by age, sex and hormone use. Br J Haematol 1997;97:775–784.

    Article  PubMed  CAS  Google Scholar 

  158. Wahl DG, Guillemin F, de Maistre E, Perret C, Lecompte T, Thibaut G. Risk for venous thrombosis related to antiphospholipid antibodies in systemic lupus erythematosus—a meta-analysis. Lupus 1997;6:467–473.

    PubMed  CAS  Google Scholar 

  159. Wahl DG, Guillemin F, de Maistre E, Perret-Guillaume C, Lecompte T, Thibaut G. Meta-analysis of the risk of venous thrombosis in individuals with antiphospholipid antibodies without underlying autoimmune disease or previous thrombosis. Lupus 1998:7:15–22.

    Article  PubMed  CAS  Google Scholar 

  160. Rand JH, Wu XX, Andree HA, et al. Pregnancy loss in the antiphospholipid-antibody syndrome—a possible thrombogenic mechanism. N Engl J Med 1997;337:154–160.

    Article  PubMed  CAS  Google Scholar 

  161. Nojima J, Suehisa E, Kuratsune H, et al. Platelet activation induced by combined effects of anticardiolipin and lupus anticoagulant IgG antibodies in patients with systemic lupus erythematosus—possible association with thrombotic and thrombocytopenic complications. Thromb Haemost 1999;81:436–441.

    PubMed  CAS  Google Scholar 

  162. Wiener MH, Burke M, Fried M, Yust I. Thromboagglutination by anticardiolipin antibody complex in the antiphospholipid syndrome: a possible mechanism of immune-mediated thrombosis. Thromb Res 2001;103:193–199.

    Article  PubMed  CAS  Google Scholar 

  163. Wilson WA, Gharavi AE, Koike T, et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: report of an international workshop. Arthritis Rheum 1999;42:1309–1311.

    Article  PubMed  CAS  Google Scholar 

  164. Khamashta MA, Guadrado MJ, Mujic F, Taub NA, Hunt BJ, Hughes GR. The management of thrombosis in the antiphospholipid-antibody syndrome. N Engl J Med 1995;332:993–997.

    Article  PubMed  CAS  Google Scholar 

  165. Moll S, Ortel TL. Monitoring warfarin therapy in patients with lupus anticoagulants. Ann Intern Med 1997;127:177–185.

    PubMed  CAS  Google Scholar 

  166. Hellan M, Kuhnel E, Speiser W, Lechner K, Eichinger S. Familial lupus anticoagulant: a case report and review of the literature. Blood Coagul Fibrinolysis 1998;9:195–200.

    Article  PubMed  CAS  Google Scholar 

  167. Atsumi T, Bertolaccini ML, Koike T. Genetics of antiphospholipid syndrome. Rheum Dis Clin North Am 2001;27:565–572, vi.

    Article  PubMed  CAS  Google Scholar 

  168. Atsumi T, Tsutsumi A, Amengual O, et al. Correlation between beta2-glycoprotein I valine/leucine247 polymorphism and anti-beta2-glycoprotein I antibodies in patients with primary antiphospholipid syndrome. Rheumatology 1999:38:721–723.

    Article  PubMed  CAS  Google Scholar 

  169. Ichinose A. Physiopathology and regulation of factor XIII. Thromb Haemost 2001;86:57–65.

    PubMed  CAS  Google Scholar 

  170. Kohler HP, Stickland MH, Ossei-Gerning N, Carter A, Mikkola H, Grant PJ. Association of a common polymorphism in the factor XIII gene with myocardial infarction. Thromb Haemost 1998;79:8–13.

    PubMed  CAS  Google Scholar 

  171. Wartiovaara U, Perola M, Mikkola H, et al. Association of FXIII Val34Leu with decreased risk of myocardial infarction in Finnish males. Atherosclerosis 1999;142:295–300.

    Article  PubMed  CAS  Google Scholar 

  172. Franco RF, Pazin-Filho A, Tavella MH, Simoes MV, Marin-Neto JA, Zago MA. Factor XIII val341eu and the risk of myocardial infarction. Haematologica 2000;85:67–71.

    PubMed  CAS  Google Scholar 

  173. Elbaz A, Poirier O, Canaple S, Chedru F, Cambien F, Amarenco P. The association between the Val34Leu polymorphism in the factor XIII gene and brain infarction. Blood 2000;95:586–591.

    PubMed  CAS  Google Scholar 

  174. Reiner AP, Frank MB, Schwartz SM, et al. Coagulation factor XIII polymorphisms and the risk of myocardial infarction and ischaemic stroke in young women. Br J Haematol 2002;116:376–382.

    Article  PubMed  CAS  Google Scholar 

  175. Catto AJ, Kohler HP, Coore J, Mansfield MW, Stickland MH, Grant PJ. Association of a common polymorphism in the factor XIII gene with venous thrombosis. Blood 1999;93:906–908.

    PubMed  CAS  Google Scholar 

  176. Renner W, Koppel H, Hoffmann C, et al. Prothrombin G20210A, factor V Leiden, and factor XIII Val34Leu: common mutations of blood coagulation factors and deep vein thrombosis in Austria. Thromb Res 2000;99:35–39.

    Article  PubMed  CAS  Google Scholar 

  177. Aleksic N, Ahn C, Wang YW, et al. Factor XIIIA Val34Leu polymorphism does not predict risk of coronary heart disease: The Atherosclerosis Risk in Communities (ARIC) Study. Arterioscler Thromb Vase Biol 2002;22:348–352.

    Article  CAS  Google Scholar 

  178. Warner D, Mansfield MW, Grant PJ. Coagulation factor XIII and cardiovascular disease in UK Asian patients undergoing coronary angiography. Thromb Haemost 2001;85:408–411.

    PubMed  CAS  Google Scholar 

  179. Corral J, Gonzalez-Conejero R, Iniesta JA, Rivera J, Martinez C, Vicente V. The FXIII Val34Leu polymorphism in venous and arterial thromboembolism. Haematologica 2000;85:293–297.

    PubMed  CAS  Google Scholar 

  180. Balogh I, Szoke G, Karpati L, et al. Val34Leu polymorphism of plasma factor XIII: biochemistry and epidemiology in familial thrombophilia. Blood 2000;96:2479–2486.

    PubMed  CAS  Google Scholar 

  181. Margaglione M, Bossone A, Brancaccio V, Ciampa A, Di Minno G. Factor XIII Val34Leu polymorphism and risk of deep vein thrombosis. Thromb Haemost 2000;84:1118–1119.

    PubMed  CAS  Google Scholar 

  182. Aliens RA, Philippou H, Nagaswami C, Weisel JW, Lane DA, Grant PJ. The factor XIII V34L polymorphism accelerates thrombin activation of factor XIII and affects cross-linked fibrin structure. Blood 2000;96:988–995.

    Google Scholar 

  183. Wartiovaara U, Mikkola H, Szoke G, et al. Effect of Val34Leu polymorphism on the activation of the coagulation factor XIII-A. Thromb Haemost 2000;84:595–600.

    PubMed  CAS  Google Scholar 

  184. Wagner CL, Mascelli MA, Neblock DS, Weisman HF, Coller BS, Jordan RE. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 1996;88:907–914.

    PubMed  CAS  Google Scholar 

  185. Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998;91:2645–2657.

    PubMed  CAS  Google Scholar 

  186. von dem Borne AE, Decary F. Nomenclature of platelet-specific antigens. Transfusion 1990;30:477.

    Article  Google Scholar 

  187. Calvete JJ. Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein Ilb/IIIa complex. Thromb Haemost 1994;72:1–15.

    PubMed  CAS  Google Scholar 

  188. Calvete JJ. Platelet integrin GPIIb/IIIa: structure-function correlations. An update and lessons from other integrins. Proc Soc Exp Biol Med 1999;222:29–38.

    Article  PubMed  CAS  Google Scholar 

  189. Michelson AD, Furman MI, Goldschmidt-Clermont P, et al. Platelet GP Ilia P1(A) polymorphisms display different sensitivities to agonists. Circulation 2000;101:1013–1018.

    PubMed  CAS  Google Scholar 

  190. Weiss EJ, Bray PF, Tayback M, et al. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med 1996;334:1090–1094.

    Article  PubMed  CAS  Google Scholar 

  191. Carter AM, Ossei-Gerning N, Grant PJ. Platelet glycoprotein Ilia PI A polymorphism in young men with myocardial infarction. Lancet 1996;348:485–486.

    Article  PubMed  CAS  Google Scholar 

  192. Ridker PM, Hennekens CH, Schmitz C, Stampfer MJ, Lindpaintner K. PIA1/A2 polymorphism of platelet glycoprotein IIIa and risks of myocardial infarction, stroke, and venous thrombosis. Lancet 1997;349:385–388.

    Article  PubMed  CAS  Google Scholar 

  193. Herrmann SM, Poirier O, Marques-Vidal P, et al. The Leu33/Pro polymorphism (P1A1/P1A2) of the glycoprotein Ilia (GPIIIa) receptor is not related to myocardial infarction in the ECTIM Study. Etude Cas-Temoins de lTnfarctus du Myocarde. Thromb Haemost 1997;77:1179–1181.

    PubMed  CAS  Google Scholar 

  194. Zhu MM, Weedon J, Clark LT. Meta-analysis of the association of platelet glycoprotein Ilia P1A1/A2 polymorphism with myocardial infarction. Am J Cardiol 2000;86:1000–1005.

    Article  PubMed  CAS  Google Scholar 

  195. Walter DH, Schachinger V, Eisner M, Dimmeler S, Zeiher AM. Platelet glycoprotein Ilia polymorphisms and risk of coronary stent thrombosis. Lancet 1997;350:1217–1219.

    Article  PubMed  CAS  Google Scholar 

  196. Kastrati A, Schomig A, Seyfarth M, et al. PI A polymorphism of platelet glycoprotein Ilia and risk of restenosis after coronary stent placement. Circulation 1999;99:1005–1010.

    PubMed  CAS  Google Scholar 

  197. Mamotte CD, van Bockxmeer FM, Taylor RR. PIal/a2 polymorphism of glycoprotein Ilia and risk of coronary artery disease and restenosis following coronary angioplasty. Am J Cardiol 1998;82:13–16.

    Article  PubMed  CAS  Google Scholar 

  198. Laule M, Cascorbi I, Stangl V, et al. A1/A2 polymorphism of glycoprotein Ilia and association with excess procedural risk for coronary catheter interventions: a case-controlled study. Lancet 1999;353:708–712.

    Article  PubMed  CAS  Google Scholar 

  199. Wheeler GL, Braden GA, Bray PF, Marciniak SJ, Mascelli MA, Sane DC. Reduced inhibition by abciximab in platelets with the P1A2 polymorphism. Am Heart J 2002;143:76–82.

    Article  PubMed  CAS  Google Scholar 

  200. Berndt MC, Shen Y, Dopheide SM, Gardiner EE, Andrews RK. The vascular biology of the glycoprotein Ib-IX-V complex. Thromb Haemost 2001;86:178–188.

    PubMed  CAS  Google Scholar 

  201. Lopez JA, Ludwig EH, McCarthy BJ. Polymorphism of human glycoprotein Ib alpha results from a variable number of tandem repeats of a 13-amino acid sequence in the mucin-like macro-glycopeptide region. Structure/function implications. J Biol Chem 1992;267:10055–10061.

    PubMed  CAS  Google Scholar 

  202. Ishida F, Furihata K, Ishida K, et al. The largest variant of platelet glycoprotein Ib alpha has four tandem repeats of 13 amino acids in the macroglycopeptide region and a genetic linkage with methionine l45. Blood 1995;86:1357–1360.

    PubMed  CAS  Google Scholar 

  203. Afshar-Kharghan V, Li CQ, Khoshnevis-Asl M, Lopez JA. Kozak sequence polymorphism of the glycoprotein (GP) Ibalpha gene is a major determinant of the plasma membrane levels of the platelet GP Ib-IX-V complex. Blood 1999;94:186–191.

    PubMed  CAS  Google Scholar 

  204. Corral J, Lozano ML, Gonzalez-Conejero R, et al. A common polymorphism flanking the ATG initiator codon of GPIb alpha does not affect expression and is not a major risk factor for arterial thrombosis. Thromb Haemost 2000;83:23–28.

    PubMed  CAS  Google Scholar 

  205. Murata M, Matsubara Y, Kawano K, et al. Coronary artery disease and polymorphisms in a receptor mediating shear stress-dependent platelet activation. Circulation 1997;96:3281–3286.

    PubMed  CAS  Google Scholar 

  206. Gonzalez-Conejero R, Lozano ML, Rivera J, et al. Polymorphisms of platelet membrane glycoprotein Ib associated with arterial thrombotic disease. Blood 1998;92:2771–2776.

    PubMed  CAS  Google Scholar 

  207. Mercier B, Munier S, Bertault V, Mansourati J, Blanc JJ, Ferec C. Myocardial infarction: absence of association with VNTR polymorphism of GP Ibalpha. Thromb Haemost 2000;84:921–922.

    PubMed  CAS  Google Scholar 

  208. Reiner AP, Kumar PN, Schwartz SM, et al. Genetic variants of platelet glycoprotein receptors and risk of stroke in young women. Stroke 2000;31:1628–1633.

    PubMed  CAS  Google Scholar 

  209. Sonoda A, Murata M, Ikeda Y, Fukuuchi Y, Watanabe K. Stroke and platelet glycoprotein Ibalpha polymorphisms. Thromb Haemost 2001;85:573–574.

    PubMed  CAS  Google Scholar 

  210. Kunicki TJ, Orchekowski R, Annis D, Honda Y. Variability of integrin alpha 2 beta 1 activity on human platelets. Blood 1993:82:2693–2703.

    PubMed  CAS  Google Scholar 

  211. Kunicki TJ, Kritzik M, Annis DS, Nugent DJ. Hereditary variation in platelet integrin alpha 2 beta 1 density is associated with two silent polymorphisms in the alpha 2 gene coding sequence. Blood 1997;89:1939–1943.

    PubMed  CAS  Google Scholar 

  212. Santoso S, Kunicki TJ, Kroll H, Haberbosch W, Gardemann A. Association of the platelet glycoprotein la C807T gene polymorphism with nonfatal myocardial infarction in younger patients. Blood 1999;93:2449–2453.

    PubMed  CAS  Google Scholar 

  213. Casorelli I, De Stefano V, Leone AM, et al. The C807T/G873A polymorphism in the platelet glycoprotein la gene and the risk of acute coronary syndrome in the Italian population. Br J Haematol 2001;l14:150–154.

    Article  Google Scholar 

  214. Croft SA, Hampton KK, Sorrell JA, et al. The GPIa C807T dimorphism associated with platelet collagen receptor density is not a risk factor for myocardial infarction. Br J Haematol 1999:106:771–776.

    Article  PubMed  CAS  Google Scholar 

  215. Morita H, Kurihara H, Imai Y, et al. Lack of association between the platelet glycoprotein Ia C8O7T gene polymorphism and myocardial infarction in Japanese. An approach entailing melting curve analysis with specific fluorescent hybridization probes. Thromb Haemost 2001;85:226–230.

    PubMed  CAS  Google Scholar 

  216. Ridker PM, Vaughan DE, Stampfer MJ, Manson JE, Hennekens CH. Endogenous tissue-type plasminogen activator and risk of myocardial infarction. Lancet 1993:341:1165–1168.

    Article  PubMed  CAS  Google Scholar 

  217. Thompson SG, Kienast J, Pyke SD, Haverkate F, van de Loo JC. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med 1995;332:635–641.

    Article  PubMed  CAS  Google Scholar 

  218. Ludwig M, Wohn KD, Schleuning WD, Olek K. Allelic dimorphism in the human tissue-type plasminogen activator (TPA) gene as a result of an Alu insertion/deletion event. Hum Genet 1992:88:388–392.

    Article  PubMed  CAS  Google Scholar 

  219. van der Bom JG, de Knijff P, Haverkate F, et al. Tissue plasminogen activator and risk of myocardial infarction. The Rotterdam Study. Circulation 1997;95:2623–2627.

    PubMed  Google Scholar 

  220. Ridker PM, Baker MT, Hennekens CH, Stampfer MJ, Vaughan DE. Alu-repeat polymorphism in the gene coding for tissue-type plasminogen activator (t-PA) and risks of myocardial infarction among middle-aged men. Arterioscler Thromb Vase Biol 1997;17:1687–1690.

    CAS  Google Scholar 

  221. Aoki N, Moroi M, Sakata Y, Yoshida N, Matsuda M. Abnormal plasminogen. A hereditary molecular abnormality found in a patient with recurrent thrombosis. J Clin Invest 1978:61:1186–1195.

    PubMed  CAS  Google Scholar 

  222. Tait RC, Walker ID, Conkie JA, Islam SI, McCall F. Isolated familial plasminogen deficiency may not be a risk factor for thrombosis. Thromb Haemost 1996;76:1004–1008.

    PubMed  CAS  Google Scholar 

  223. Demarmels Biasiutti F, Sulzer I, Stucki B, Wuillemin WA, Furlan M, Lammle B. Is plasminogen deficiency a thrombotic risk factor? A study on 23 thrombophilic patients and their family members. Thromb Haemost 1998;80:167–170.

    PubMed  CAS  Google Scholar 

  224. Shigekiyo T, Kanazuka M, Aihara K, et al. No increased risk of thrombosis in heterozygous congenital dysplasminogenemia. Int J Hematol 2000;72:247–252.

    PubMed  CAS  Google Scholar 

  225. Sartori MT, Patrassi GM, Theodoridis P, Perin A, Pietrogrande F, Girolami A. Heterozygous type I plasminogen deficiency is associated with an increased risk for thrombosis: a statistical analysis in 20 kindreds. Blood Coagul Fibrinolysis 1994;5:889–893.

    Article  PubMed  CAS  Google Scholar 

  226. Bachmann F. Plasminogen-plasmin enzyme system. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: Lippincott, Williams & Wilkins; 2001:275–320.

    Google Scholar 

  227. Kohler HP, Grant PJ. Plasminogen-activator inhibitor type 1 and coronary artery disease. N Engl J Med 2000;342:1792–1801.

    Article  PubMed  CAS  Google Scholar 

  228. Dawson S, Hamsten A, Wiman B, Henney A, Humphries S. Genetic variation at the plasminogen activator inhibitor-1 locus is associated with altered levels of plasma plasminogen activator inhibitor-1 activity. Arterioscler Thromb 1991;11:183–190.

    PubMed  CAS  Google Scholar 

  229. Freeman MS, Mansfield MW, Barrett JH, Grant PJ. Genetic contribution to circulating levels of hemostatic factors in healthy families with effects of known genetic polymorphisms on heritability. Arterioscler Thromb Vase Biol 2002;22:506–510.

    Article  CAS  Google Scholar 

  230. Sartori MT, Wiman B, Vettore S, Dazzi F, Girolami A, Patrassi GM. 4G/5G polymorphism of PAI-1 gene promoter and fibrinolytic capacity in patients with deep vein thrombosis. Thromb Haemost 1998;80:956–960.

    PubMed  CAS  Google Scholar 

  231. Stegnar M, Uhrin P, Peternel P, et al. The 4G/5G sequence polymorphism in the promoter of plasminogen activator inhibitor-1 (PAI-1) gene: relationship to plasma PAI-1 level in venous thromboembolism. Thromb Haemost 1998;79:975–979.

    PubMed  CAS  Google Scholar 

  232. http://www.fvleiden.org.

  233. http://www.nattinfo.org.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Moll, S., White, G.C. (2005). Thrombotic Vascular Disease. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Cardiology. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-878-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-878-6_27

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-201-8

  • Online ISBN: 978-1-59259-878-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics