Advertisement

Effects of Sugar Inhibition on Cellulases and β-Glucosidase During Enzymatic Hydrolysis of Softwood Substrates

  • Zhizhuang Xiao
  • Xiao Zhang
  • David J. Gregg
  • John N. SaddlerEmail author
Conference paper
Part of the Biotechnology for Fuels and Chemicals book series (ABAB)

Abstract

A quantitative approach was taken to determine the inhibition effects of glucose and other sugar monomers during cellulase and β-Glucosidase hydrolysis of two types of cellulosic material: Avicel and acetic acid—pretreated softwood. The increased glucose content in the hydrolysate resulted in a dramatic increase in the degrees of inhibition on both β-Glucosidase and cellulase activities. Supplementation of mannose, xylose, and galactose during cellobiose hydrolysis did not show any inhibitory effects on β-Glucosidase activity. However, these sugars were shown to have significant inhibitory effects on cellulase activity during cellulose hydrolysis. Our study suggests that high-substrate consistency hydrolysis with supplementation of hemicellulose is likely to be a practical solution to minimizing endproduct inhibition effects while producing hydrolysate with high glucose concentration.

Index Entries:

β-Glucosidase cellulase degree of inhibition softwood glucose hydrolysate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Galbe, M. and Zacchi, G. (2002), Appl. Microbiol. Biotechnol. 59, 618–628.PubMedCrossRefGoogle Scholar
  2. 2.
    Sun, Y. and Cheng, J. Y. (2002) Bioresour. Technol. 83, 1–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Kim, J., Seok, L. Y. Y., and Torget, R. W. (2001), Appl. Biochem. Biotechnol. 91–93, 331–340.PubMedCrossRefGoogle Scholar
  4. 4.
    Duff, S. J. B. and Murray, W. D. (1996), Bioresour. Technol. 55, 1–33.CrossRefGoogle Scholar
  5. 5.
    Hsu, T. (1996), Handbook of Bioethanol: Production and Utilization, Wyman, C. E., ed., Taylor & Francis, Washington, DC, pp. 179–212.Google Scholar
  6. 6.
    Gusakov, A. V. and Sinitsyn, A. P. (1992), Biotechnol. Bioeng. 40, 663–671.PubMedCrossRefGoogle Scholar
  7. 7.
    Dekker, R. F. H. (1986), Biotechnol. Bioeng. 28, 1438–1442.PubMedCrossRefGoogle Scholar
  8. 8.
    Holtzapple, M., Cognata, M., Shu, Y., and Hendrickson, C. (1990), Biotechnol. Bioeng. 36, 275–287.PubMedCrossRefGoogle Scholar
  9. 9.
    Ramos, L. P., Breuil, C., and Saddler, J. N. (1993), Enzyme Microbial. Technol. 15, 19–25.CrossRefGoogle Scholar
  10. 10.
    Gregg, D. J. and Saddler, J. N. (1996), Biotechnol. Bioeng. 51, 375–383.PubMedCrossRefGoogle Scholar
  11. 11.
    Ohmine, K., Ooshima, H., and Harano, Y. (1983), Biotechnol. Bioeng. 25, 2041–2053.PubMedCrossRefGoogle Scholar
  12. 12.
    Holtzapple, M. T., Caram, H. S., and Humphrey, A. E. (1984), Biotechnol. Bioeng. 26, 753–757.PubMedCrossRefGoogle Scholar
  13. 13.
    Scheiding, W., Thoma, M., Ross, A., and Schuegerl, K. (1984), Appl. Microbiol. Biotechnol. 20, 176–182.CrossRefGoogle Scholar
  14. 14.
    Tengborg, C., Galbe, M., and Zacchi, G. (2001), Enzyme Microbial. Technol. 28, 835–844.CrossRefGoogle Scholar
  15. 15.
    Wood, T. M. and Bhat, K. M. (1988), in Methods in Enzymnology, vol. 160, Wood, W. and Kellogg, S., eds., Academic, New York, NY, pp. 87–112.Google Scholar
  16. 16.
    Boussaid, A. L., Esteghlalian, A. R., Gregg, D. J., Lee, K. H., and Saddler, J. N. (2000), Appl. Biochem. Biotechnol. 84–86, 693–705.PubMedCrossRefGoogle Scholar
  17. 17.
    Gong, C.-S., Ladisch, M. R., Tsao, G. T. (1977), Biotechnol. Bioeng. 19, 959–981.PubMedCrossRefGoogle Scholar
  18. 18.
    Montero, M. and Romeu, A. (1992), Appl. Microbiol. Biotechnol. 38, 350–353.CrossRefGoogle Scholar
  19. 19.
    Yeoh, H. H., Tan, T. K., and Koh, S. K. (1986), Appl. Microbiol. Biotechnol. 25, 25–28.CrossRefGoogle Scholar
  20. 20.
    Asenjo, J. A. (1983), Biotechnol. Bioeng. 25, 3185–3190.PubMedCrossRefGoogle Scholar
  21. 21.
    Rao, M., Seeta, R., and Deshpande, V. (1989), Biotechnol. Appl. Biochem. 11, 477–482.Google Scholar
  22. 22.
    Beltrame, P. L., Carniti, P., Focher, B., Marzetti, A., and Sarto, V. (1984), Biotechnol. Bioeng. 26, 1233–1238.PubMedCrossRefGoogle Scholar
  23. 23.
    Mosolova, T. P., Kalyuzhnyi, S. V., Varfolomeyev, S. D., and Velikodvorskaya, G. A. (1993), Appl. Biochem. Biotechnol. 42, 9–18.PubMedCrossRefGoogle Scholar
  24. 24.
    Hadj-Taieb, N., Chaabouni-Ellouz, S., Kammoun, A., and Ellouz, R. (1992), Appl. Microbiol. Biotechnol. 37, 197–201.CrossRefGoogle Scholar
  25. 25.
    Murray, W. D. (1987), Biotechnol. Bioeng. 29, 1151–1154.PubMedCrossRefGoogle Scholar
  26. 26.
    Breuil, C., Chan, M., and Saddler, J. N. (1990), Appl. Microbiol. Biotechnol. 34, 31–35.CrossRefGoogle Scholar
  27. 27.
    Dekker, F. F. H. and Wallis, A. F. A. (1983), Biotechnol. Bioeng. 25, 3027–3048.PubMedCrossRefGoogle Scholar
  28. 28.
    Zacchi, G. and Axelsson, A. (1989), Biotechnol. Bioeng. 34, 223–233.PubMedCrossRefGoogle Scholar
  29. 29.
    Larsson, M., Galbe, M., and Zacchi, G. (1997), Bioresourc. Technol. 60, 143–151.CrossRefGoogle Scholar
  30. 30.
    Saha, B. C., Freer, S. N., and Bothast, R. J. (1994), Appl. Environ. Microbiol. 60, 3774–3780.PubMedGoogle Scholar
  31. 31.
    Yun, S. I., Jeong, C.-S., Chung, D.-K., and Choi, H.-S. (2001), Biosci. Biotechnol. Biochem. 65, 2028–2032.PubMedCrossRefGoogle Scholar
  32. 32.
    Klyosov, A. A., Sinitsyn, A. P., and Rabinowitch, M. L. (1980), Enzyme Eng. 5, 153–165.CrossRefGoogle Scholar
  33. 33.
    Sjostrom, E. (1981) Wood Chemistry: Fundamentals and Applications, Academic, San Diego, CA.Google Scholar
  34. 34.
    Fengel, D. and Wegener, G. (1984), Wood: Chemistry, Ultrastructure, Reactions, Walter de Gruyter, Berlin, Germany.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Zhizhuang Xiao
    • 1
  • Xiao Zhang
    • 1
  • David J. Gregg
    • 1
  • John N. Saddler
    • 1
    Email author
  1. 1.Forest Products BiotechnologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations