Skip to main content

Potential Applications of the Ketogenic Diet in Disorders Other Than Epilepsy

  • Chapter
  • 707 Accesses

Part of the Nutrition and Health book series (NH)

Abstract

Starvation is associated with many drastic or extreme changes in energy metabolism and hormonal levels. Thus, it is not surprising that mimicking this process with the ketogenic diet (KD) may yield a wide range of effects, some potentially deleterious, others having benefits. Use of the KD in intractable epilepsy has increased the comfort level and general experience with the diet and is opening doors to potential new applications. None of these applications is as well studied or as well established as the anticonvulsant potential of the KD. Currently, all the applications discussed in this chapter are highly experimental.

Keywords

  • Rheumatoid Arthritis Patient
  • Vagus Nerve Stimulation
  • Ketogenic Diet
  • Intractable Epilepsy
  • Rheumatoid Arthritis Disease Activity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-59259-808-3_12
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-59259-808-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klepper J, Voit T. Facilitated glucose transporter protein type I (GLUT1) deficiency syndrome: impaired glucose transport into brain—a review. Eur J Pediatr 2002;161:295–304.

    PubMed  CrossRef  CAS  Google Scholar 

  2. DeVivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Hark SI. Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med 1991;325:703–709.

    CrossRef  CAS  Google Scholar 

  3. Brockmann K, Wang D, Korenke CG, von Moers A, Ho YY, Pascual JM, Kuang K, Yang H, Ma L, Kranz-Eble P, Fischbarg J, Hanefeld F, De Vivo DC. Autosomal dominant glut-1 deficiency syndrome and familial epilepsy. Ann Neurol 2001;50:476–485.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Klepper J, Wang D, Fischbarg J, Vera JC, Jarjour IT, O’Driscoll KR, DeVivo DC. Defective glucose transport across brain tissue barriers: a newly recognized neurological syndrome. Neurochem Res 1999;24:587–597.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Klepper J, Willemsen M, Verrips A, Guertsen E, Herrmann R, Kutzick C, Florcken A, Voit T. Autosomal dominant transmission of GLUT1-deficiency. Hum Mol Genet 2001;10:63–68.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Seidner G, Alvarez MG, Yeh JI, O’Driscoll KR, Klepper J, Stump TS, Wang D, Spinner NB, Birnbaum MJ, DeVivo DC. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood–brain barrier hexose carrier. Nat Genet 1998;18:188–191.

    PubMed  CrossRef  CAS  Google Scholar 

  7. DeVivo DC, Garcia-Alverez M, Ronen G, Trifiletti R. Glucose transport protein deficiency: an emerging syndrome with therapeutic implications. Int Pediatr 1995;10:51–56.

    Google Scholar 

  8. El-Mallakh RS. The Na,K-ATPase hypothesis for manic-depression. I. General considerations. Med Hypoth 1983;12:253–266.

    CrossRef  CAS  Google Scholar 

  9. El-Mallakh RS, Huff MO. Mood stabilizers and ion regulation. Harv Rev Psychiatr 2001;9:23–32.

    CrossRef  CAS  Google Scholar 

  10. Erwin CW, Gerber DJ, Morrison SD, James JF. Lithium carbonate and convulsive disorders. Arch Gen Psychiatr 1973;28:646–648.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Shukla S, Mukherjee S, Decina P. Lithium in the treatment of bipolar disorders associated with epilepsy: an open study. J Clin Psychopharmacol 1988;8:201–204.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Post RM, Putnam F, Uhde TW, Weiss SRB. Electoroconvulsive therapy as an anticonvulsant: implications for its mechanism of action in affective illness. N Y Acad Sci 1986;462:376–388.

    CrossRef  CAS  Google Scholar 

  13. Morris GI III, Mueller WM, and the Vagus Nerve Stimulation Study Group E01–E05. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. Neurology 1999;53:1731–1735.

    PubMed  CrossRef  Google Scholar 

  14. Milstein V, Small JG, Klapper MH, Small IF, Miller MJ, Kellams JJ. Unilateral versus bilateral ECT in the treatment of mania. Convuls Ther 1987;3:1–9.

    PubMed  Google Scholar 

  15. Small JG, Kalapper MH, Kellams JJ, Miller MJ, Milstein V, Sharpley PH, Small IF. Electroconvulsive treatment compared with lithium in the management of manic states. Arch Gen Psychiatr 1988;45:727–732.

    PubMed  CrossRef  CAS  Google Scholar 

  16. George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM, Lisanby S, Burt T, Goldman J, Ballenger JC. Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiatr 2000;47:287–295.

    CrossRef  CAS  Google Scholar 

  17. Pande AC. Combination treatment in bipolar disorders. Bipolar Disord 1999;1 (Suppl 1):17.

    CrossRef  Google Scholar 

  18. Coppen A. Shaw DM, Malleson A, Costain R. Mineral metabolism in mania. Br Med J 1966:1:71–75.

    PubMed  CrossRef  CAS  Google Scholar 

  19. Shaw DM. Mineral metabolism, mania and melancholia. Br Med J 1966:2:262–267.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Naylor GJ, McNamee HB, Moody JP. Changes in erythrocyte sodium and potassium on recovery from depressive illness. Br J Psychiatr 1971:118:219–223.

    CrossRef  CAS  Google Scholar 

  21. Siebens AW, Boron WF. Depolarization-induced alkalinization in proximal tubules. I. Characteristics and dependence on Nat Am J Physiol 1989:25:F342–F353.

    Google Scholar 

  22. Pappas CA, Ransom BR. A depolarization-stimulated, bafilomycin-inhibitable H+ pump in hippocampal astrocytes. Glia 1993:9:280–291.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Konnerth A, Lux HD, Morad M. Proton-induced transformation of calcium channel in dorsal root ganglion cells. J Physiol 1987:386:603–633.

    PubMed  CAS  Google Scholar 

  24. Balestrino M, Somjen GG. Concentration of carbon dioxide, interstitial pH and synaptic transmission in hippocampal formation of the rat. J Physiol 1988;396:247–266.

    PubMed  CAS  Google Scholar 

  25. Tang CM, Dichter MA, Morad M. Modulation of the N-methyl-d-aspartate channel by extracellular H+. Proc Natl Acad Sci U S A 1990;87:6445–6449.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Traynelis SF, Cull-Candy SG. Proton inhibition of N-methyl-d-aspartate J receptors in cerebral neurons. Nature 1990;345:347–350.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Al-Mudallal AS, LaManna JC, Lust WD, Hark SI. Diet-induced ketosis does not cause cerebral acidosis. Epilepsia 1996;37:258–261.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Novotny EJ Jr, Chen J. Rothman DL. Alterations in cerebral metabolism with the ketogenic diet. Epilepsia 1997;38 (Suppl 8):147.

    Google Scholar 

  29. Baxter LR Jr, Phelps ME, Mazziotta JC, Schwartz JM, Gerner RH, Selin CE, Sumida RM. Cerebral metabolic rates for glucose in mood disorders: studies with positron emission tomography and fluorodeoxyglucose F-18. Arch Gen Psychiatr 1985;42:441–447.

    PubMed  CrossRef  Google Scholar 

  30. Baxter LR Jr, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatr 1989;46:243–250.

    PubMed  CrossRef  CAS  Google Scholar 

  31. Buchsbaum MS, Wu J, DeLisi LE, Holcomb H, Kessler R. Johnson J, King AC, Hazlett E, Langston K. Post RM. Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. J Affect Disord 1986;10:137–152.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Bucsbaum MS, Someya T, Wu JC, Tang CY, Bunney WE. Neuroimaging bipolar illness with positron emission tomography and magnetic resonance imaging. Psychiatr Ann 1997;27:489–495.

    Google Scholar 

  33. Schwartz JM, Baxter LP, Mazziotta JC, Gerner RH, Phelps ME. The differential diagnosis of depression: relevance of positron emission tomography (PET) studies of cerebral glucose metabolism to the bipolar-unipolar dichotomy. JAMA 1987;258:1368–1374.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Pan JW, Bebin EM, Chu WJ, Hetherington HP. Ketosis and epilepsy: 31P spectroscopic imaging at 4.1 T. Epilepsia 1999;40:703–707.

    PubMed  CrossRef  CAS  Google Scholar 

  35. El-Mallakh RS, Paskitti ME. The ketogenic diet may have mood-stabilizing properties. Med Hypoth 2001;57:724–726.

    CrossRef  CAS  Google Scholar 

  36. Yaroslavsky Y, Stahl Z, Belmaker RH. Ketogenic diet in bipolar illness. Bipolar Disord 2002;4:75.

    PubMed  Google Scholar 

  37. Regal KM, Carroll MD, Ogden CL, Johnson CL. Prevalence and trends in obesity among US adults, 1999–2000. JAMA 2002;288:1723–1727.

    CrossRef  Google Scholar 

  38. Weil E, Wachterman M, McCarthy EP, Davis RB, O’Day B, Iezzoni LI, Wee CC. Obesity among adults with disabling conditions. JAMA 2002;288:1265–1268.

    PubMed  CrossRef  Google Scholar 

  39. Ogden CL, Flegal KM, Carroll MD, Johnson CL. Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA 2002;288:1728–1732.

    PubMed  CrossRef  Google Scholar 

  40. Lew EA, Garfinkel L. Variations in mortality by weight among 750,000 men and women. J Chron Dis 1979;32:563–576.

    PubMed  CrossRef  CAS  Google Scholar 

  41. Bray GA. Complications of obesity. Ann Intern Med 1985;103:1052–1062.

    PubMed  CrossRef  CAS  Google Scholar 

  42. Must A, Jacques PF, Dallal GE, Bajema CJ, Dietz WH. Long-term morbidity and mortality of overweight adolescents. N Engl J Med 1992;327:1350–1355.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Atkins RC. Dr. Atkins’s New Diet Revolution, rev. ed. Avon, New York, 2002.

    Google Scholar 

  44. Landers P, Wolfe MM, Glore S, Guild R, Phillips L. Effect of weight loss plans on body composition and diet duration. J Okla State Med Assoc 2002;95:329–331.

    PubMed  Google Scholar 

  45. Willi SM, Oexmann MJ, Wright NM, Collop NA, Key LL Jr. The effects of a high-protein, low-fat, ketogenic diet on adolescents with morbid obesity: body composition, blood chemistries, and sleep abnormalities. Pediatrics 1998;101:61–67.

    PubMed  CrossRef  CAS  Google Scholar 

  46. Fraser DA, Thoen J, Bondhus S, Haugen M, Reseland JE, Djøseland O, Førre O, Kjeldsen-Kragh J. Reduction in serum leptin and IGF-1 but preserved T-lymphocyte numbers and activation after a ketogenic diet in rheumatoid arthritis patients. Clin Exp Rheumatol 2000;18:209–214.

    PubMed  CAS  Google Scholar 

  47. Fraser DA, Thoen J, Djøseland O, Førre O, Kjeldsen-Kragh J. Serum levels of interleukin-6 and dehydroepiandrosterone sulphate in response to either fasting or a ketogenic diet in rheumatoid arthritis patients. Clin Exp Rheumatol 2000;18:357–362.

    PubMed  CAS  Google Scholar 

  48. Papamandjaris AA, MacDougall DE, Jones PJ. Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 1998;62:1203–1215.

    PubMed  CrossRef  CAS  Google Scholar 

  49. Langfort J, Pilis W, Zarzeczny R, Nazar K, Kaciuba UH. Effect of low-carbohydrate-ketogenic diet on metabolic and hormonal responses to graded exercise in man. J Physiol Pharmacol 1996;47:361–371.

    PubMed  CAS  Google Scholar 

  50. Sharman MJ, Kraemer WJ, Love DM, Avery NG, Gómez AL, Scheett TP, Volek JS. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr 2002;132:1879–1885.

    PubMed  CAS  Google Scholar 

  51. Austin MA, Breslow JL, Hennekens CH, Busing JE, Willett WC, Krauss RM. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988;260:1917–1921.

    PubMed  CrossRef  CAS  Google Scholar 

  52. Volek JS, Gómez AL, Kraemer WJ. Fasting lipoprotein and postprandial triacylglycerol responses to a low-carbohydrate diet supplemented with n-3 fatty acid. J Am Coll Nutr 2000;19:383–391.

    PubMed  CAS  Google Scholar 

  53. Haas MJ, Reinacher D, Pun K, Wong NC, Mooradian AD. Induction of the apolipoprotein AI gene by fasting: a relationship with ketosis but not with ketone bodies. Metab Clin Exp 2000;49:1572–1578.

    PubMed  CrossRef  CAS  Google Scholar 

  54. Sirven J, Whedon B, Caplan D, Liporace J, Glosser D, O’Dwyer J, Sperling MR. The ketogenic diet for intractable epilepsy in adults: preliminary results. Epilepsia 1999;40:1721–1726.

    PubMed  CrossRef  CAS  Google Scholar 

  55. Best TH, Franz DN, Gilbert DL, Nelson DP, Epstein MR. Cardiac complications in pediatric patients on the ketogenic diet. Neurology 2000;54:2328–2330.

    PubMed  CrossRef  CAS  Google Scholar 

  56. Storlien LH, Tapsell LC, Calvert GD. Diabetic diets-whither goest? Nutrition 1998;14:865–867.

    PubMed  CrossRef  CAS  Google Scholar 

  57. Sanz-Paris A, Calvo L, Guallard A, Salazar I, Albero R. High-fat versus high-carbohydrate enteral formulae: effect on blood glucose, C-peptide, and ketones in patients with type 2 diabetes treated with insulin or sulfonylurea. Nutrition 1998;14:840–845.

    PubMed  CrossRef  CAS  Google Scholar 

  58. Garg A, Bonanome A, Grundy SM, Zhang Z-J, Unger RH. Comparison of a high-carbohydrate diet with a high-monounsaturated-fat diet in patients with non-insulin-dependent diabetes mellitus. N Engl J Med 1988;319:829–834.

    PubMed  CrossRef  CAS  Google Scholar 

  59. Campbell LV, Marmot PE, Dyer JA, Borkman M, Storlien LH. The high-monounsaturated fat diet as a practical alternative for NIDDM. Diabetes Care 1994;17:177–182.

    PubMed  CrossRef  CAS  Google Scholar 

  60. Sköldstam L, Larsson L, Lindström FD. Effects of fasting and lactovegetarian diet on rheumatoid arthritis. Scand J Rheumatol 1979;8:249–255.

    PubMed  CrossRef  Google Scholar 

  61. Hafström I, Ringertz B, Gyllenhammer H, Palmblad J, Harms-Ringdahl M. Effects of fasting in disease activity, neutrophil function, fatty acid composition, and leukotriene biosynthesis in patients with rheumatoid arthritis. Arthritis Rheum 1988;31:585–592.

    PubMed  CrossRef  Google Scholar 

  62. Fraser D, Thoen J, Reseland J, Førre Ø, Kjeldsen-Kragh J. Decreased CD4+ lymphocyte activation and increased IL-4 production in peripheral blood of rheumatoid arthritis patients after acute starvation. Clin Rheumatol 1999;18:394–401.

    PubMed  CrossRef  CAS  Google Scholar 

  63. Van der Laar MAFJ, van der Korst JK. Food intolerance in rheumatoid arthritis. I: A double blind, controlled trial of the clinical effects of elimination of milk allergens and azo dyes. Ann Rheum Dis 1992;51:298–302.

    PubMed  CrossRef  Google Scholar 

  64. Haugen M, Kjeldsen-Kragh J, Førre O. A pilot study of the effect of an elemental diet in the management of rheumatoid arthritis. Clin Exp Rheumatol 1994;12:275–279.

    PubMed  CAS  Google Scholar 

  65. Klein S, Wolfe R. Carbohydrate restriction regulates the adaptive response to fasting. Am J Physiol 1992;262:E631–E636.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

El-Mallakh, R.S. (2004). Potential Applications of the Ketogenic Diet in Disorders Other Than Epilepsy. In: Stafstrom, C.E., Rho, J.M. (eds) Epilepsy and the Ketogenic Diet. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-808-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-808-3_12

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-477-7

  • Online ISBN: 978-1-59259-808-3

  • eBook Packages: Springer Book Archive