Skip to main content

Glutamate and Schizophrenia and the N-Methyl-d-Aspartate Receptor Hypofunction Hypothesis

  • Chapter
Book cover Dopamine and Glutamate in Psychiatric Disorders

Abstract

Schizophrenic psychoses are severe mental disorders over the course of which hallucinations, changed perception, cognitive disturbances, as well as social withdrawal and lack of drive may occur. There is an increased familial incidence of schizophrenia. Whereas the risk of disease is around 1% in the average population, it increases to over 40% in children of two schizophrenic parents (1). In the meantime, numerous family, twin, and adoption studies have demonstrated that genetic factors make a major contribution to the etiology of schizophrenic psychoses (2,3). Despite these genetically related influences on the development of endogenous psychoses, the genesis of this disease has yet to be explained. Thus, although genetic factors appear to have been confirmed for the etiopathogenesis of schizophrenic psychoses, the results of other research work have been all the more heterogeneous over the past years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baron M, Grün R, Rainer JD. A family study of schizophrenic and normal control probands: implications for the spectrum concept of schizophrenia. Am J Psychiatry 1985; 142: 447–455.

    CAS  PubMed  Google Scholar 

  2. Gottesman JJ, Shields H. Schizophrenia, the Epigenetic Puzzle. Cambridge: Cambridge University Press, 1982.

    Google Scholar 

  3. Heston LL. Psychiatric disorders in faster home reared children of schizophrenic mothers. Br J Psychiatry 1966; 112:819–827.

    Article  CAS  PubMed  Google Scholar 

  4. Carlsson A, Lindquist M. Effect of chlorpromazine and haloperidol on the formation of 3-methoxytyramine and normetanophrine in mouse brain. Acta Pharmacol 1963; 20:140–144.

    CAS  Google Scholar 

  5. Bandelow B, Bleich S, Kropp S. Handbuch Psychopharmaka. Göttingen, Germany: Hogrefe-Verlag, 2000.

    Google Scholar 

  6. Owen F, Cross AJ, Crow TJ, Longden A, Poulter M, Riley GJ. Increased dopamine-receptor sensitivity in schizophrenia. Lancet 1978; 2(8083):223–226.

    Article  CAS  PubMed  Google Scholar 

  7. Seeman P, Guan HC, Van Tol HH. Dopamine D4 receptors elevated in schizophrenia. Nature 1993; 365(6445):441–445.

    Article  CAS  PubMed  Google Scholar 

  8. Farde L, Wiesel FA, Stone-Elander S, et al. D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride. Arch Gen Psychiatry 1990; 47:213–219.

    CAS  PubMed  Google Scholar 

  9. Roberts DA, Balderson D, Pickering-Brown SM, Deakin JF, Owen F. The relative abundance of dopamine D4 receptor mRNA in post mortem brains of schizophrenics and controls. Schizophr Res 1996; 20:171–174.

    Article  CAS  PubMed  Google Scholar 

  10. Kornhuber J, Riederer P, Reynolds GP, Beckmann H, Jellinger K, Gabriel E. 3H-Spiperone binding sites in postmortem brains from schizophrenic patients: relationship to neuroleptic drug treatment, abnormal movements, and positive symptoms. J Neural Transm 1989; 75:1–10.

    Article  CAS  PubMed  Google Scholar 

  11. Terenius L, Wahlström A, Lindström L, Widerlov E. Increased CSF levels of endorphins in chronic psychoses. Neurosci Lett 1976; 3:157–162.

    Article  CAS  PubMed  Google Scholar 

  12. Feldberg W. Possible association of schizophrenia with a disturbance in prostaglandin metabolism. A physiological hypothesis. Psychol Med 1976; 6:359–369.

    Article  CAS  PubMed  Google Scholar 

  13. Horrobin DF. Schizophrenia as a prostaglandin deficiency disease. Lancet 1977; I: 936–937.

    Article  Google Scholar 

  14. Crow TJ. A re-evaluation of the viral hypothesis: is psychosis the result of retroviral integration at a side close to the cerebral dominance gene? Br J Psychiatry 1984; 145:243–253.

    Article  CAS  PubMed  Google Scholar 

  15. Reynolds GP. Beyond the dopamine hypothesis. The neurochemical pathology of schizophrenia. Br J Psychiatry 1989; 155: 305–316.

    CAS  PubMed  Google Scholar 

  16. Lieberman JA, Koreen AR. Neurochemistry and neuroendocrinology of schizophrenia: a selective review. Schizophr Bull 1993; 19: 371–429.

    CAS  PubMed  Google Scholar 

  17. Kornhuber J, Weller M. Aktueller Stand der biochemischen Hypothesen zur Pathogenese der Schizophrenien. Nervenarzt 1994; 65: 741–754.

    CAS  PubMed  Google Scholar 

  18. Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 1980; 20: 379–382.

    Article  CAS  PubMed  Google Scholar 

  19. Kornhuber HH, Kornhuber J, Kim JS, Kornhuber ME. Zur biochemischen Theorie der Schizophrenie. Nervenarzt 1984; 55: 602–606.

    CAS  PubMed  Google Scholar 

  20. Kornhuber J, Thome J, Riederer P. Modellvorstellungen zur Ätiopathogenese der Schizophrenien. In: Riederer P, Laux G, Pöldinger W, eds. Neuro-Psychopharmaka, Bd. 4, 2._Auflage. Wien: Springer Verlag, 1998.

    Google Scholar 

  21. Kornhuber ME, Kornhuber J, Zettlmeissl H, Kornhuber HH. Phencyclidin und das glutamaterge System. In: Keupp W, ed. Biologische Psychiatrie, Forschungsergebnisse. Berlin: Springer Verlag, 1986: 176–180.

    Google Scholar 

  22. Carlsson A, Waters N, Hansson LO. Neurotransmitter aberrations in schizophrenia: new findings. In: Fog R, Gerlach J, Hemmingsen R, eds. Schizophrenia. An Integrated View. Copenhagen: Munksgaard, 1995: 332–340.

    Google Scholar 

  23. Svensson A, Carlsson ML, Carlsson A. Interaction between glutamatergic and dopaminergic tone in the nucleus accumbens of mice: evidence for a dual glutamatergic function with respect to psychomotor control. J Neural Transm 1992; 88: 235–240.

    Article  CAS  Google Scholar 

  24. Tsai G, Passani LA, Slusher BS, et al. Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch Gen Psychiatry 1995; 52: 829–836.

    CAS  PubMed  Google Scholar 

  25. Korpi ER, Kaufmann CA, Marnela KM, Weinberger DR. Cerebrospinal fluid amino acid concentrations in chronic schizophrenia. Psychiatry Res 1987; 20: 337–345.

    Article  CAS  PubMed  Google Scholar 

  26. Altamura CA, Mauri MC, Ferrara A, Moro AR, D’Andrea G, Zamberlan F. Plasma and platelet excitatory amino acids in psychiatric disorders. Am J Psychiatry 1993; 150: 1731–1733.

    CAS  PubMed  Google Scholar 

  27. Serval V, Galli T, Cheramy A, Glowinski J, Lavielle S. In vitro and in vivo inhibition of N-acetyl-l-aspartyl-l-glutamate catabolism by N-acylated l-glutamate analogs. Pharmacol Exp Ther 1992; 260: 1093–1100.

    CAS  Google Scholar 

  28. Hashimoto K, Fukushima T, Shimizu E, et al. Decreased serum levels of d-serine in patients with schizophrenia: evidence in support of the N-methyl-d-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 2003; 60: 572–576.

    Article  CAS  PubMed  Google Scholar 

  29. Kornhuber J, Bleich S. Memantin. In: Riederer P, Laux G, Pöldinger W, eds. Neuro-Psychopharmaka. Wien: Springer, 1999: 687–704.

    Google Scholar 

  30. Kornhuber J, Weller M. Psychotogenicity and NMDA receptor antagonism: implications for neuroprotective pharmacotherapy. Biol Psychiatry 1997; 41: 135–144.

    Article  CAS  PubMed  Google Scholar 

  31. Pearlson GD. Psychiatric and medical syndromes with phencyclidine (PCP) abuse. Johns Hopkins Med J 1981; 148: 25–33.

    CAS  PubMed  Google Scholar 

  32. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301–1308.

    CAS  PubMed  Google Scholar 

  33. Aparicio-Legarza MI, Davis B, Hutson PH, Reynolds GP. Increased density of glutamate/N-methyl-d-aspartate receptors in putamen from schizophrenic patients. Neurosci Lett 1998; 241: 43–146.

    Google Scholar 

  34. Gao XM, Sakai K, Roberts RC, Conley RR, Dean B, Tamminga CA. Ionotropic glutamate receptors and expression of N-methyl-d-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 2000; 157: 1141–1149.

    Article  CAS  PubMed  Google Scholar 

  35. Eastwood SL, Burnet PW, Harrison PJ. GluR2 glutamate receptor subunit flip and flop isoforms are decreased in the hippocampal formation in schizophrenia: a reverse transcriptase-polymerase chain reaction (RT-PCR) study. Brain Res Mol Brain Res 1997; 44: 92–98.

    Article  CAS  PubMed  Google Scholar 

  36. Mohn AR, Gainetdinov RR, Caron MG, Koller BH. Mice with reduced NMDA receptor expression display behaviours related to schizophrenia. Cell 1999; 98: 427–436.

    Article  CAS  PubMed  Google Scholar 

  37. Ballard TM, Pauly-Evers M, Higgins GA, et al. Severe impairment of NMDA receptor function in mice carrying targeted point mutations in the glycine binding site results in drug-resistant nonhabituating hyperactivity. J Neurosci 2002; 22: 6713–6723.

    CAS  PubMed  Google Scholar 

  38. Sakimura K, Kutsuwada T, Ito I, et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 1995; 373: 151–155.

    Article  CAS  PubMed  Google Scholar 

  39. Miyamoto Y, Yamada K, Noda Y, Mori H, Mishina M, Nabeshima T. Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilon 1 subunit. J Neurosci 2001; 21: 750–757.

    CAS  PubMed  Google Scholar 

  40. Meador-Woodruff JH, Healy DJ. Glutamate receptor expression in schizophrenic brain. Brain Res Brain Res Rev 2000; 31: 288–294.

    Article  CAS  PubMed  Google Scholar 

  41. Eastwood SL, Kerwin RW, Harrison PJ. Immunoautoradiographic evidence for a loss of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-preferring non-N-methyl-d-aspartate glutamate receptors within the medial temporal lobe in schizophrenia. Biol Psychiatry 1997; 41: 636–643.

    Article  CAS  PubMed  Google Scholar 

  42. Harrison PJ, McLaughlin D, Kerwin RW. Decreased hippocampal expression of a glutamate receptor gene in schizophrenia. Lancet 1991; 337: 450–452.

    Article  CAS  PubMed  Google Scholar 

  43. Kerwin R, Patel S, Meldrum B. Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience 1990; 39: 25–32.

    Article  CAS  PubMed  Google Scholar 

  44. Porter RH, Eastwood SL, Harrison PJ. Distribution of kainate receptor subunit mRNAs in human hippocampus, neocortex and cerebellum, and bilateral reduction of hippocampal GluR6 and KA2 transcripts in schizophrenia. Brain Res 1997; 751: 217–231.

    Article  CAS  PubMed  Google Scholar 

  45. Deakin JF, Slater P, Simpson MD, et al. Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J Neurochem 1989; 52: 1781–1786.

    Article  CAS  PubMed  Google Scholar 

  46. Nishikawa T, Takashima M, Toru M. Increased [3H]kainic acid binding in the prefrontal cortex in schizophrenia. Neurosci Lett 1983; 40: 245–250.

    Article  CAS  PubMed  Google Scholar 

  47. Kornhuber J, Bormann J, Retz W, Hübers M, Riederer P. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 1989; 166: 589–590.

    Article  CAS  PubMed  Google Scholar 

  48. Akbarian S, Sucher NJ, Bradley D, et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J Neurosci 1996; 16: 19–30.

    CAS  PubMed  Google Scholar 

  49. Grimwood S, Slater P, Deakin JF, Hutson PH. NR2B containing NMDA receptors are upregulated in temporal cortex in schizophrenia. Neuroreport 1999; 10: 461–465.

    Article  CAS  PubMed  Google Scholar 

  50. Nudmamud S, Reynolds GP. Increased density of glutamate/N-methyl-d-aspartate receptors in superior temporal cortex in schizophrenia. Neurosci Lett 2001; 304: 9–12.

    Article  CAS  PubMed  Google Scholar 

  51. Breese CR, Freedman R, Leonard SS. Glutamate receptor subtype expression in human postmortem brain tissue from schizophrenics and alcohol abusers. Brain Res 1995; 674: 82–90.

    Article  CAS  PubMed  Google Scholar 

  52. Noga JT, Hyde TM, Herman MM, et al. Glutamate receptors in the postmortem striatum of schizophrenic, suicide, and control brains. Synapse 1997; 27: 168–176.

    Article  CAS  PubMed  Google Scholar 

  53. Sucher NJ, Akbarian S, Chi CL, et al. Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 1995; 15: 6509–6520.

    CAS  PubMed  Google Scholar 

  54. Cartmell J, Monn JA, Schoepp DD. Attenuation of specific PCP-evoked behaviors by the potent mGlu2/3 receptor agonist, LY379268 and comparison with the atypical antipsychotic, clozapine. Psychopharmacology 2000; 148: 423–429.

    Article  CAS  PubMed  Google Scholar 

  55. Grauer SM, Marquis KL. Intracerebral administration of metabotropic glutamate receptor agonists disrupts prepulse inhibition of acoustic startle in Sprague-Dawley rats. Psychopharmacology 1999; 141: 405–412.

    Article  CAS  PubMed  Google Scholar 

  56. Crook JM, Akil M, Law BC, Hyde TM, Kleinman JE. Comparative analysis of group II metabotropic glutamate receptor immunoreactivity in Brodmann’s area 46 of the dorsolateral prefrontal cortex from patients with schizophrenia and normal subjects. Mol Psychiatry 2002; 7: 157–164.

    Article  CAS  PubMed  Google Scholar 

  57. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC. Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Res Mol Brain Res 1998; 56: 207–217.

    Article  CAS  PubMed  Google Scholar 

  58. Richardson-Burns SM, Haroutunian V, Davis KL, Watson SJ, Meador-Woodruff JH. Metabotropic glutamate receptor mRNA expression in the schizophrenic thalamus. Biol Psychiatry 2000; 47: 22–28.

    Article  CAS  PubMed  Google Scholar 

  59. Devon RS, Anderson S, Teague PW, et al. The genomic organisation of the metabotropic glutamate receptor subtype 5 gene, and its association with schizophrenia. Mol Psychiatry 2001; 6: 311–314.

    Article  CAS  PubMed  Google Scholar 

  60. Bolonna AA, Kerwin RW, Munro J, Arranz MJ, Makoff AJ. Polymorphisms in the genes for mGluR types 7 and 8: association studies with schizophrenia. Schizophr Res 2001; 47: 99–103.

    Article  CAS  PubMed  Google Scholar 

  61. Joo A, Shibata H, Ninomiya H, Kawasaki H, Tashiro N, Fukumaki Y. Structure and polymorphisms of the human metabotropic glutamate receptor type 2 gene (GRM2): analysis of association with schizophrenia. Mol Psychiatry 2001; 6: 186–192.

    Article  CAS  PubMed  Google Scholar 

  62. Ohtsuki T, Toru M, Arinami T. Mutation screening of the metabotropic glutamate receptor mGluR4 (GRM4) gene in patients with schizophrenia. Psychiatr Genet 2001; 11: 79–83.

    Article  CAS  PubMed  Google Scholar 

  63. Jia Z, Lu Y, Henderson J, Taverna F, et al. Selective abolition of the NMDA component of long-term potentiation in mice lacking mGluR5. Learn Mem 1998; 5: 331–343.

    CAS  PubMed  Google Scholar 

  64. Pisani A, Gubellini P, Bonsi P, et al. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-d-aspartate responses in medium spiny striatal neurons. Neuroscience 2001; 106: 579–587.

    Article  CAS  PubMed  Google Scholar 

  65. Moghaddam B, Adams BW. Reversal of phencyclidine effects by group II metabotropic glutamate receptor agonist in rats. Science 1998; 281: 1349–1352.

    Article  CAS  PubMed  Google Scholar 

  66. Costa J, Khaled E, Sramek J, Bunney W Jr, Potkin SG. An open trial of glycine as an adjunct to neuroleptics in chronic treatment-refractory schizophrenics. J Clin Psychopharmacol 1990; 10: 71–72.

    Article  CAS  PubMed  Google Scholar 

  67. Waziri R. Glycine therapy of schizophrenia. Biol Psychiatry 1988; 23: 210–211.

    Article  CAS  PubMed  Google Scholar 

  68. Heresco-Levy U, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 1999; 56: 29–36.

    Article  CAS  PubMed  Google Scholar 

  69. Simeon J, Fink M, Itil TM, Ponce D. d-Cycloserine therapy of psychosis by symptom provocation. Compr Psychiatry 1970; 11: 80–88.

    Article  CAS  PubMed  Google Scholar 

  70. Cascella NG, Macciardi F, Cavallini C, Smeraldi E. d-cycloserine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an open-label study. J Neural Transm Gen Sect 1994; 95: 105–111.

    Article  CAS  PubMed  Google Scholar 

  71. Javitt DC, Zylberman I, Zukin SR, Heresco-Levy U, Lindenmayer JP. Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 1994; 151: 1234–1236.

    CAS  PubMed  Google Scholar 

  72. Javitt DC, Balla A, Sershen H, Lajtha A. A.E. Bennett Research Award. Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biol Psychiatry 1999; 45: 668–679.

    Article  CAS  PubMed  Google Scholar 

  73. Trist DG. Excitatory amino acid agonists and antagonists: pharmacology and therapeutic applications. Pharm Acta Helv 2000; 74: 221–229.

    Article  CAS  PubMed  Google Scholar 

  74. Heresco-Levy U, Ermilov M, Shimoni J, Shapira B, Silipo G, Javitt DC. Placebo-controlled trial of D-cycloserine added to conventional neuroleptics, olanzapine, or risperidone in schizophrenia. Am J Psychiatry 2002; 159: 480–482.

    Article  PubMed  Google Scholar 

  75. Goff DC, Tsai G, Levitt J, Amico E, Manoach D, Schönfeld DA, Hayden DL, McCarley R, Coyle JT. A placebo-controlled trial of d-cycloserine added to conventional neuroleptics in patients with schizophrenia. Arch Gen Psychiatry 1999; 56: 21–27.

    Article  CAS  PubMed  Google Scholar 

  76. Millan MJ. N-methyl-D-aspartate receptor-coupled glycineB receptors in the pathogenesis and treatment of schizophrenia: a critical review. Curr Drug Target CNS Neurol Disord 2002; 1: 191–213.

    Article  CAS  Google Scholar 

  77. Carlsson A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1988; 1: 179–186.

    Article  CAS  PubMed  Google Scholar 

  78. Karson CN, Casanova MF, Kleinman JE, Griffin WST. Choline acetyltransferase in schizophrenia. Am J Psychiatry 1993; 150: 454–459.

    CAS  PubMed  Google Scholar 

  79. Tandon R, Greden JF. Cholinergic hyperactivity and negative schizophrenic symptoms. A model of cholinergic/dopaminergic interactions in schizophrenia. Arch Gen Psychiatry 1989; 46: 745–753.

    CAS  PubMed  Google Scholar 

  80. Garbutt JC, van Kammen DP. The interaction between GABA and dopamine: implications for schizophrenia. Schizophr Bull 1983; 9: 336–353.

    CAS  PubMed  Google Scholar 

  81. Meltzer HY. Clinical studies on the mechanism of action of clozapine: the dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 1989; 99: S18–S27.

    Article  PubMed  Google Scholar 

  82. Deckert J, Gleiter CH. Adenosinergic psychopharmaceuticals: just an extra cup of coffee? J Psychopharmacol 1990; 4: 183–187.

    Article  Google Scholar 

  83. Nair NPV, Lal S, Bloom DM (1994). Cholecystokinin and schizophrenia. In: van Ree JM, Matthysse S, eds. Progress in Brain Research. Vol. 65. Amsterdam: Elsevier, 1994: 237–258.

    Google Scholar 

  84. Wiegant VM, Ronken E, Kovács G, de Wied D. Endorphins and schizophrenia. Prog Brain Res 1992; 93: 433–453.

    Article  CAS  PubMed  Google Scholar 

  85. Bissette G, Nemeroff CB (1988). Neurotensin and the mesocorticolimbic dopamine system. Ann NY Acad Sci 1988; 537: 397–404.

    Article  CAS  PubMed  Google Scholar 

  86. Olney JW, Labruyere J, Price MT. Pathologival changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 1989; 244: 1360–1362.

    Article  CAS  PubMed  Google Scholar 

  87. Walker JM, Bowen WD, Walker FO, Matsumoto RR, de Costa B, Rice KC. Sigma receptors: biology and function. Pharmacol Rev 1990; 42: 355–402.

    CAS  PubMed  Google Scholar 

  88. Hudson CJ, Young LT, Li PP, Warsh JJ. CNS signal transduction in the pathophysiology and pharmacotherapy of affective disorders and schizophrenia. Synapse 1993; 13: 278–293.

    Article  CAS  PubMed  Google Scholar 

  89. Gross G, Huber G. Sensorische Störungen bei Schizophrenien. Arch Psychiatr Nervenkr 1972; 216: 119–130.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Bleich, S., Kornhuber, J. (2005). Glutamate and Schizophrenia and the N-Methyl-d-Aspartate Receptor Hypofunction Hypothesis. In: Schmidt, W.J., Reith, M.E.A. (eds) Dopamine and Glutamate in Psychiatric Disorders. Humana Press. https://doi.org/10.1007/978-1-59259-852-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-852-6_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-325-1

  • Online ISBN: 978-1-59259-852-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics