Skip to main content

Abstract

Dilute-acid hydrolysis of brewery’s spent grain to obtain a pentose-rich fermentable hydrolysate was investigated. The influence of operational conditions on polysaccharide hydrolysis was assessed by the combined severity parameter (CS) in the range of 1.39–3.06. When the CS increased, the pentose sugars concentration increased to a maximum at a CS of 1.94, whereas the maximum glucose concentration was obtained for a CS of 2.65. The concentrations of furfural, hydroxymethylfurfural (HMF), as well as formic and levulinic acids and total phenolic compounds increased with severity. Optimum hydrolysis conditions were found at a CS of 1.94 with >95% of feedstock pentose sugars recovered in the monomeric form, together with a low content of furfural, HMF, acetic and formic acids, and total phenolic compounds. This hydrolysate containing glucose, xylose, and arabinose (ratio 10:67:32) was further supplemented with inorganic salts and vitamins and readily fermented by the yeast Debaryomyces hansenii CCMI 941 without any previous detoxification stage. The yeast was able to consume all sugars, furfural, HMF, and acetic acid with high biomass yield, 0.68 C-mol/C-mol, and productivity, 0.92 g/ (L.h). Detoxification with activated charcoal resulted in a similar biomass yield and a slight increase in the volumetric productivity (11%).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gírio, F. M., Carvalheiro, F., Esteves, M. P., Amaral-Collaço, M. T., Parajó, J. C., Domínguez, H., et al. (2003) Portuguese patent no. 102563.

    Google Scholar 

  2. Kabel, M. A., Schols, H. A., and Voragen, A. G. J. (2002), Carbohydr. Polym. 50, 191–200.

    Article  CAS  Google Scholar 

  3. Roberto, I. C., Felipe, M. G. A., Lacis, L. S., Silva, S. S., and Mancilha, I. M. (1991), Bioresour. Technol. 36, 271–275.

    Article  CAS  Google Scholar 

  4. Roberto, I. C., Felipe, M. G. A., Mancilha, I. M., Vitolo, M., Sato, S., and Silva, S. S. (1995), Bioresour. Technol. 51, 255–257.

    Article  CAS  Google Scholar 

  5. Roberto, I. C., Felipe, M. G. A., Mancilha, I. M., Vitolo, M., Sato, S., and Silva, S. S. (1995), Bioresour. Technol. 51, 255–257.

    Article  CAS  Google Scholar 

  6. Saha, B. C. and Blothast, R. J. (1996),Appl. Microbiol. Biotechnol. 45, 299–306.

    Article  CAS  Google Scholar 

  7. Palmqvist, E. and Hahn-Hägerdal, B. (2000), Bioresour. Technol. 74, 17–24.

    Article  CAS  Google Scholar 

  8. van Walsum, G. P., Allen, S. G., Spencer, M. J., Laser, M. S., Antal, M. J., and Lynd, L. R. (1996). Avvl. Biochem. Biotechnol. 57/58, 157–170.

    Article  Google Scholar 

  9. Allen, S. G., Schulman, D., Lichwa, J., Antal, M. J., Jennings, E., and Elander, R. (2001), Ind. Eng. Chem. Res. 40, 2352–2361.

    Article  CAS  Google Scholar 

  10. Allen, S. G., Schulman, D., Lichwa, J., Antal, M. J., Laser, M., and Lynd, L. R. (2001), Ind. Eng. Chem. Res. 40, 2934–2941.

    Article  CAS  Google Scholar 

  11. Torget, R., Hatzis, C., Hayward, T. K., Hsu, T. A., and Philippidis, G. P. (1996), Appl. Biochem. Biotechnol. 57/58, 85–101.

    Article  Google Scholar 

  12. Allen, S. G., Kam, L. C., Zemann, A. J., and Antal, M. J. (1996), Ind. Eng. Chem. Res. 35, 2709–2715.

    Article  CAS  Google Scholar 

  13. Mok, W. S. L. and Antal, M. J. (1992), Ind. Eng. Chem. Res. 31, 1157–1161.

    Article  CAS  Google Scholar 

  14. Saska, M. and Ozer, E. (1995), Biotechnol. Bioeng. 45, 517–523.

    Article  PubMed  CAS  Google Scholar 

  15. Heitz, M., Capek-Ménard, E., Koeberle, P. G., Gagne, J., Chornet, E., Overend, R. P., Taylor, J. D., and Yu, E. (1991), Bioresour. Technol. 35, 23–32.

    Article  CAS  Google Scholar 

  16. Garrote, G., Domínguez, H., and Parajó, J. C. (2001), Appl. Biochem. Biotechnol. 95, 195–207.

    Article  PubMed  CAS  Google Scholar 

  17. Duarte, L. C., Carvalheiro, F., Lopes, S., Marques, S., Parajó, J. C., and Gírio, F. M. (2004), Appl. Biochem. Biotechnol. 113–116, 1139–1056.

    Google Scholar 

  18. Vázquez, M. J., Alonso, J. L., Domínguez, H., and Parajó, J. C. (2001), World J. Microbiol. Biotechnol. 17, 817–822.

    Article  Google Scholar 

  19. Domínguez, J. M., Cao, N. J., Gong, C. S., and Tsao, G. T. (1997), Bioresour. Technol. 61, 85–90.

    Article  Google Scholar 

  20. Chum, H. L., Johnson, D. K., Black, S. K., and Overend, R. P. (1990), Appl. Biochem. Bioteclhnol. 24/25, 1–14.

    Article  Google Scholar 

  21. Overend, R. P. and Chornet, E. (1987), Phil. Trans. R. Soc. Load. A321, 523–536.

    Article  CAS  Google Scholar 

  22. Nguyen, Q. A., Tucker, M. P., Keller, F. A., and Eddy, F. P. (2000), Appl. Biochem. Biotechnol. 84–86, 561–576.

    Article  PubMed  Google Scholar 

  23. Tengborg, C., Stenberg, K., Galbe, M., Zacchi, G., Larsson, S., Palmqvist, E., and Hahn-Hägerdal, B. (1998), Appl. Biochemn. Biotechnol. 70–72, 3–15.

    Article  Google Scholar 

  24. Nobre, A., Duarte, L. C., Roseiro, J. C., and Gírio, F. M. (2002), Appl. Microbiol. Biotechnol. 59, 509–516.

    Article  PubMed  CAS  Google Scholar 

  25. Browning, B. L. (1967), in Methods in Wood Chemistry, Sarkanen, K. V. and Ludwig, C.H., eds., John Wiley & Sons. New York. NY.

    Google Scholar 

  26. AOAC. (1975), AOAC Official Methods of Analysis, AOAC International, Washington, DC.

    Google Scholar 

  27. Graham H. D. (1992.) 1. Agric. Food Chem. 40, 801–805.

    Article  CAS  Google Scholar 

  28. Carrasco, J. E., Sáiz, M. C., Navarro, A., Soriano, P., Sáez, F., and Martínez, J. M. (1994), Appl. Biochemn. Biotechnol. 45/46, 23–34.

    Article  Google Scholar 

  29. Torget, R., Werdene, P., Himmel, M., and Grohmann, K. (1990), Appl. Biochern. Biotechnol. 24/25, 115–126.

    Article  Google Scholar 

  30. Torget, R., Walter, P., Himmel, M., and Grohmann, K. (1991), Appl. Biochem. Biotechnol. 28/29, 75–86.

    Article  Google Scholar 

  31. Grohmann, K., Torget, R., and Himmel, M. (1985), Biotechnol. Bioeng. Symp. 15, 59–80.

    Google Scholar 

  32. Taherzadeh, M. J., Eklund, R., Gustafsson, L., Niklasson, C., and Liden, G. (1997), Ind. Eng. Chem. Res. 36, 4659–4665.

    Article  CAS  Google Scholar 

  33. Martín, C., Galbe, M., Nilvebrant, N. O., and Jönsson, L. J. (2002), Appl. Biochem. Biotechnol. 98–100, 699–716.

    Article  PubMed  Google Scholar 

  34. Neureiter, M., Danner, H., Thomasser, C., Saidi, B., and Braun, R. (2002), Appl. Biochem. Biotechnol. 98–100, 49–58.

    Article  PubMed  Google Scholar 

  35. Aoyama, M., Seki, K., and Saito, N. (1995), Holzforschung 49, 193–196.

    Article  CAS  Google Scholar 

  36. Montané, D., Salvadó, J., Farriol, X., Jollez, P., and Chornet, E. (1994), Wood Sci. Technol 28, 387–402.

    Article  Google Scholar 

  37. Palmqvist, E., Grage, H., Meinander, N. Q., and Hahn-Hägerdal, B. (1999), Biotechnol. Bioeng. 63, 46–55.

    Article  PubMed  CAS  Google Scholar 

  38. Domínguez, J. M., Gong, C. S., and Tsao, G. T. (1996), Appl. Biochem. Biotechnol. 57/58, 49–56.

    Article  PubMed  Google Scholar 

  39. Parajó, J. C., Domínguez, H., and Domínguez, J. M. (1996), Bioresour. Technol. 57, 179–185.

    Article  Google Scholar 

  40. Miyafuji, H., Danner, H., Neureiter, M., Thomasser, C., Bvochora, J., Szolar, O., and Braun, R. (2003), Enzyme Microb. Technol. 32, 396–400.

    Article  CAS  Google Scholar 

  41. Larsson, S., Reimann, A., Nilvebrant, N. O., and Jönsson, L. J. (1999), Appl. Biochem. Biotechnol. 77–79, 91–103.

    Article  Google Scholar 

  42. Nilvebrant, N. O., Reimann, A., Larsson, S., and Jönsson, L. J. (2001), Appl. Biochem. Biotechnol. 91–93, 35–49.

    Article  PubMed  Google Scholar 

  43. Carvalheiro, F., Duarte, L. C., Lopes, S., Parajó, J. C., Pereira, H., and Gírio, F. M. (2003), submitted.

    Google Scholar 

  44. Roberto, L. C., Mancilha, L. M., Souza, L. A., Felipe, M. G. A., Sato, S., and Castro, H. F. (1994), Biotechnol. Lett. 16, 1211–1216.

    Article  CAS  Google Scholar 

  45. Pessoa, A., Mancilha, I. M., and Sato, S. (1996), J. Biotechnol. 51, 83–88.

    Article  CAS  Google Scholar 

  46. Roseiro, J. C., Peito, M. A., Gírio, F. M., and Amaral-Collaço, M. T. (1991), Arch. Microbiol. 156, 484–490.

    CAS  Google Scholar 

  47. Tavares, J. M., Duarte, L. C., Amaral-Collaço, M. T., and Gírio, F. M. (2000), Enzyme Microbiol. Technol. 26, 743–747.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Carvalheiro, F., Duarte, L.C., Medeiros, R., Gírio, F.M. (2004). Optimization of Brewery’s Spent Grain Dilute-Acid Hydrolysis for the Production of Pentose-Rich Culture Media. In: Finkelstein, M., McMillan, J.D., Davison, B.H., Evans, B. (eds) Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO. Biotechnology for Fuels and Chemicals. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-837-3_86

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-837-3_86

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9873-8

  • Online ISBN: 978-1-59259-837-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics