Skip to main content

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 884 Accesses

Abstract

Vasculitis is an inflammatory disorder of the blood vessel wall that can affect vessels of all sizes, ranging from capillaries to large vessels such as the aorta (Fig. 1) (1). Vasculitides have been classified by the size and type of vessel involved and, to a certain degree, by the distribution of injured organs (e.g., renal limited vasculitis, limited Wegener’s granulomatosis). The pathogenesis of vasculitis has been studied both in vitro and in vivo; however, the causes of many types of vasculitis remain unknown. In fact, the number of etiologic agents involved in most types of vasculitis is unknown. Many forms of vasculitis probably require several synergistic “hits”; multiple factors must act together to alter the endothelium to allow activated leukocytes to adhere to and penetrate the vessel wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jennette JC, Falk RJ. Small-vessel vasculitis. N Engl J Med 1997;337:1512–1523.

    PubMed  CAS  Google Scholar 

  2. Kussmaul A, Maier R. Uber eine bisher nicht beschreibene eigenthumliche Arterienerkrankung (Periarteritis nodosa), die mit Morbus Brightii und rapid fortschreitender allgemeiner Muskellahmung einhergeht. Dtsch Arch Klin Med 1866;1:484–518.

    Google Scholar 

  3. Ferrari E. Ueber Polyarteritis actua nodosa (sogenannte Periarteriitis nodosa), und ihre Beziehungen zur Polymyositis and Polyneuritis acuta. Beitr Pathol Anat 1903;34:350–386.

    Google Scholar 

  4. Davson J, Ball J, Platt R. The kidney in periarteritis nodosa. Q JMed 1948;17:175–202.

    Google Scholar 

  5. Klinger H. Grenzformen der Periarteritis nodosa. Frankf Ztschr Pathol 1931;42:455–480.

    Google Scholar 

  6. Zeek PM. Periarteritis nodosa: a critical review. Am J Clin Pathol 1952;22:777–790.

    PubMed  CAS  Google Scholar 

  7. Godman GC, Churg J. Wegener’s granulomatosis. Pathology and review of the literature. Arch Pathol Lab Med 1954;58:533–553.

    CAS  Google Scholar 

  8. Shackelford PG, Strauss AW. Kawasaki’s syndrome. N Engl JMed 1991:324:1664–1666.

    CAS  Google Scholar 

  9. Jennette JC, Falk RJ, Andrassy K, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum 1994;37:187–192.

    PubMed  CAS  Google Scholar 

  10. Caselli RJ, Hunder GG. Giant cell (temporal) arteritis. Neurol Clin 1997:15:893–902.

    PubMed  CAS  Google Scholar 

  11. Hunder GG. Giant cell arteritis in polymyalgia rheumatica. Am JMed 1997:102:514–516.

    CAS  Google Scholar 

  12. Hunder GG. Clinical features of GCA/PMR. Clin Exp Rheumatol 2000;18:S6–S8.

    PubMed  CAS  Google Scholar 

  13. Hunder GG, Valente RM. Giant cell arteritis: clinical aspects. In: Hoffman GS, Weyand CM, eds. Inflammatory Diseases of Blood Vessels. New York: Marcel Dekker, Inc., 2002:425–441.

    Google Scholar 

  14. Wilke WS. Large vessel vasculitis (giant cell arteritis, Takayasu arteritis). Baillieres Clin Rheumatol 1997;11:285–313.

    PubMed  CAS  Google Scholar 

  15. Emmerich J, Fiessinger JN. [Epidemiology and etiological factors in giant cell arteritis (Horton’s disease and Takayasu’s disease)]. Ann Med Interne (Paris) 1998;149:425–432.

    CAS  Google Scholar 

  16. Planchon B, Cassagnau E, Pottier P, Pistorius M. [Systemic vasculitis]. J Mai Vase 2000;25:166–174.

    CAS  Google Scholar 

  17. Watts RA, Jolliffe VA, Carruthers DM, Lockwood M, Scott DG. Effect of classification on the incidence of polyarteritis nodosa and microscopic polyangiitis. Arthritis Rheum 1996; 39:1208–1212.

    PubMed  CAS  Google Scholar 

  18. Watts RA, Scott DG. Epidemiology of vasculitis. In: Ball GV, Bridges SL, Ball EV, eds. Vasculitis. Oxford University Press, 2000:176–201.

    Google Scholar 

  19. Salvarani C, Gabriel SE, O’Fallon WM, Hunder GG. The incidence of giant cell arteritis in Olmsted County, Minnesota: apparent fluctuations in a cyclic pattern. Ann Intern Med 1995; 123:192–194.

    PubMed  CAS  Google Scholar 

  20. Baldursson O, Steinsson K, Bjornsson J, Lie JT. Giant cell arteritis in Iceland. An epidemiologic and histopathologic analysis. Arthritis Rheum 1994;37:1007–1012.

    PubMed  CAS  Google Scholar 

  21. Salvarani C, Gabriel SE, O’Fallon WM, Hunder GG. Epidemiology of polymyalgia rheumatica in Olmsted County, Minnesota, 1970–1991. Arthritis Rheum 1995;38:369–373.

    PubMed  CAS  Google Scholar 

  22. Numano F. Differences in clinical presentation and outcome in different countries for Takayasu’s arteritis. Curr Opin Rheumatol 1997:9:12–15.

    PubMed  CAS  Google Scholar 

  23. Bahlas S, Ramos-Remus C, Davis P. Clinical outcome of 149 patients with polymyalgia rheumatica and giant cell arteritis. J Rheumatol 1998;25:99–104.

    PubMed  CAS  Google Scholar 

  24. Aiello PD, Trautmann JC, McPhee TJ, Kunselman AR, Hunder GG. Visual prognosis in giant cell arteritis. Ophthalmology 1993;100:550–555.

    PubMed  CAS  Google Scholar 

  25. Hayreh SS, Podhajsky PA, Zimmerman B. Ocular manifestations of giant cell arteritis. Am J Ophthalmol 1998:125:509–520.

    PubMed  CAS  Google Scholar 

  26. Weyand CM, Goronzy JJ. Arterial wall injury in giant cell arteritis. Arthritis Rheum 1999;42:844–853.

    PubMed  CAS  Google Scholar 

  27. Wagner AD, Bjornsson J, Bartley GB, Goronzy JJ, Weyand CM. Interferon-gamma-producing T cells in giant cell vasculitis represent a minority of tissue-infiltrating cells and are located distant from the site of pathology. Am J Pathol 1996;148:1925–1933.

    PubMed  CAS  Google Scholar 

  28. Brack A, Geisler A, Martinez-Taboada VM, Younge BR, Goronzy JJ, Weyand CM. Giant cell vasculitis is a T cell-dependent disease. Mol Med 1997;3:530–543.

    PubMed  CAS  Google Scholar 

  29. Yoshida M, Kimura A, Katsuragi K, Numano F, Sasazuki T. DNA typing of HLA-B gene in Takayasu’s arteritis. Tissue Antigens 1993;42:87–90.

    PubMed  CAS  Google Scholar 

  30. Weyand CM, Hicok KC, Hunder GG, Goronzy JJ. The HLA-DRB1 locus as a genetic component in giant cell arteritis. Mapping of a disease-linked sequence motif to the antigen binding site of the HLA-DR molecule. J Clin Invest 1992;90:2355–2361.

    PubMed  CAS  Google Scholar 

  31. Weyand CM, Hunder NN, Hicok KC, Hunder GG, Goronzy JJ. HLA-DRB1 alleles in polymyalgia rheumatica, giant cell arteritis, and rheumatoid arthritis. Arthritis Rheum 1994;37:514–520.

    PubMed  CAS  Google Scholar 

  32. Roche NE, Fulbright JW, Wagner AD, Hunder GG, Goronzy JJ, Weyand CM. Correlation of interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. Arthritis Rheum 1993;36:1286–1294.

    PubMed  CAS  Google Scholar 

  33. Misiani R. Virus-associated vasculitides: pathogenesis. In: Hoffman GS, Weyand CM, eds. Inflammatory Diseases of Blood Vessels. New York: Marcel Dekker, Inc., 2002:553–563.

    Google Scholar 

  34. Hunder GG. Epidemiology of giant-cell arteritis. Cleve Clin J Med 2002;69(Suppl 2):SII79–SII82.

    PubMed  Google Scholar 

  35. Cohen IR. Autoimmunity to chaperonins in the pathogenesis of arthritis and diabetes. Annu Rev Immunol 1991;9:567–589.

    PubMed  CAS  Google Scholar 

  36. Dziarski R. Preferential induction of autoantibody secretion in polyclonal activation by peptidoglycan and lipopolysaccharide. I. In vitro studies. J Immunol 1982;128:1018–1025.

    PubMed  CAS  Google Scholar 

  37. Krieg AM, Yi AK, Matson S, et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995;374:546–549.

    PubMed  CAS  Google Scholar 

  38. Amano S, Hazama F, Hamashima Y. Pathology of Kawasaki’s disease: II. Distribution and incidence of the vascular lesions. Jpn Circ J 1979;43:741–748.

    PubMed  CAS  Google Scholar 

  39. Barron KS, Shulman ST, Rowley A, et al. Report of the National Institutes of Health Workshop on Kawasaki’s Disease. J Rheumatol 1999;26:170–190.

    PubMed  CAS  Google Scholar 

  40. Godeau P, Guillevin L, Bletry O, Wechsler B. [Periarteritis nodosa associated with hepatitis B virus. 42 cases (author’s transl)]. Nouv Presse Med 1981;10:1289–1292.

    PubMed  CAS  Google Scholar 

  41. Guillevin L, Lhote F, Cohen P, et al. Polyarteritis nodosa related to hepatitis B virus. A prospective study with long-term observation of 41 patients. Medicine (Baltimore) 1995;74:238–253.

    CAS  Google Scholar 

  42. Tervaert JW. Infections in primary vasculitides. Cleve Clin J Med 2002;69(Suppl 2):SII24–SII26.

    PubMed  Google Scholar 

  43. Zeek PM, Smith CC, Weeter JC. Studies on periarteritis nodosa. III. The differentiation between the vascular lesions of periarteritis nodosa and of hypersensitivity. Am J Pathol 1948;24:889–917.

    Google Scholar 

  44. Naoe S, Takahashi K, Masuda H, Tanaka N. Kawasaki’s disease. With particular emphasis on arterial lesions. Acta Pathol Jpn 1991;41:785–797.

    PubMed  CAS  Google Scholar 

  45. Morigi M, Zoja C, Figliuzzi M, et al. Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood 1995;85:1696–1703.

    PubMed  CAS  Google Scholar 

  46. Nagel T, Resnick N, Dewey CF Jr, Gimbrone MA Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler Thromb Vase Biol 1999;19:1825–1834.

    CAS  Google Scholar 

  47. Iiyama K, Hajra L, Iiyama M, et al. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 1999;85:199–207.

    PubMed  CAS  Google Scholar 

  48. Cybulsky MI, Lichtman AH, Hajra L, Iiyama K. Leukocyte adhesion molecules in atherogenesis. Clin Chim Acta 1999;286:207–218.

    PubMed  CAS  Google Scholar 

  49. Kawasaki’s T. [Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children]. Arerugi 1967;16:178–222.

    Google Scholar 

  50. Curtis N, Zheng R, Lamb JR, Levin M. Evidence for a super-antigen mediated process in Kawasaki’s disease. Arch Dis Child 1995;72:308–311.

    PubMed  CAS  Google Scholar 

  51. Jennette JC, Sciarrotta J, Takahashi K, Naoe S. Predominance of monocytes and macrophages in the inflammatory infiltrates of acute Kawasaki’s disease arteritis. Pediatr Res. In press.

    Google Scholar 

  52. Hamamichi Y, Ichida F, Yu X, et al. Neutrophils and mononuclear cells express vascular endothelial growth factor in acute Kawasaki’s disease: its possible role in progression of coronary artery lesions. Pediatr Res 2001;49:74–80.

    PubMed  CAS  Google Scholar 

  53. Meroni PL, Pappa ND, Raschi E, Tinvani A, Balestrieri G, Youinou P. Antiendothelial cell antibodies (AECA): From laboratory curiosity to another useful autoantibody. In: Shoenfeld Y, ed. The Decade of Autoimmunity. Amsterdam: Elsevier Health Sciences, 1999:227–251.

    Google Scholar 

  54. Furukawa S, Matsubara T, Jujoh K, et al. Peripheral blood monocyte/macrophages and serum tumor necrosis factor in Kawasaki’s disease. Clin Immunol Immunopathol 1988;48:247–251.

    PubMed  CAS  Google Scholar 

  55. Ichiyama T, Yoshitomi T, Nishikawa M, et al. NF-kappaB activation in peripheral blood monocytes/macrophages and T cells during acute Kawasaki’s disease. Clin Immunol 2001;99:373–377.

    PubMed  CAS  Google Scholar 

  56. Kim HY, Lee HG, Kim DS. Apoptosis of peripheral blood mononuclear cells in Kawasaki’s disease. J Rheumatol 2000;27:801–806.

    PubMed  CAS  Google Scholar 

  57. Nakatani K, Takeshita S, Tsujimoto H, Kawamura Y, Kawase H, Sekine I. Regulation of the expression of Fc gamma receptor on circulating neutrophils and monocytes in Kawasaki’s disease. Clin Exp Immunol 1999;117:418–422.

    PubMed  CAS  Google Scholar 

  58. Suzuki H, Uemura S, Tone S, et al. Effects of immunoglobulin and gamma-interferon on the production of tumour necrosis factor-alpha and interleukin-1 beta by peripheral blood monocytes in the acute phase of Kawasaki’s disease. Eur J Pediatr 1996;155:291–296.

    PubMed  CAS  Google Scholar 

  59. Ariga S, Koga M, Takahashi M, Ishihara T, Matsubara T, Furukawa S. Maturation of macrophages from peripheral blood monocytes in Kawasaki’s disease: immunocytochemical and immunoelectron microscopic study. Pathol Int 2001 51:257–263.

    PubMed  CAS  Google Scholar 

  60. Takeshita S, Nakatani K, Tsujimoto H, Kawamura Y, Kawase H, Sekine I. Increased levels of circulating soluble CD14 in Kawasaki’s disease. Clin Exp Immunol 2000; 119:376–381.

    PubMed  CAS  Google Scholar 

  61. Praprotnik S, Rozman B, Blank M, Shoenfeld Y. Pathogenic role of anti-endothelial cell antibodies in systemic vasculitis. Wien Klin Wochenschr 2000;112:660–664.

    PubMed  CAS  Google Scholar 

  62. Kaneko K, Savage CO, Pottinger BE, Shah V, Pearson JD, Dillon MJ. Antiendothelial cell antibodies can be cytotoxic to endothelial cells without cytokine pre-stimulation and correlate with ELISA antibody measurement in Kawasaki’s disease. Clin Exp Immunol 1994;98:264–269.

    PubMed  CAS  Google Scholar 

  63. Carvalho D, Savage CO, Isenberg D, Pearson JD. IgG antiendothelial cell autoantibodies from patients with systemic lupus erythematosus or systemic vasculitis stimulate the release of two endothelial cell-derived mediators, which enhance adhesion molecule expression and leukocyte adhesion in an autocrine manner. Arthritis Rheum 1999;42:631–640.

    PubMed  CAS  Google Scholar 

  64. Cameron JS. Systemic lupus erythematosus. In: Neilson EG, Couser WG, eds. Immunologic Renal Diseases. Philadelphia: Lippincott Williams & Wilkins, 2001:1057–1104.

    Google Scholar 

  65. Couser WG, Baker PJ, Adler S. Complement and the direct mediation of immune glomerular injury: a new perspective. Kidney Int 1985;28:879–890.

    PubMed  CAS  Google Scholar 

  66. Neilson EG, Kalluri R, Sun MJ, et al. Specificity of Goodpasture autoantibodies for the recombinant noncollagenous domains of human type IV collagen. J Biol Chem 1993;268:8402–8405.

    PubMed  CAS  Google Scholar 

  67. Hellmark T, Burkhardt H, Wieslander J. Goodpasture disease. Characterization of a single conformational epitope as the target of pathogenic autoantibodies. J Biol Chem 1999;274:25862–25868.

    PubMed  CAS  Google Scholar 

  68. Kallenberg CG, Brouwer E, Weening JJ, Tervaert JW. Anti-neutrophil cytoplasmic antibodies: current diagnostic and pathophysiological potential. Kidney Int 1994;46:1–15.

    PubMed  CAS  Google Scholar 

  69. Jennette JC, Falk RJ. The pathology of vasculitis involving the kidney. Am J Kidney Dis 1994;24:130–141.

    PubMed  CAS  Google Scholar 

  70. Andrews M, Edmunds M, Campbell A, Walls J, Feehally J. Systemic vasculitis in the 1980s—is there an increasing incidence of Wegener’s granulomatosis and microscopic polyarteritis? J R Coll Physicians Lond 1990;24:284–288.

    PubMed  CAS  Google Scholar 

  71. Watts RA, Scott DG, Lane SE. Epidemiology of Wegener’s granulomatosis, microscopic polyangiitis, and Churg-Strauss syndrome. Cleve Clin J Med 2002;69(Suppl 2):SII84–SII86.

    PubMed  Google Scholar 

  72. Watts RA, Carruthers DM, Scott DG. Epidemiology of systemic vasculitis: changing incidence or definition? Semin Arthritis Rheum 1995;25:28–34.

    PubMed  CAS  Google Scholar 

  73. Gregorini G, Tira P, Frizza J, et al. ANCA-associated diseases and silica exposure. Clin Rev Allergy Immunol 1997;15:21–40.

    PubMed  CAS  Google Scholar 

  74. Nuyts GD, Van Vlem E, De Vos A, et al. Wegener granulomatosis is associated to exposure to silicon compounds: a case-control study. Nephrol Dial Transplant 1995;10:1162–1165.

    PubMed  CAS  Google Scholar 

  75. Hogan SL, Satterly KK, Dooley MA, Nachman PH, Jennette JC, Falk RJ. Silica exposure in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and lupus nephritis. J Am Soc Nephrol 2001;12:134–142.

    PubMed  CAS  Google Scholar 

  76. Stratta P, Canavese C, Messuerotti A, Fenoglio I, Fubini B. Silica and renal diseases: no longer a problem in the 21st century? J Nephrol 2001;14:228–247.

    PubMed  CAS  Google Scholar 

  77. ten Holder SM, Joy MS, Falk RJ. Cutaneous and systemic manifestations of drug-induced vasculitis. Ann Pharmacother 2002;36:130–147.

    PubMed  Google Scholar 

  78. Stegeman CA, Tervaert JW, Sluiter WJ, Manson WL, de Jong PE, Kallenberg CG. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann Intern Med 1994;120:12–17.

    PubMed  CAS  Google Scholar 

  79. Reinhold-Keller E, De Groot K, Rudert H, Nolle B, Heller M, Gross WL. Response to trimethoprim/sulfamethoxazole in Wegener’s granulomatosis depends on the phase of disease. QJM 1996;89:15–23.

    PubMed  CAS  Google Scholar 

  80. Stegeman CA, Tervaert JW, de Jong PE, Kallenberg CG. Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener’s granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N Engl J Med 1996;335:16–20.

    PubMed  CAS  Google Scholar 

  81. Tervaert JW, Popa ER, Bos NA. The role of superantigens in vasculitis. Curr Opin Rheumatol 1999;11:24–33.

    PubMed  CAS  Google Scholar 

  82. Friedman SM, Tumang JR, Crow MK. Microbial superantigens as etiopathogenic agents in autoimmunity. Rheum Dis Clin North Am 1993;19:207–222.

    PubMed  CAS  Google Scholar 

  83. Falk RJ, Hogan S, Carey TS, Jennette JC. Clinical course of anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and systemic vasculitis. The Glomerular Disease Collaborative Network. Ann Intern Med 1990;113:656–663.

    PubMed  CAS  Google Scholar 

  84. Pusey CD, Gaskin G. Disease associations with anti-neutrophil cytoplasmic antibodies. Adv Exp Med Biol 1993;336:145–155.

    PubMed  CAS  Google Scholar 

  85. Hagen EC, Ballieux BE, van Es LA, Daha MR, van der Woude FJ. Antineutrophil cytoplasmic autoantibodies: a review of the antigens involved, the assays, and the clinical and possible pathogenetic consequences. Blood 1993;81:1996–2002.

    PubMed  CAS  Google Scholar 

  86. Niles JL, Pan GL, Collins AB, et al. Antigen-specific radioimmunoassays for anti-neutrophil cytoplasmic antibodies in the diagnosis of rapidly progressive glomerulonephritis. J Am Soc Nephrol 1991;2:27–36.

    PubMed  CAS  Google Scholar 

  87. Falk RJ, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 1988;318:1651–1657.

    PubMed  CAS  Google Scholar 

  88. Falk RJ, Terrell RS, Charles LA, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci USA 1990;87:4115–4119.

    PubMed  CAS  Google Scholar 

  89. Charles LA, Caldas ML, Falk RJ, Terrell RS, Jennette JC. Antibodies against granule proteins activate neutrophils in vitro. J Leukoc Biol 1991 50:539–546.

    PubMed  CAS  Google Scholar 

  90. Brouwer E, Huitema MG, Mulder AH, et al. Neutrophil activation in vitro and in vivo in Wegener’s granulomatosis. Kidney Int 1994;45:1120–1131.

    PubMed  CAS  Google Scholar 

  91. Porges AJ, Redecha PB, Kimberly WT, Csernok E, Gross WL, Kimberly RP. Anti-neutrophil cytoplasmic antibodies engage and activate human neutrophils via Fc gamma Rlla. J Immunol 1994;153:1271–1280.

    PubMed  CAS  Google Scholar 

  92. Mulder AH, Heeringa P, Brouwer E, Limburg PC, Kallenberg CG. Activation of granulocytes by anti-neutrophil cytoplasmic antibodies (ANCA): a Fc gamma Rll-dependent process. Clin Exp Immunol 1994;98:270–278.

    PubMed  CAS  Google Scholar 

  93. Savage CO, Pottinger BE, Gaskin G, Pusey CD, Pearson JD. Autoantibodies developing to myeloperoxidase and proteinase 3 in systemic vasculitis stimulate neutrophil cytotoxicity toward cultured endothelial cells. Am J Pathol 1992;141:335–342.

    PubMed  CAS  Google Scholar 

  94. Ewert BH, Jennette JC, Falk RJ. Anti-myeloperoxidase antibodies stimulate neutrophils to damage human endothelial cells. Kidney Int 1992;41:375–383.

    PubMed  CAS  Google Scholar 

  95. Brouwer E, Huitema MG, Klok PA, et al. Antimyeloperoxidase-associated proliferative glomerulonephritis: an animal model. J Exp Med 1993;177:905–914.

    PubMed  CAS  Google Scholar 

  96. Yang JJ, Jennette JC, Falk RJ. Immune complex glomerulonephritis is induced in rats immunized with heterologous myeloperoxidase. Clin Exp Immunol 1994;97:466–473.

    PubMed  CAS  Google Scholar 

  97. Kocher M, Edberg JC, Fleit HB, Kimberly RP. Antineutrophil cytoplasmic antibodies preferentially engage Fc gammaRIHb on human neutrophils. J Immunol 1998;161:6909–6914.

    PubMed  CAS  Google Scholar 

  98. Kettritz R, Jennette JC, Falk RJ. Crosslinking of ANCA-antigens stimulates superoxide release by human neutrophils. J Am Soc Nephrol 1997;8:386–394.

    PubMed  CAS  Google Scholar 

  99. Heeringa P, Brouwer E, Tervaert JW, Weening JJ, Kallenberg CG. Animal models of anti-neutrophil cytoplasmic antibody associated vasculitis. Kidney Int 1998;53:253–263.

    PubMed  CAS  Google Scholar 

  100. Yang JJ, Kettritz R, Falk RJ, Jennette JC, Gaido ML. Apoptosis of endothelial cells induced by the neutrophil serine proteases proteinase 3 and elastase. Am J Pathol 1996;149:1617–1626.

    PubMed  CAS  Google Scholar 

  101. Esnault VL, Mathieson PW, Thiru S, Oliveira DB, Martin-Lockwood C. Autoantibodies to myeloperoxidase in brown Norway rats treated with mercuric chloride. Lab Invest 1992;67:114–120.

    PubMed  CAS  Google Scholar 

  102. Kinjoh K, Kyogoku M, Good RA. Genetic selection for crescent formation yields mouse strain with rapidly progressive glomerulonephritis and small vessel vasculitis. Proc Natl Acad Sci USA 1993;90:3413–3417.

    PubMed  CAS  Google Scholar 

  103. Kobayashi K, Shibata T, Sugisaki T. Aggravation of rat nephrotoxic serum nephritis by anti-myeloperoxidase antibodies. Kidney Int 1995;47:454–463.

    PubMed  CAS  Google Scholar 

  104. Heeringa P, Brouwer E, Klok PA, et al. Autoantibodies to myeloperoxidase aggravate mild anti-glomerular-basement-membrane-mediated glomerular injury in the rat. Am J Pathol 1996;149:1695–1706.

    PubMed  CAS  Google Scholar 

  105. Jennette JC, Xiao H, Heeringa P, et al. Induction of pauci-immune necrotizing and crescentic glomerulonephritis (NCGN) by intravenous administration of anti-myeloperoxidase (anti-MPO) antibodies to recombinase activating gene-2 deficient (RAG-2-/-) mice. Cleve Clin J Med 2002;69(Suppl 2);SII–13.

    Google Scholar 

  106. Xiao H, Heeringa P, Liu Z, et al. Induction of necrotizing and crescentic glomerulonephritis (NCGN) and small-vessel vasculitis (SVV) by adoptive transfer of anti-myeloperoxidase (anti-MPO) lymphocytes into recombinase activating gene-2 deficient (RAG-2-/-) mice. Cleve Clin J Med 2002;69(Suppl 2);SII–13.

    Google Scholar 

  107. Jennette JC, Falk RJ. Pathogenesis of the vascular and glomerular damage in ANCA-positive vasculitis. Nephrol Dial Transplant 1998;13(Suppl l):16–20.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Falk, R.J., Jennette, J.C. (2005). Vasculitis. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Cardiology. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-878-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-878-6_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-201-8

  • Online ISBN: 978-1-59259-878-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics