Skip to main content

Hydrogen Sulfide Production and Metabolism in Mammalian Tissues

  • Chapter
Book cover Signal Transduction and the Gasotransmitters

Summary

Evidence for a physiological role for H2S rests primarily on observations that this compound is endogenously produced in specific mammalian tissues relevant to its proposed role as a neuromodulator and vasorelaxant. Multiple mammalian enzymes have the potential to catalyze the desulfuration of cysteine to form H2S including cystathionine β-synthase (CBS; EC 4.2.1.22), cystathionine γ-lyase (CSE; 4.4.1.1), cysteine aminotransferase (EC 2.6.1.3), mercaptopyruvate sulfurtransferase (MST; EC 2.8.1.2), rhodanese (thiosulfate: cyanide sulfurtransferase) (EC 2.8.1.1), and cysteine lyase (EC 4.2.1.10). Presently, there is insufficient knowledge regarding the H2S forming activities of cysteine lyase, MST, and rhodanese to assess their possible role in the physiological production of this compound. There is some evidence that CSE plays a role in mammalian H2S production, but a recent biochemical study of human CSE casts doubt on the ability of this enzyme to perform this function. The regulatory and catalytic characteristics of CBS share a striking number of common features with mammalian neuronal and endothelial nitric oxide synthases and thus appears to be eminently suited to the task of producing H2S as a cell messenger. Our current knowledge of human sulfur metabolism is insufficient to exclude the possibility of other enzymes playing a role in the synthesis of H2S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 2002;16:1792–1798.

    Article  PubMed  CAS  Google Scholar 

  2. Kimura H. Hydrogen sulfide as a neuromodulator. Mol Neurobiol 2002;26:13–19.

    Article  PubMed  CAS  Google Scholar 

  3. Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 1997;237:527–531.

    Article  PubMed  CAS  Google Scholar 

  4. Ogasawara Y, Isoda S, Tanabe S. Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biol Pharm Bull 1994;17:1535–1542.

    Article  PubMed  CAS  Google Scholar 

  5. Ubuka T. Assay methods and biological roles of labile sulfur in animal tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2002;781:227–249.

    Article  PubMed  CAS  Google Scholar 

  6. Ubuka T, Abe T, Kajikawa R, et al. Determination of hydrogen sulfide and acid-labile sulfur in animal tissues by gas chromatography and ion chromatography. J Chromatogr B Biomed Sci Appl 2001;757:31–37.

    Article  PubMed  CAS  Google Scholar 

  7. Ogasawara Y, Ishii K, Togawa T, et al. Determination of bound sulfur in serum by gas dialysis/high-performance liquid chromatography. Anal Biochem 1993;215:73–81.

    Article  PubMed  CAS  Google Scholar 

  8. Savage JC, Gould DH. Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr 1990;526:540–545.

    Article  PubMed  CAS  Google Scholar 

  9. Mitchell TW, Savage JC, Gould DH. High-performance liquid chromatography detection of sulfide in tissues from sulfide-treated mice. J Appl Toxicol 1993;13:389–394.

    Article  PubMed  CAS  Google Scholar 

  10. Warenycia MW, Goodwin LR, Benishin CG, et al. Acute hydrogen sulfide poisoning: demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol 1989;38:973–981.

    Article  PubMed  CAS  Google Scholar 

  11. Dorman D, Moulin F, McManus B, et al. Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicol Sci 2002;65:18–25.

    Article  PubMed  CAS  Google Scholar 

  12. Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhyration in liver and kidney of rat. Biochem J 1982;206:267–277.

    PubMed  CAS  Google Scholar 

  13. Mudd SH, Levy HL, Kraus JP. Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, et al., eds. The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill: New York, 2001, pp. 2007–2056.

    Google Scholar 

  14. Skovby F, Kraus JP, Rosenberg LE. Biosynthesis and proteolytic activation of cystathionine β-synthase in rat liver. J Biolog Chem 1984;259:588–593.

    CAS  Google Scholar 

  15. Kraus JP, Rosenberg LE. Cystathionine β-synthase from human liver: improved purification scheme and additional characterization of the enzyme in crude and pure form. Arch Biochem Biophys 1983;222:44–52.

    Article  PubMed  CAS  Google Scholar 

  16. Kery V, Poneleit L, Kraus JP. Trypsin cleavage of human cystathionine β-synthase into an evolutionary conserved active core: structural and functional consequences. Arch Biochem Biophys 1998;355:222–232.

    Article  PubMed  CAS  Google Scholar 

  17. Kery V, Bukovska G, Kraus JP. Transsulfuration depends on heme in addition to pyridoxal 5′-phosphate: cystathionine β-synthase is a heme protein. J Biol Chem 1994;269:25,283–25,288.

    Google Scholar 

  18. Jhee KH, McPhie P, Miles EW. Yeast cystathionine beta-synthase is a pyridoxal phosphate enzyme but, unlike the human enzyme, is not a heme protein. J Biol Chem 2000;275:11,541–11,544.

    Google Scholar 

  19. Nagasawa T, Kanzaki H, Yamada H. Cystathionine γ-lyase from Streptomyces phaeochromogenes. Methods Enzymol 1987;143:486–492.

    Article  PubMed  CAS  Google Scholar 

  20. Oliveriusova J, Kery V, Maclean KN, et al. Deletion mutagenesis of human cystathionine beta-synthase: impact on activity, oligomeric status, and S-adenosylmethionine regulation. J Biol Chem 2002;277:48,386–48,394.

    Article  CAS  Google Scholar 

  21. Taoka S, Banerjee R. Characterization of NO binding to human cystathionine beta-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J Inorg Biochem 2001;87: 245–251.

    Article  PubMed  CAS  Google Scholar 

  22. Finkelstein JD, Kyle WE, Martin JJ, et al. Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem Biophys Res Commun 1975;66:81–87.

    Article  PubMed  CAS  Google Scholar 

  23. Koracevic D, Djordjevic V. Effect of trypsin, S-adenosylmethionine and ethionine on serine sulfhydrase activity. Experientia 1977;33:1010, 1011.

    Google Scholar 

  24. Braunstein AE, Goryachenkova EV. The β-replacement-specific pyridoxal-P-dependent lyases. Adv Enzymol 1984;56:1–89.

    Article  PubMed  CAS  Google Scholar 

  25. Braunstein AE, Goryachenkova EV, Tolosa EA, et al. Specificity and some other properties of liver serine sulphhydrase: Evidence for its identity with cystathionine β-synthase. Biochim Biophys Acta 1971;242:247–260.

    Article  PubMed  CAS  Google Scholar 

  26. Matsuo Y, Greenberg DM. A crystalline enzyme that cleaves homoserine and cystathionine. I. Isolation procedure and some physicochemical properties. J Biol Chem 1958;230:545–560.

    PubMed  CAS  Google Scholar 

  27. Nagasawa T, Kanzaki H, Yamada H. Cystathionine γ-lyase of Streptomyces phaeochromogenes: the occurrence of cystathionine γ-lyase in filamentous bacteria and its purification and characterization. J Biol Chem 1984;259:10,393–10,403.

    CAS  Google Scholar 

  28. Kanzaki H, Kobayashi M, Nagasawa T, et al. Purification and characterization of cystathionine γ-synthase type II from Bacillus sphaericus. Eur J Biochem 1987;163:105–112.

    Article  PubMed  CAS  Google Scholar 

  29. Kanzaki H, Nagasawa T, Yamada H. Insight into the active site of Streptomyces cystathionine γ-lyase based on the results of studies on its substrate specificity. Biochim Biophys Acta 1987;913:45–50.

    Article  PubMed  CAS  Google Scholar 

  30. Messerschmidt A, Worbs M, Steegborn C, et al. Determinants of enzymatic specificity in the Cys-Metmetabolism PLP-dependent enzymes family: crystal structure of cystathionine γ-lyase from yeast and intrafamiliar structure comparison. Biol Chem 2003;384:373–386.

    Article  PubMed  CAS  Google Scholar 

  31. Steegborn C, Clausen T, Sondermann P, et al. Kinetics and inhibition of recombinant human cystathionine γ-lyase: toward the rational control of transsulfuration. J Biol Chem 1999;274:12,675–12,684.

    Article  CAS  Google Scholar 

  32. Meister A. Conversion of the alpha-keto analog of cysteine to pyruvate and sulfur. Fed Proc 1953; 12:245.

    Google Scholar 

  33. Nagahara N, Okazaki T, Nishino T. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese: striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. J Biol Chem 1995;270:16,230–16,235.

    CAS  Google Scholar 

  34. Nagahara N, Nishino T. Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase: cDNA cloning, overexpression, and site-directed mutagenesis. J Biol Chem 1996;271:27,395–27,401.

    CAS  Google Scholar 

  35. Nagahara N, Nishino T. Mercaptopyruvate sulfurtransferase is a rhodanese family. Seikagaku 1996;68:197–201.

    PubMed  CAS  Google Scholar 

  36. Nagahara N, Ito T, Kitamura H, et al. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem Cell Biol 1998;110:243–250.

    Article  PubMed  CAS  Google Scholar 

  37. Chapeville F, Fromageot P. Formation of sulfite, cysteic acid and tourine from the sulfate of the embryonic egg. Biochim Biophys Acta 1957;26:538–558.

    Article  PubMed  CAS  Google Scholar 

  38. Swaroop M, Bradley K, Ohura T, et al. Rat cystathionine β-synthase: gene organization and alternative splicing. J Biol Chem 1992;267:11,455–11,461.

    CAS  Google Scholar 

  39. Alexander FW, Sandmeier E, Mehta PK, et al. Evolutionary relationships among pyridoxa1–5′-phosphate-dependent enzymes: regio-specific alpha, beta and gamma families. Eur J Biochem 1994;219: 953–960.

    Article  PubMed  CAS  Google Scholar 

  40. Meier M, Janosik M, Kery V, et al. Structure of human cystathionine beta-synthase: a unique pyridoxal 5′- phosphate-dependent heme protein. EMBO J 2001;20:3910–3916.

    Article  PubMed  CAS  Google Scholar 

  41. Kery V, Poneleit L, Meyer JD, et al. Binding of pyridoxal 5′-phosphate to the heme protein human cystathionine beta-synthase. Biochemistry 1999;38:2716–2724.

    Article  PubMed  CAS  Google Scholar 

  42. Mino K, Ishikawa K. Characterization of a novel thermostable 0-acetylserine sulfhydrylase from Aeropyrum pernix Kl. J Bacteriol 2003;185:2277–2284.

    Article  PubMed  CAS  Google Scholar 

  43. Papadopoulos AI, Walker J, Barrett J. A novel cystathionine β-synthase from Panagrellus redivivus (Nematoda). Int J Biochem Cell Biol 1996;28:543–549.

    Article  PubMed  CAS  Google Scholar 

  44. Jhee KH, Niks D, McPhie P, et al. The reaction of yeast cystathionine beta-synthase is rate-limited by the conversion of aminoacrylate to cystathionine. Biochemistry 2001;40:10,873–10,880.

    Article  Google Scholar 

  45. Maclean KN, Janosik M, Oliveriusova J, et al. Transsulfuration in Saccharomyces cerevisiae is not dependent on heme: purification and characterization of recombinant yeast cystathionine beta-synthase. J Inorg Biochem 2000;81:161–171.

    Article  PubMed  CAS  Google Scholar 

  46. Nozaki T, Shigeta Y, Saito-Nakano Y, et al. Characterization of transsulfuration and cysteine biosynthetic pathways in the protozoan hemoflagellate, Trypanosoma cruzi: isolation and molecular characterization of cystathionine beta-synthase and serine acetyltransferase from Trypanosoma. J Biol Chem 2001;276:6516–6523.

    Article  PubMed  CAS  Google Scholar 

  47. Bordo D, Bork P. The rhodanese/Cdc25 phosphatase superfamily: sequence-structure-function relations. EMBO Rep 2002;3:741–746.

    Article  PubMed  CAS  Google Scholar 

  48. Nandi DL, Horowitz PM, Westley J. Rhodanese as a thioredoxin oxidase. Int J Biochem Cell Biol 2000;32:465–473.

    Article  PubMed  CAS  Google Scholar 

  49. Baumeister RG, Schievelbein H, Zickgraf-Rudel G. Toxicological and clinical aspects of cyanide metabolism. Arzneimittelforschung 1975;25:1056–1064.

    PubMed  CAS  Google Scholar 

  50. Westley J. Mammalian cyanide detoxification with sulphane sulphur. Ciba Found Symp 1988;140: 201–218.

    PubMed  CAS  Google Scholar 

  51. Palenchar PM, Buck CJ, Cheng H, et al. Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J Biol Chem 2000;275:8283–8286.

    Article  PubMed  CAS  Google Scholar 

  52. Pagani S, Bonomi F, Cerletti P. Enzymic synthesis of the iron-sulfur cluster of spinach ferredoxin. Eur J Biochem 1984;142:361–366.

    Article  PubMed  CAS  Google Scholar 

  53. Kraus JP, Oliveriusova J, Sokolova J, et al. The human cystathionine β-synthase (CBS) gene: complete sequence, alternative splicing and polymorphisms. Genomics 1998;52:312–324.

    Article  PubMed  CAS  Google Scholar 

  54. Bao L, Vlcek C, Paces V, et al. Identification and tissue distribution of human cystathionine betasynthase messenger-RNA isoforms. Arch Biochem Biophys 1998;350:95–103.

    Article  PubMed  CAS  Google Scholar 

  55. Ratnam S, Maclean KN, Jacobs RL, et al. Hormonal regulation of cystathionine beta-synthase expression in liver. J Biol Chem 2002;277:42,912–42,918.

    Article  CAS  Google Scholar 

  56. Ge Y, Konrad MA, Matherly LH, et al. Transcriptional regulation of the human cystathionine beta-synthase- lb basal promoter: synergistic transactivation by transcription factors NF-Y and Spl /Sp3. Biochem J 2001;357:97–105.

    Article  PubMed  CAS  Google Scholar 

  57. Saur D, Seidler B, Paehge H, et al. Complex regulation of human neuronal nitric-oxide synthase exon lc gene transcription: essential role of Sp and ZNF family members of transcription factors. J Biol Chem 2002;277:25,798–25,814.

    Article  CAS  Google Scholar 

  58. Zhang R, Min W, Sessa WC. Functional analysis of the human endothelial nitric oxide synthase promoter: Spl and GATA factors are necessary for basal transcription in endothelial cells. J Biol Chem 1995;270:15,320–15,326.

    CAS  Google Scholar 

  59. Liang F, Schaufele F, Gardner DG. Functional interaction of NF-Y and Spl is required for type a natriuretic peptide receptor gene transcription. J Biol Chem 2001;276:1516–1522.

    Article  PubMed  CAS  Google Scholar 

  60. Wang S, Wang W, Wesley RA, et al. A Spl binding site of the tumor necrosis factor alpha promoter functions as a nitric oxide response element. J Biol Chem 1999;274:33,190–33,193.

    CAS  Google Scholar 

  61. Zhang J, Wang S, Wesley RA, Danner RL. Adjacent sequence controls the response polarity of nitric oxide-sensitive Sp factor binding sites. J Biol Chem 2003;278:29,192–29,200.

    CAS  Google Scholar 

  62. Mudd SH, Finkelstein JD, Irreverre F, et al. Transsulfuration in mammals: microassays and tissue distributions of three enyzmes of the pathway. J Biol Chem 1965;240:4382–4392.

    PubMed  CAS  Google Scholar 

  63. Quere I, Paul V, Rouillac C, et al. Spatial and temporal expression of the cystathionine beta-synthase gene during early human development. Biochem Biophys Res Commun 1999;254:127–137.

    Article  PubMed  CAS  Google Scholar 

  64. Robert K, V ialard F, Thiery E, et al. Expression of the cystathionine beta synthase (CBS) gene during mouse development and immunolocalization in adult brain. J Histochem Cytochem 2003; 51:363–371.

    Article  PubMed  CAS  Google Scholar 

  65. Maclean KN, Janosik M, Kraus E, et al. Cystathionine beta-synthase is coordinately regulated with proliferation through a redox-sensitive mechanism in cultured human cells and Saccharomyces cerevisiae. J Cell Physiol 2002;192:81–92.

    Article  PubMed  CAS  Google Scholar 

  66. Janosik M, Kery V, Gaustadnes M, et al. Regulation of human cystathionine beta-synthase by S-adenosyl-L-methionine : evidence for two catalytically active conformations involving an autoinhibitory domain in the C-terminal region. Biochemistry 2001;40:10,625–10,633.

    Article  CAS  Google Scholar 

  67. Kozich V, Kraus JP. Screening for mutations by expressing patient cDNA segments in E. coli—homocystinuria due to cystathionine β-synthase deficiency. Hum Mutat 1992;1:113–123.

    Article  PubMed  CAS  Google Scholar 

  68. Roper MD, Kraus JP. Rat cystathionine β-synthase: expression of four alternatively spliced isoforms in transfected cultured cells. Arch Biochem Biophys 1992;298:514–521.

    Article  PubMed  CAS  Google Scholar 

  69. Janosik M, Kery V, Gaustadnes M, et al. Regulation of human cystathionine beta-synthase by S-adenosyl-L-methionine: evidence for two catalytically active conformations involving an autoinhibitory domain in the C-terminal region. Biochemistry 2001;40:10,625–10,633.

    Article  CAS  Google Scholar 

  70. Zou CG, Banerjee R. Tumor necrosis factor-alpha-induced targeted proteolysis of cystathionine beta-synthase modulates redox homeostasis. J Biol Chem 2003;278:16,802–16,808.

    CAS  Google Scholar 

  71. Shan X, Dunbrack RL Jr., Christopher SA, et al. Mutations in the regulatory domain of cystathionine beta-synthase can functionally suppress patient-derived mutations in cis. Hum Mol Genet 2001;10: 635–643.

    Article  PubMed  CAS  Google Scholar 

  72. Maclean KN, Gaustadnes M, Oliveriusova J, et al. High homocysteine and thrombosis without connective tissue disorders are associated with a novel class of cystathionine beta-synthase (CBS) mutations. Hum Mutat 2002;19:641–655.

    Article  PubMed  CAS  Google Scholar 

  73. Taoka S, Ojha S, Shan X, et al. Evidence for heme-mediated redox regulation of human cystathionine β-synthase activity. J Biol Chem 1998;273:25,179–25,184.

    Article  CAS  Google Scholar 

  74. Bruno S, Schiaretti F, Burkhard P, et al. Functional properties of the active core of human cystathionine beta-synthase crystals. J Biol Chem 2001;276:16–19.

    Article  PubMed  CAS  Google Scholar 

  75. Taoka S, Lepore BW, Kabil O, Ojha S, Ringe D, Banerjee R. Human cystathionine beta-synthase is a heme sensor protein: evidence that the redox sensor is heme and not the vicinal cysteines in the CXXC motif seen in the crystal structure of the truncated enzyme. Biochemistry 2002;41:10,454–10,461.

    Article  CAS  Google Scholar 

  76. Reynolds MF, Parks RB, Burstyn JN, et al. Electronic absorption, EPR, and resonance raman spectroscopy of CooA, a CO-sensing transcription activator from R. rubrum, reveals a five-coordinate NO-heme. Biochemistry 2000;39:388–396.

    Article  PubMed  CAS  Google Scholar 

  77. Janosik M, Oliveriusova J, Janosikova B, et al. Impaired heme binding and aggregation of mutant cystathionine beta-synthase subunits in homocystinuria. Am J Hum Genet 2001;68:1506–1513.

    Article  PubMed  CAS  Google Scholar 

  78. Albakri QA, Stuehr DJ. Intracellular assembly of inducible NO synthase is limited by nitric oxide-mediated changes in heme insertion and availability. J Biol Chem 1996;271:5414–5421.

    Article  PubMed  CAS  Google Scholar 

  79. Chen Y, Panda K, Stuehr DJ. Control of nitric oxide synthase dimer assembly by a heme-NO-dependent mechanism. Biochemistry 2002;41:4618–4625.

    Article  PubMed  CAS  Google Scholar 

  80. Eto K, Ogasawara M, Umemura K, et al. Hydrogen sulfide is produced in response to neuronal excitation. J Neurosci 2002;22:3386–3391.

    PubMed  CAS  Google Scholar 

  81. Eto K, Kimura H. The production of hydrogen sulfide is regulated by testosterone and S-adenosyl-L-methionine in mouse brain. J Neurochem 2002;83:80–86.

    Article  PubMed  CAS  Google Scholar 

  82. Griscavage JM, Fukuto JM, Komori Y, et al. Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group: role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem 1994;269:21,644–21,649.

    CAS  Google Scholar 

  83. Nishida CR, Ortiz de Montellano PR. Autoinhibition of endothelial nitric-oxide synthase: identification of an electron transfer control element. J Biol Chem 1999;274:14,692–14,698.

    CAS  Google Scholar 

  84. Lane P, Gross SS. The autoinhibitory control element and calmodulin conspire to provide physiological modulation of endothelial and neuronal nitric oxide synthase activity. Acta Physiol Scand 2000;168:53–63.

    Article  PubMed  CAS  Google Scholar 

  85. Sturman JA, Rassin DK, Gaull GE. Relation of three enzymes of transsulphuration to the concentration of cystathionine in various regions of monkey brain. J Neurochem 1970;17:1117–1119.

    Article  PubMed  CAS  Google Scholar 

  86. Sturman JA, Gaull GE, Niemann WH. Cystathionine synthesis and degradation in brain, liver and kidney of the developing monkey. J Neurochem 1976;26:457–463.

    Article  PubMed  CAS  Google Scholar 

  87. Levonen AL, Lapatto R, Saksela M, et al. Human cystathionine γ-lyase: developmental and in vitro expression of two isoforms. Biochem J 2000;347(pt 1):291–295.

    Article  PubMed  CAS  Google Scholar 

  88. Murdoch JC, Rodger JC, Rao SS, et al. Down’s syndrome: an atheroma-free model? Br Med J 1977;2:226–228.

    Article  PubMed  CAS  Google Scholar 

  89. Richards BW, Enver F. Blood pressure in Down’s syndrome. J Ment Defic Res 1979;23:123–135.

    PubMed  CAS  Google Scholar 

  90. Morrison RA, McGrath A, Davidson G, et al. Low blood pressure in Down’s syndrome: a link with Alzheimer’s disease? Hypertension 1996;28:569–575.

    Article  PubMed  CAS  Google Scholar 

  91. Teshigawara M, Matsumoto S, Tsuboi S, et al. Changes in levels of glutathione and related compounds and activities of glutathione-related enzymes during rat liver regeneration. Res Exp Med (Berl) 1995;195:55–60.

    Article  CAS  Google Scholar 

  92. Martin JA, Sastre J, de la Asuncion JG, et al. Hepatic γ-cystathionase deficiency in patients with AIDS. JAMA 2001;285:1444–1445.

    Article  PubMed  CAS  Google Scholar 

  93. Awata S, Nakayama K, Sato A, et al. Changes in cystathionine t-lyase levels in rat during lactation. Biochem Mol Biol Int 1993;31:185–191.

    PubMed  CAS  Google Scholar 

  94. She QB, Hayakawa T, Tsuge H. Alteration in the phosphatidylcholine biosynthesis of rat liver micro-somes caused by vitamin B6 deficiency. Biosci Biotechnol Biochem 1995;59:163–167.

    Article  PubMed  CAS  Google Scholar 

  95. Godon C, Lagniel G, Lee J, et al. The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 1998;273:22,480–22,489.

    Article  CAS  Google Scholar 

  96. Habib GM, Shi ZZ, Ou CN, et al. Altered gene expression in the liver of y-glutamyl transpeptidasedeficient mice. Hepatology 2000;32:556–562.

    Article  PubMed  CAS  Google Scholar 

  97. Gross C, Kelleher M, Iyer VR, et al. Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. J Biol Chem 2000;275:32,310–32,316.

    Article  CAS  Google Scholar 

  98. Aminlari M, Li A, Kunanithy V, et al. Rhodanese distribution in porcine (Sus scrota) tissues. Comp Biochem Physiol B Biochem Mol Biol 2002;132:309–313.

    Article  PubMed  Google Scholar 

  99. Mimori Y, Nakamura S, Kameyama M. Regional and subcellular distribution of cyanide metabolizing enzymes in the central nervous system. J Neurochem 1984;43:540–545.

    Article  PubMed  CAS  Google Scholar 

  100. Wrobel M, Wlodek L, Srebro Z. Sulfurtransferases activity and the level of low-molecular-weight thiols and sulfane sulfur compounds in cortex and brain stem of mouse. Neurobiology (Bp) 1996;4: 217–222.

    CAS  Google Scholar 

  101. Maduh EU, Baskin SI. Protein kinase C modulation of rhodanese-catalyzed conversion of cyanide to thiocyanate. Res Commun Mol Pathol Pharmacol 1994;86:155–173.

    PubMed  CAS  Google Scholar 

  102. Buzaleh AM, Vazquez ES, Batlle AM. The effect of cyanide intoxication on hepatic rhodanese kinetics. Gen Pharmacol 1990;21:219–222.

    Article  PubMed  CAS  Google Scholar 

  103. Buzaleh AM, Vazquez ES, Del Carmen Batlle AM. In vitro effect of cyanide, thiosulphate and S-adenosyl-L-methionine on the activity of rhodanese and other enzymes. Gen Pharmacol 1991;22:281–286.

    Article  PubMed  CAS  Google Scholar 

  104. Picton R, Eggo MC, Merrill GA, et al. Mucosal protection against sulphide: importance of the enzyme rhodanese. Gut 2002;50:201–205.

    Article  PubMed  CAS  Google Scholar 

  105. Walker J, Barrett J. Biochemical characterisation of the enzyme responsible for “activated L-serine sulphydrase” activity in nematodes. Exp Parasitol 1992;74:205–215.

    Article  PubMed  CAS  Google Scholar 

  106. Walker J, Barrett J, Thong K-W. The identification of a variant form of cystathionine β-synthase in nematodes. Exp Parasitol 1992;75:415–424.

    Article  PubMed  CAS  Google Scholar 

  107. Pieniazek NJ, Stepien PP, Paszewski A. An Aspergillus nidulans mutant lacking cystathionine β-synthase: identity of L-serine sulfhydrylase with cystathionine β-synthase and its distinctness from O-acetyl-L-serine sulfhydrylase. Biochim Biophys Acta 1973;297:37–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maclean, K.N., Kraus, J.P. (2004). Hydrogen Sulfide Production and Metabolism in Mammalian Tissues. In: Wang, R. (eds) Signal Transduction and the Gasotransmitters. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-806-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-806-9_16

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-512-5

  • Online ISBN: 978-1-59259-806-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics