Skip to main content

Effects of the HIV-1 Protease Inhibitor Ritonavir on Proteasome Activity and Antigen Presentation

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Ritonavir is a potent inhibitor of the protease encoded by the human immunodeficiency virus (HIV)-1 and is clinically applied to suppress HIV-1 replication in AIDS patients. When following up clinical hints pointing at a virus-independent effect of ritonavir on the cytotoxic immune response, we found that ritonavir is a modulator of proteasome activity. It competitively inhibits the chymotrypsin-like activity of the proteasome while the trypsin-like activity is markedly enhanced. Kinetic inhibitor studies revealed that the latter effect is due to binding of ritonavir to a non-catalytic modifier site. In this review we summarize the effects of ritonavir and other proteasome inhibitors on antigen presentation and the antiviral immune response. Moreover, we review experiments which show that selective proteasome inhibitors can serve as immune modulators, a function that could be exploited for the treatment of autoimmune diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moyle G, et al. Current knowledge and future prospects for the use of HIV protease inhibitors. Drugs 1996:51:701–712.

    Article  PubMed  CAS  Google Scholar 

  2. Kempf DJ, et al. ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans. Proc Nall Acad Sci USA 1995;92:2484–2488.

    Article  CAS  Google Scholar 

  3. Kohl NE, et al. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci USA 1988;85:4686–4690.

    Article  PubMed  CAS  Google Scholar 

  4. Wlodawer A, et al. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 1989;245:616–621.

    Article  PubMed  CAS  Google Scholar 

  5. Navia MA, et al. Three-dimensional structure of aspartyl protease from human immunodeficieny virus HIV-1. Nature 1989;337:615–620.

    Article  PubMed  CAS  Google Scholar 

  6. Groettrup M, et al. The interferon-γ-inducible 11S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20S proteasome in vitro. J Biol Chem 1995;270:23808–23815.

    Article  PubMed  CAS  Google Scholar 

  7. Niedermann G, et al. Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity 1995;2:289–299.

    Article  PubMed  CAS  Google Scholar 

  8. Nussbaum AK, et al. Cleavage motifs of the yeast 20S proteasome beta subunits deduced from digests of enolase 1. Proc Natl Acad Sci USA 1998;95:12504–12509.

    Article  PubMed  CAS  Google Scholar 

  9. Dick TP, et al. Contribution of proteasomal beta-subunits to the cleavage of peptide substrates analyzed with yeast mutants. J Biol Chem 1998;273:25637–25646.

    Article  PubMed  CAS  Google Scholar 

  10. Perrin L, et al. HIV treatment failure: testing for HIV resistance in clinical practice. Science 1998;280:1871–1873.

    Article  PubMed  CAS  Google Scholar 

  11. Tovo PA. Highly active antiretroviral therapy inhibits cytokine production in HIV-uninfected subjects. AIDS 2000;14:743–744.

    Article  PubMed  CAS  Google Scholar 

  12. André P, et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc Natl Acad Sci USA 1998;95:13120–13124.

    Article  PubMed  Google Scholar 

  13. Schmidtke G, et al. How an inhibitor of the HIV-1 protease modulates proteasome activity. J Biol Chem 1999;274:35734–35740.

    Article  PubMed  CAS  Google Scholar 

  14. Heinemeyer W, et al. The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem 1997;272:25200–25209.

    Article  PubMed  CAS  Google Scholar 

  15. Salzmann U, et al. Mutational analysis of subunit i beta 2 (MECL-1) demonstrates conservation of cleavage specificity between yeast and mammalian proteasomes. FEBS Lett 1999;454:11–15.

    Article  PubMed  CAS  Google Scholar 

  16. Kisselev AF, et al. Proteasome active sites allosterically regulate each other, suggesting a cyclical bitechew mechanism for protein breakdown. Mol Cell 1999;4:395–402.

    Article  PubMed  CAS  Google Scholar 

  17. Schmidtke G, et al. Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20S proteasome. J Biol Chem 2000;275:22056–22063.

    Article  PubMed  CAS  Google Scholar 

  18. Myung J, et al. Lack of proteasome active site allostery as revealed by subunit- specific inhibitors. Mol Cell 2001;7:411–420.

    Article  PubMed  CAS  Google Scholar 

  19. Groll M, et al. Structure of 20 S proteasome from yeast at 2.4A resolution. Nature 1997;386:463–471.

    Article  PubMed  CAS  Google Scholar 

  20. Johnson N, et al. Anti-retroviral therapy reverses HIV-associated abnormalities in lymphocyte apoptosis. Clin Exp Immunol 1998;113:229–234.

    Article  PubMed  CAS  Google Scholar 

  21. Weichold FF, et al. HIV-1 protease inhibitor Ritonavir modulates susceptibility to apoptosis of uninfected T cells. J Hum Virol 1999;2:261–269.

    PubMed  CAS  Google Scholar 

  22. Sloand EM, et al. Human immunodeficiency virus type 1 protease inhibitor modulates activation of peripheral blood CD4+ T cells and decreases their susceptibility to apoptosis in vitro and in vivo. Blood 1999;94:1021–1027.

    PubMed  CAS  Google Scholar 

  23. Böhler T, et al. Downregulation of increased CD95 (APO-1/Fas) ligand in T cells from human immunodeficiency virus-type 1-infected children after antiretroviral therapy. Blood 1997;90:886–898.

    PubMed  Google Scholar 

  24. Phenix BN, et al. Antiapoptotic mechanism of HIV protease inhibitors: preventing mitochondrial transmembrane potential loss. Blood 2001;98:1078–1085.

    Article  PubMed  CAS  Google Scholar 

  25. Hosseini H, et al. Protection against experimental autoimmune encephalomyelitis by a proteasome modulator. J Neuroimmunol 2001;118:233–244.

    Article  PubMed  CAS  Google Scholar 

  26. Berthold HK, et al. Influence of protease inhibitor therapy on lipoprotein metabolism. J Intern Med 1999;246:567–575.

    Article  PubMed  CAS  Google Scholar 

  27. Liang J, et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia. Nat Med 2001;7:1327–1331.

    Article  PubMed  CAS  Google Scholar 

  28. Gagnon AM, et al. Protease inhibitors and adipocyte differentiation in cell culture. Lancet 1998;352:1032.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang B, et al. Inhibition of adipocyte differentiation by HIV protease inhibitors. J Clin Endocrinol Metab 1999;84:4274–4277.

    Article  PubMed  CAS  Google Scholar 

  30. Gutmann H, et al. Interactions of HIV protease inhibitors with ATP-dependent drug export proteins. Mol Pharmacol 1999;56:383–389.

    PubMed  CAS  Google Scholar 

  31. Gruber A, et al. Differential effects of HIV-1 protease inhibitors on dendritic cell immunophenotype and function. J Biol Chem 2001;276:47840–47843.

    PubMed  CAS  Google Scholar 

  32. Fenteany G, et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 1995;268:726–731.

    Article  PubMed  CAS  Google Scholar 

  33. Meng L, et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci USA 1999;96:10403–10408.

    Article  PubMed  CAS  Google Scholar 

  34. Schwarz K, et al. The use of LCMV-specific T cell hybridomas for the quantitative analysis of MHC class I restricted antigen presentation. J Immunol Methods 2000;237:199–202.

    Article  PubMed  CAS  Google Scholar 

  35. Schwarz K, et al. The selective proteasome inhibitors lactacystin and expoxomicin can be used to either up- or downregulate antigen presentation at non-toxic doses. J Immunol 2000;164:6147–6157.

    PubMed  CAS  Google Scholar 

  36. Ossendorp F, et al. A single residue exchange within a viral CTL epitope alters proteasome-mediated degradation resulting in lack of antigen presentation. Immunity 1996;5:115–124.

    Article  PubMed  CAS  Google Scholar 

  37. Theobald M, et al. The sequence alteration associated with a mutational hotspot in p53 protects cells from lysis by cytotoxic T lymphocytes specific for a flanking peptide epitope. J Exp Med 1998;188:1017–1028.

    Article  PubMed  CAS  Google Scholar 

  38. Valmori D, et al. Modulation of proteasomal activity required for the generation of a cytotoxic T lymphocyte-defined peptide derived from the tumor antigen MAGE-3. J Exp Med 1999;189:895–905.

    Article  PubMed  CAS  Google Scholar 

  39. Vinitsky A, et al. The generation of MHC class I-associated peptides is only partially inhibited by proteasome inhibitors: involvement of nonproteasomal cytosolic proteases in antigen processing? J Immunol 1997;159:554–564.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Groettrup, M., de Giuli, R., Schmidtke, G. (2004). Effects of the HIV-1 Protease Inhibitor Ritonavir on Proteasome Activity and Antigen Presentation. In: Adams, J. (eds) Proteasome Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-794-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-794-9_17

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-452-4

  • Online ISBN: 978-1-59259-794-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics