Skip to main content

Clinical Molecular Diagnostics for Proteasome Inhibitors in Cancer Therapy

  • Chapter
Proteasome Inhibitors in Cancer Therapy

Abstract

The field of molecular diagnostics is in a state of rapid evolution featuring continuous technology developments and new clinical opportunities for drug selection, predicting efficacy and toxicity, and monitoring disease outcome. The introduction of new anticancer agents targeting the proteasome has created opportunities for the development of companion diagnostics to guide drug use and patient selection. In this chapter the field of molecular diagnostics is reviewed relevant to cancer, and a series of established prognostic factors known to predict the clinical course of multiple myeloma is presented. Biomarkers impacted by the proteasome pathway that may become clinically useful predictors of therapy related outcome are also included. The chapter concludes with a consideration of the emerging field of pharmacogenomics and its potential use for the prediction of drug response for patients treated with proteasome inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Keesee SK. Molecular diagnostics: impact upon cancer detection. Expert Rev Mol Diagn 2002;2:91–92.

    Article  PubMed  Google Scholar 

  2. Poste G. Molecular diagnostics: a powerful new component of the healthcarevalue chain. Expert Rev Mol Diagn 2001;1:1–5.

    Article  PubMed  CAS  Google Scholar 

  3. Leonard DG. The present and future of molecular diagnostics. Mol Diagn 2001;6:71–72.

    Article  PubMed  CAS  Google Scholar 

  4. Vogel CL, et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002;20:719–726.

    Article  PubMed  CAS  Google Scholar 

  5. O’Dwyer ME, et al. STI571: an inhibitor of the BCR-ABL tyrosine kinase for the treatment of chronic myelogenous leukaemia. Lancet Oncol 2000;1:207–211.

    Article  PubMed  Google Scholar 

  6. Amos J, et al. Commercial molecular diagnostics in the U.S.: The Human Genome Project to the clinical laboratory. Hum Mutat 2002;19:324–333.

    Article  PubMed  CAS  Google Scholar 

  7. Ross JS, et al. Integrating diagnostics and therapeutics: revolutionizing drug discovery and patient care. Drug Discov Today 2002;7:859–864.

    Article  PubMed  Google Scholar 

  8. Morgan GJ, et al. Modern molecular diagnostics and the management of haematological malignancies. Clin Lab Haematol 1998;20:135–141.

    Article  PubMed  CAS  Google Scholar 

  9. Relling MV, et al. Pharmacogenetics and cancer therapy. Nat Rev Cancer 2001;1:99–108.

    Article  PubMed  CAS  Google Scholar 

  10. Taylor JG, et al. Using genetic variation to study human disease. Trends Mol Med 2001;7:507–512.

    Article  PubMed  CAS  Google Scholar 

  11. Diasio RB, et al. The role of pharmacogenetics and pharmacogenomics in cancer chemotherapy with 5-fluorouracil. Pharmacology 2000;61:199–203.

    Article  PubMed  CAS  Google Scholar 

  12. Relling MV, et al. Pharmacogenetics and cancer therapy. Nat Rev Cancer 2001;1:99–108.

    Article  PubMed  CAS  Google Scholar 

  13. Pullarkat ST, et al. Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy. Pharmacogenomics J 2001;1:65–70.

    Article  PubMed  CAS  Google Scholar 

  14. Ingelman-Sundberg M. Genetic susceptibility to adverse effects of drugs and environmental toxicants. The role of the CYP family of enzymes. Mutat Res 2001;482:11–19.

    Article  PubMed  CAS  Google Scholar 

  15. Ingelman-Sundberg M. Pharmacogenetics: an opportunity for a safer and more efficient pharmacotherapy. J Intern Med 2001;250:186–200.

    Article  PubMed  CAS  Google Scholar 

  16. Rusnak JM, et al. Pharmacogenomics: a clinician’s primer on emerging technologies for improved patient care. Mayo Clin Proc 2001;76:299–309.

    Article  PubMed  CAS  Google Scholar 

  17. Hess P, et al. Impact of pharmacogenomics on the clinical laboratory. Mol Diagn 1999;4:289–298.

    Article  PubMed  CAS  Google Scholar 

  18. Schena M, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995;270:467–470.

    Article  PubMed  CAS  Google Scholar 

  19. Ramaswamy S, et al. DNA microarrays in clinical oncology. J Clin Oncol 2002;20:1932–1941.

    PubMed  CAS  Google Scholar 

  20. Raetz EA, et al. Gene expression profiling. Methods and clinical applications in oncology. Hematol Oncol Clin North Am 2001;15:911–930.

    Article  PubMed  CAS  Google Scholar 

  21. Diasio RB, et al. The role of pharmacogenetics and pharmacogenomics in cancer chemotherapy with 5-fluorouracil. Pharmacology 2000;61:199–203

    Article  PubMed  CAS  Google Scholar 

  22. Los G, et al. Using mRNA expression profiling to determine anticancer drug efficacy. Cytometry 2002;47:66–71.

    Article  PubMed  CAS  Google Scholar 

  23. Slonim DK. Transcriptional profiling in cancer: the path to clinical pharmacogenomics. Pharmacogenomics 2001;2:123–136.

    Article  PubMed  CAS  Google Scholar 

  24. Lightcap ES, et al. Proteasome inhibition measurements: clinical application. Clin Chem 2000;46:673–683.

    PubMed  CAS  Google Scholar 

  25. Adams J. Development of the proteasome inhibitor PS-341. Oncologist 2002;7:9–16.

    Article  PubMed  CAS  Google Scholar 

  26. Elliott PJ, et al. The proteasome: a new target for novel drug therapies. Am J Clin Pathol 2001;116:637–646.

    Article  PubMed  CAS  Google Scholar 

  27. Albanell J, et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor LD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol 2002;20:110–124.

    Article  PubMed  CAS  Google Scholar 

  28. Hamadeh HK, et al. Discovery in toxicology: mediation by gene expression array technology. J Biochem Mol Toxicol 2001;15:231–242.

    Article  PubMed  CAS  Google Scholar 

  29. Fielden MR, et al. Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology. Toxicol Sci 2001;60:6–10.

    Article  PubMed  CAS  Google Scholar 

  30. Burchiel SW, Knall CM, Davis JW 2nd, Paules RS, Boggs SE, Afshari CA. Analysis of genetic and epigenetic mechanisms of toxicity: potential roles of toxicogenomics and proteomics in toxicology. Toxicol Sci 2001;59:193–195.

    Article  PubMed  CAS  Google Scholar 

  31. Hamadeh HK, et al. An overview of toxicogenomics. Curr Issues Mol Biol 2002;4:45–56.

    PubMed  CAS  Google Scholar 

  32. Ross JS, et al. Techniques in oncology molecular diagnostics. In: Cancer Molecular Diagnostics (Nakamura R, Grody WW, eds). Humana, Totowa, NJ, 2003.

    Google Scholar 

  33. Baldwin AS. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649–683.

    Article  PubMed  CAS  Google Scholar 

  34. Rayet B, et al. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999;18:6938–6947.

    Article  PubMed  CAS  Google Scholar 

  35. Wang C-Y, et al. Control of inducible chemoresistance: enhanced antitumor therapy through increased apoptosis by inhibition of NF-κB. Nat Med 1999;5:412–417.

    Article  PubMed  Google Scholar 

  36. Sunwoo JB, et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-kappa B, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin Cancer Res 2001 7:1419–1428

    PubMed  CAS  Google Scholar 

  37. Lin ZP, et al. Prevention of brefeldin A-induced resistance to teniposide by the proteasome inhibitor MG-132: involvement of NF-κB activation in drug resistance. Cancer Res 1998;58:3059–3065.

    PubMed  CAS  Google Scholar 

  38. Schenkein D. Proteasome inhibitors in the treatment of B-cell malignancies. Clin Lymphoma 2002;3:49–55.

    Article  PubMed  CAS  Google Scholar 

  39. Adams J. Preclinical and clinical evaluation of proteasome inhibitor PS-341 for the treatment of cancer. Curr Opin Chem Biol 2002;6:493–500.

    Article  PubMed  CAS  Google Scholar 

  40. Mitsiades N, et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 2002;99:4079–4086.

    Article  PubMed  CAS  Google Scholar 

  41. Berenson JR, et al. The role of nuclear factor-kappaB in the biology and treatment of multiple myeloma. Semin Oncol 2001;28:626–633.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ross, J.S. et al. (2004). Clinical Molecular Diagnostics for Proteasome Inhibitors in Cancer Therapy. In: Adams, J. (eds) Proteasome Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-794-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-794-9_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-452-4

  • Online ISBN: 978-1-59259-794-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics