Skip to main content

Coronary Artery Development

  • Chapter
Principles of Molecular Cardiology

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 900 Accesses

Abstract

Lineage mapping studies have shown an extracardiac origin for the coronary vasculature. Mesothelial cells arising from septum transversum mesenchyme contact the developing myocardium via a transient structure called the proepicardial organ (PEO). Proepicardial cells first extend over the surface of the heart to form the epicardial layer. Then, a subset of epicardial cells transform from epithelial to mesenchymal cells, migrate into the myocardial wall, and serve as progenitor cells for formation of the coronary vessels. Epicardial-derived mesenchymal cells (EPDCs) produce soluble factors that stimulate proliferation of myocardial cells in the compact zone of ventricular myocardium. Genetic studies have begun to identify the molecules that control and coordinate this complex process that ensures adequate perfusion of the myocardium during development of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tomanek R. Formation of the coronary vasculature: a brief review. Cardiovasc Res 1996;31:E46–E51.

    Article  PubMed  Google Scholar 

  2. Mikawa T, Gourdie R. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 1996;174:221–232.

    Article  PubMed  CAS  Google Scholar 

  3. Gittenberger-de Groot A, Vrancken Peeters M, Mentink M, Gourdie R, Poelmann R. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 1998;82:1043–1052.

    PubMed  CAS  Google Scholar 

  4. Manner J, Perez-Pomares J, Macias D, Munoz-Chapuli R. The origin, formation and developmental significance of the epicardium: A review. Cells Tissues Organs 2001;169:89–103.

    Article  PubMed  CAS  Google Scholar 

  5. Manasek F. Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. J Morphol 1968; 125:329–365.

    Article  PubMed  CAS  Google Scholar 

  6. Viragh S, Challice C. The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 1981;201:157–168.

    Article  PubMed  CAS  Google Scholar 

  7. Hiruma T, Hirakow R. Epicardial formation in embryonic chick heart. Am J Anat 1989;184:129–138.

    Article  PubMed  CAS  Google Scholar 

  8. Viragh S, Challice C. Origin and differentiation of cardiac muscle cells in the mouse. J Ultrastruct Res 1973;42:1–24.

    Article  PubMed  CAS  Google Scholar 

  9. Ho E, Shimada Y. Formation of the epicardium studied with the scanning electron microscope. Dev Biol 1978;66:579–585.

    Article  PubMed  CAS  Google Scholar 

  10. Manner J. The development of pericardial villi in the chick embryo. Anat Embryol 1992;186:379–385.

    Article  PubMed  CAS  Google Scholar 

  11. Komiyama M, Ito K, Shimada Y. Origin and development of the epicardium in the mouse embryo. Anat Embryol 1987;176:183–189.

    Article  PubMed  CAS  Google Scholar 

  12. Gittenberger-de Groot A, Vrancken-Peeters M, Bergwerff M, Mentink M, Poelmann R. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res 2000;87:969–971.

    PubMed  CAS  Google Scholar 

  13. Dettman R, Denetclaw W, Ordahl C, Bristow J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 1998;193:169–181.

    Article  PubMed  CAS  Google Scholar 

  14. Perez-Pomares J, Macias D, Garcia-Garrido L, Munoz-Chapuli R. The origin of the subepicardial mesenchyme in the avian embryo: An immunohistochemical and quail-chick chimera study. Dev Biol 1998;200:57–68.

    Article  PubMed  CAS  Google Scholar 

  15. Tevosian S, Deconinck A, Tanaka M, et al. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 2000;101:729–739.

    Article  PubMed  CAS  Google Scholar 

  16. Crispino J, Lodish M, Thurberg B, et al. Proper coronary vascular development and heart morphogenesis depend on interaction of GATA4 with FOG cofactors. Genes Dev 2001;15:839–844.

    Article  PubMed  CAS  Google Scholar 

  17. Perez-Pomares J, Phelps A, Sedmerova M, et al. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: A model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol 2002;247:307–326.

    Article  PubMed  CAS  Google Scholar 

  18. Vrancken Peeters M, Gittenberger-de GA, Mentink M, Hungerford J, Little C, Poelmann R. The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev Dyn 1997;208:338–348.

    Article  PubMed  CAS  Google Scholar 

  19. Bogers A, Gittenberger-de Groot A, Poelmann R, Peault B, Huysmans H. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol 1989;180:437–441.

    Article  PubMed  CAS  Google Scholar 

  20. Waldo K, Willner W, Kirby M. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am J Anat 1990;188:109–120.

    Article  PubMed  CAS  Google Scholar 

  21. Hood L, Rosenquist T. Coronary artery development in the chick: Origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat Rec 1992;234:291–300.

    Article  PubMed  CAS  Google Scholar 

  22. Poelmann R, Gittenberger-de Groot A, Mentink M, Bokenkamp R, Hogers B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 1993;73:559–568.

    PubMed  CAS  Google Scholar 

  23. Mikawa T, Fishman D. Retroviral analysis of cardiac morphogenesis: Discontinuous formation of coronary vessels. Proc Natl Acad Sci USA 1992;89:9504–9508.

    Article  PubMed  CAS  Google Scholar 

  24. Viragh S, Gittenberger-de GA, Poelmann R, Kalman F. Early development of quail heart epicardium and associated vascular and glandular structures. Anat Embryol 1993;188:381–393.

    Article  PubMed  CAS  Google Scholar 

  25. Hutchins G, Kessler-Hanna A, Moore G. Development of the coronary arteries in the embryonic human heart. Circulation 1988;77:1250–1257.

    PubMed  CAS  Google Scholar 

  26. Hirakow R. Epicardial formation in staged human embryos. Kaibogaku Zasshi 1992;67:616–622.

    PubMed  CAS  Google Scholar 

  27. Cormier F, Dieterlen-Lievre F. Long-term cultures of chicken bone marrow cells. Exp Cell Res 1990;190:113–117.

    Article  PubMed  CAS  Google Scholar 

  28. Munoz-Chapuli R, Perez-Pomares J, Macias D, Garcia-Garrido L, Carmona R, Gonzalez M. Differentiation of hemangioblasts from embryonic mesothelial cells? A model on the origin of the vertebrate cardiovascular system. Differentiation 1999;64:133–141.

    PubMed  CAS  Google Scholar 

  29. Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cardiac neural crest. Development 2000;127:1607–1616.

    PubMed  CAS  Google Scholar 

  30. Echelard Y, Vassileva G, McMahon A. Cis-acting regulatory sequences governing Wnt-1 expression in the developing mouse CNS. Development 1994;120:2213–2224.

    PubMed  CAS  Google Scholar 

  31. Wrenn R, Raeuber C, Herman L, Walton W, Rosenquist T. Transforming growth factor-beta: signal transduction via protein kinase C in cultured embryonic vascular smooth muscle cells. In Vitro Cell Dev Biol 1993;29A:73–78.

    Article  PubMed  CAS  Google Scholar 

  32. Topouzis S, Majesky M. Smooth muscle lineage diversity in the chick embryo: Two types of aortic SMC differ in growth and receptor-mediated signaling responses to transforming growth factor-beta. Dev Biol 1996;178:430–445.

    Article  CAS  Google Scholar 

  33. Gadson PJ, Dalton M, Patterson E, et al. Differential response of mesoderm-and neural crest-derived smooth muscle to TGF-betal: regulation of c-myb and alphal (I) procollagen genes. Exp Cell Res 1997;230:169–180.

    Article  PubMed  CAS  Google Scholar 

  34. Yang J, Rayburn H, Hynes R. Cell adhesion events mediated by α4 integrins are essential in placental and cardiac development. Development 1995;121:549–560.

    PubMed  CAS  Google Scholar 

  35. Sengubusch J, He W, Pinco K, Yang J. Dual functions of α4β1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol 2002; 157:873–882.

    Article  CAS  Google Scholar 

  36. Kwee L, Baldwin H, Shen H, et al. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 1995; 121:489–503.

    PubMed  CAS  Google Scholar 

  37. Gurtner G, Davis V, Li H, McCoy M, Sharpe A, Cybulsky M. Targeted disruption of the murine VCAM1 gene: essential role of VCAM-1 in chorioallantoic fusion and placentation. Genes Dev 1995;9:1–14.

    Article  PubMed  CAS  Google Scholar 

  38. Armstrong J, Pritchard-Jones K, Bickmore W, Hastie N, Bard J. The expression of the Wilms’ tumour gene, WT1, in the developing mammalian embryo. Mech Dev 1993,40:85–97.

    Article  PubMed  CAS  Google Scholar 

  39. Hastie N. Life, sex, and WT1 isoforms—three amino acids can make all the difference. Cell 2001;106:391–394.

    Article  PubMed  CAS  Google Scholar 

  40. Kriedberg J, Sariola H, Loring J, et al. WT-1 is required for early kidney development. Cell 1993;74:679–691.

    Article  Google Scholar 

  41. Moore A, Mclnnes L, Kreidberg J, Hastie N, Schedl A. YAC complementation shows a requirement for Wtl in the development of epicardium, adrenal gland, and throughout nephrogenesis. Development 1999;126:1845–1857.

    PubMed  CAS  Google Scholar 

  42. Simon M. Gotta have GATA. Nat Genet 1995;11:9–11.

    Article  PubMed  CAS  Google Scholar 

  43. Lu J, McKinsey T, Xu H, Wang D, Richardson J, Olson E. FOG-2, a heart-and brain-enriched cofactor for GATA transcription factors. Mol Cell Biol 1999;19:4495–4502.

    PubMed  CAS  Google Scholar 

  44. Cantor A, Orkin S. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 2002;21: 3368–3376.

    Article  PubMed  CAS  Google Scholar 

  45. Tevosian S, Deconinck A, Cantor A, et al. Fog2: A novel GATA-family cofactor related to multitype zinc-finger proteins Friend of GATA and U-shaped. Proc Natl Acad Sci U S A 1999;96:950–955.

    Article  PubMed  CAS  Google Scholar 

  46. Svensson E, Tufts R, Polk C, Leiden J. Molecular cloning of FOG-2: A modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl Acad Sci USA 1999;96:956–961.

    Article  PubMed  CAS  Google Scholar 

  47. Svensson E, Huggins G, Lin H, et al. A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2. Nature Genet 2000;25:353–356.

    Article  PubMed  CAS  Google Scholar 

  48. Huggins G, Bacani C, Boltax J, Aikawa R, Leiden J. Friend of GATA 2 physically interacts with chicken ovalbumin upstream promoter-TF2 (COUP-TF2) and COUP-TF3 and represses COUP-TF2-dependent activation of the atrial natriuretic factor promoter. J Biol Chem 2001;276:28029–28036.

    Article  PubMed  CAS  Google Scholar 

  49. Eichele G. A vital role for vitamin A. NatGenet 1999;21:346–347.

    CAS  Google Scholar 

  50. Sucov H, Dyson E, Gumeringer C, Price J, Chien K, Evans R. RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 1994;8:1007–1018.

    Article  PubMed  CAS  Google Scholar 

  51. Dyson E, Sucov H, Kubalak S, et al. Atrial-like phenotype is associated with embryonic ventricular failure in RXRα-/-mice. Proc Natl Acad Sci USA 1995;92:7386–7390.

    Article  PubMed  CAS  Google Scholar 

  52. Chen J, Kubalak S, Chien K. Ventricular muscle-restricted targeting of the RXRα gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development 1998; 125:1943–1949.

    PubMed  CAS  Google Scholar 

  53. Zhao D, McCaffery P, Ivins K, et al. Molecular identification of a major retinoic-acid-synthesizing enzyme, a retinaldehyde-specific dehydrogenase. Eur J Biochem 1996;240:15–22.

    Article  PubMed  CAS  Google Scholar 

  54. Xavier-Neto J, Shapiro M, Houghton L, Rosenthal N. Sequential programs of retinoic acid synthesis in the myocardial and epicardial layers of the developing avian heart. Dev Biol 2000;219:129–141.

    Article  PubMed  CAS  Google Scholar 

  55. Niederreither K, Fraulob V, Gamier J, Chambon P, Dolle P. Differential expression of retinoic acid-synthesizing (RALDH) enzymes during fetal development and organ differentiation in the mouse. Mech Dev 2002;110:165–171.

    Article  PubMed  CAS  Google Scholar 

  56. Niederreither K, Subbarayan V, Dolle P, Chambon P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 1999;21:444–448.

    Article  PubMed  CAS  Google Scholar 

  57. Niederreither K, Vermot J, Messaddeq N, Schuhbaur B, Chambon P, Dolle P. Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse. Development 2001;128:1019–1031.

    PubMed  CAS  Google Scholar 

  58. Krantz S. Erythropoietin. Blood 1991;77:419–434.

    PubMed  CAS  Google Scholar 

  59. Digicaylioglu M, Bichet S, Marti H, et al. Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc Natl Acad Sci USA 1995;92:3717–3720.

    Article  PubMed  CAS  Google Scholar 

  60. Lin C, Lim S, D’Agati V, Constantini F. Differential effects of an erythropoietin receptor gene disruption on primitive and definitive erythropoiesis. Genes Dev 1996;10:154–164.

    Article  PubMed  CAS  Google Scholar 

  61. Wu H, Lee S, Gao J, Liu X, Iruela-Arispe M. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 1999;126:3597–3605.

    PubMed  CAS  Google Scholar 

  62. Asahara T, Chen D, Takahashi T, et al. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 1998;83:233–240.

    PubMed  CAS  Google Scholar 

  63. Artavanis-Tsokonas S, Rand M, Lake R. Notch signaling: cell fate and signal integration in development. Science 1999; 284:770–776.

    Article  Google Scholar 

  64. Conlon R, Reaume A, Rossant J. Notch 1 is required for the coordinate segmentation of somites. Development 1995;121: 1533–1545.

    PubMed  CAS  Google Scholar 

  65. Krebs LT, Xue Y, Norton CR, et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev 2000;14:1343–1352.

    PubMed  CAS  Google Scholar 

  66. McCright B, Gao X, Shen L, et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 2001;128: 491–502.

    PubMed  CAS  Google Scholar 

  67. Lawson N, Scheer N, Pham V, et al. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 2001;128:3675–3683.

    PubMed  CAS  Google Scholar 

  68. Zimrin AB PM, McMahon GA, Nguyen F, Montesano R, Maciag T. An antisense oligonucleotide to the notch ligand jagged enhances fibroblast growth factor-induced angiogenesis in vitro. J Biol Chem 1996;271:32499–32502.

    Article  PubMed  CAS  Google Scholar 

  69. Heldin C, Westermark B. Mechanisms of action and in vivo role of platelet-derived growth factor. Physiol Rev 1999;79: 1283–1316.

    PubMed  CAS  Google Scholar 

  70. Benjamin L, Hemo I, Keshet E. A plasticity window for blood vessel remodeling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 1998;125:1591–1598.

    PubMed  CAS  Google Scholar 

  71. Lindahl P, Johansson B, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997;277:242–245.

    Article  PubMed  CAS  Google Scholar 

  72. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999;126: 3047–3055.

    PubMed  CAS  Google Scholar 

  73. Levi-Montalcini R, Booker B. Destruction of the sympathetic ganglia in mammals by an antiserum to the nerve growth factor. Proc Natl Acad Sci USA 1960;46:384–390.

    Article  PubMed  CAS  Google Scholar 

  74. Donovan M, Lin M, Weign P, et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 2000;127:4531–4540.

    PubMed  CAS  Google Scholar 

  75. Ernfors P, Lee K, Jaenisch R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 1994; 368:147–150.

    Article  PubMed  CAS  Google Scholar 

  76. Senger D, Galli S, Dvorak A, Perruzzi C, Harvey V, Dvorak H. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219: 983–985.

    Article  PubMed  CAS  Google Scholar 

  77. Ferrara N, Henzel W. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989;161: 851–855.

    Article  PubMed  CAS  Google Scholar 

  78. Connolly D, Heuvelman D, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 1989;84:1470–1478.

    Article  PubMed  CAS  Google Scholar 

  79. Carmeliet P, Ng Y-S, Nuyens D, et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 1999;5:495–502.

    Article  PubMed  CAS  Google Scholar 

  80. Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996;380:435–439.

    Article  PubMed  CAS  Google Scholar 

  81. Soker S, Takashima S, Miao H, Neufeld G, Klagsbrun M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998;92:735–745.

    Article  PubMed  CAS  Google Scholar 

  82. Miao H, Soker S, Feiner L, Alonso J, Raper J, Klagsbrun M. Neuropilin-1 mediates collapsin-1/semiohorin III inhibition of endothelial cell motility: functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol 1999;146:233–242.

    PubMed  CAS  Google Scholar 

  83. Kitsukawa T, Shimono A, Kawakami A, Kondoh H, Fujisawa H. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development 1995;121:4309–4318.

    PubMed  CAS  Google Scholar 

  84. Bellomo D, Headrick J, Silins G, et al. Mice lacking the vascular endothelial growth factor-B gene (vegfb) have smaller hearts, dysfunctional coronary vasculature and impaired recovery from cardiac ischemia. Circ Res 2000;86:e29–e35.

    PubMed  CAS  Google Scholar 

  85. Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev 2002;82:673–700.

    PubMed  CAS  Google Scholar 

  86. Eliska O, Eliskova M, Miller A. The morphology of the lymphatics of the coronary arteries in the dog. Lymphology 1999; 32:45–57.

    PubMed  CAS  Google Scholar 

  87. Sacchi G, Weber E, Agliano M, Cavina N, Comparini L. Lymphatic vessels of the human heart: precollectors and collecting vessels. A morpho-structural study. J Submicrosc Cytol Pathol 1999;31:515–525.

    PubMed  CAS  Google Scholar 

  88. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997;276:1423–1425.

    Article  PubMed  CAS  Google Scholar 

  89. Cao Y, Linden P, Farnebo J, et al. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Natl Acad Sci USA 1998;95:14389–14394.

    Article  PubMed  CAS  Google Scholar 

  90. Veikkola T, Jussila L, Makinen T, et al. Signaling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001;20: 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  91. Dumont D, Jussila L, Taipale J, et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998;282:946–949.

    Article  PubMed  CAS  Google Scholar 

  92. Miyamoto M, McClure D, Schertel E, et al. Effects of hypoproteinemia-induced myocardial edema on left ventricular function. Am J Physiol 1998;274:H937–H944.

    PubMed  CAS  Google Scholar 

  93. Angelini P, Villason S, Chan AJ, Diez J. Normal and anomalous coronary arteries in humans. In: Angelini P, ed. Coronary Artery Anomalies. Philadelphia, Pa: Lippincott, Williams & Wilkins; 1999:27–79.

    Google Scholar 

  94. Angelini P. Embryology and congenital heart disease. Tex Heart Inst J 1995;22:1–12.

    PubMed  CAS  Google Scholar 

  95. Blake H, Manion W, Mattingly T. Coronary artery anomalies. Circulation 1964;30:927–936.

    PubMed  CAS  Google Scholar 

  96. Click R, Holmes DJ, Vlietstra R, Kosinski A, Kronmal R. Anomalous coronary arteries: location, degree of atherosclerosis and effect on survival-a report from the Coronary Artery Surgery Study. J Am Coll Cardiol 1990;15:507–508.

    Google Scholar 

  97. Hillestad L, Eie H. Single coronary artery. Acta Med Scand 1971;189:409–413.

    Article  PubMed  CAS  Google Scholar 

  98. Shirani J, Roberts W. Solitary coronary ostium in the aorta in the absence of other major congenital cardiovascular anomalies. J Am Coll Cardiol 1993;21:137–143.

    Article  PubMed  CAS  Google Scholar 

  99. Fortuin N, Roberts W. Congenital atresia of the left main coronary artery. Am J Med 1971;50:385–389.

    Article  PubMed  CAS  Google Scholar 

  100. Harada K, Ito T, Suzuki Y. Congenital atresia of left coronary ostium. Eur J Pediatr 1993; 152:539–540.

    Article  PubMed  CAS  Google Scholar 

  101. Seabra-Gomes R, Somerville J, Ross D, Emanuel R, Parker D, Wong M. Congenital coronary artery aneurysms. Br Heart J 1974;36:329–335.

    Article  PubMed  CAS  Google Scholar 

  102. Drexler H, Zeiher A, Wollschlager H, Meinertz T, Just H, Bonzel T. Flow-dependent coronary artery dilatation in humans. Circulation 1989;80:466–474.

    PubMed  CAS  Google Scholar 

  103. Reig J, Ruiz de Miguel C, Moragas A. Morphometric analysis of myocardial bridges in children with ventricular hypertrophy. Pediatr Cardiol 1990;11:186–190.

    Article  PubMed  CAS  Google Scholar 

  104. Kolodziej A, Lobo F, Walley V. Intra-arterial course of the right coronary artery and its branches. Can J Cardiol 1994;10:263–267.

    PubMed  CAS  Google Scholar 

  105. Angelini P, Velasco J, Flamm S. Coronary anomalies: Incidence, pathophysiology and clinical relevance. Circulation 2002;105:2449–2454.

    Article  PubMed  Google Scholar 

  106. Williams R. The Athlete and Heart Disease: Diagnosis, Evaluation and Management. In: Williams R, ed. Philadelphia: Lippincott, Williams & Wilkins, 1998.

    Google Scholar 

  107. Gittenberger de-Groot A, Powlmann R, Bartelings M. Embryology of congenital heart disease. In: Braunwald E, ed. Atlas of Heart Diseases: Congenital Heart Disease. Philadelphia, Pa: Current Medicine;1997:3.1–3.10.

    Google Scholar 

  108. Velican D, Velican C. Intimal thickening in developing coronary arteries and its relevance to atherosclerotic involvement. Atherosclerosis 1976;23:345–355.

    Article  Google Scholar 

  109. Ikari Y, McManus B, Kenyon J, Schwartz S. Neonatal intima formation in the human coronary artery. Arterioscler Thromb Vase Biol 1999;19:2036–2040.

    CAS  Google Scholar 

  110. Velican C, Velican D. Some particular aspects of the microbar-chitecture of human coronary arteries. Atherosclerosis 1979; 33:191–200.

    Article  PubMed  CAS  Google Scholar 

  111. Stary H. Macrophage foam cells in the coronary artery intima of human infants. Ann N Y Acad Sci 1985;454:5–8.

    Article  PubMed  CAS  Google Scholar 

  112. Neufeld H, Wagnevoort C, Edwards J. Coronary arteries in fetuses, infants, juveniles and young adults. Lab Invest 1962;11:837–844.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Majesky, M.W. (2005). Coronary Artery Development. In: Runge, M.S., Patterson, C. (eds) Principles of Molecular Cardiology. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59259-878-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-878-6_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-201-8

  • Online ISBN: 978-1-59259-878-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics