Skip to main content

Prostate Cancer Markers

From Discovery to the Clinic

  • Chapter
Cancer Diagnostics

Abstract

In 1936 prostatic acid phosphatase (PAP) became the key serum marker for monitoring prostate cancer (PCa) treatment (1–3). Approximately 50 yr later, prostate-specific antigen (PSA) emerged as the most useful serum marker for PCa management followed a few years later by the watershed application for early detection. In spite of the many tumor marker candidates proposed and studied for over 50 yr, these two prostate proteins remained the most clinically requested PCa serum tests (Table 1). With the accumulation of human genome sequence knowledge and extraordinary methodological advances in gene arrays and proteomics, new PCa molecular tests appear to be on the horizon. Although the biological rationale for a marker’s function may not be known when research is initiated, marker candidates with biological basis for their function, will likely be the most useful. Therefore, the biological function of a marker is an important factor to consider when assessing the potential of new markers. Table 2 and Fig. 1 illustrate PCa markers catagorized by biological activity. What are the clinical utilities and deficiencies for PSA today and what are the features of PAP and PSA, which contribute to the long standing utility of these markers? These properties will be important when assessing the potential of new markers for PCa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sproul EE. 1980. Acid phosphatase and prostate cancer: historical overview. Prostate 4:411–413.

    Article  Google Scholar 

  2. Chu TM. 1990. Prostate cancer-associated markers. Immunology

    Google Scholar 

  3. Wang MC Valenzuela LA, Murphy GP, and Chu TM. 1979. Purification of a human prostate specific antigen. Invest. Urol. 17:159–163.

    PubMed  Google Scholar 

  4. Ellis WJ, Vessella RL, Noteboom JL, Lange PH, Wolfert RL, Rittenhouse HG. 1997. Early detection of recurrent prostate cancer with an ultrasensitive chemiluminescent prostate-specific antigen assay. Urology 50(4):573–579.

    Article  PubMed  CAS  Google Scholar 

  5. Takayama TK, Vessella RL, Brawer MK, True LD, Noteboom J, Lange PH. 1994.Urinary prostate specific antigen levels after radical prostatectomy.J. Urol. 1:82–87.

    Google Scholar 

  6. Oesterling JE, Tekchandani AH, Martin SK. 1996. The periurethral glands do not significantly influence the serum prostate specific antigen concentration. J. Urol. 5:1658–1660.

    Google Scholar 

  7. Oh J, Colberg JW, Ornstein DK. 1999. Current followup strategies after radical prostatectomy: a survey of American Urological Association urologists. J. Urol. 2:520–523.

    Google Scholar 

  8. Dahnert WF, Hamper UM, Eggleston JC, Walsh PC, Sanders RC. 1986. Prostatic evaluation by transrectal sonography with histopathologic correlation: the echopenic appearance of early carcinoma. Radiology 1:97–102.

    Google Scholar 

  9. Shinohara K, Wheeler TM, Scardino PT. 1989. The appearance of prostate cancer on transrectal ultrasonography: correlation of imaging and pathological examinations. J. Urol. 1:76–82.

    Article  Google Scholar 

  10. Hodge KK, McNeal JE, Terris MK, Stamey TA. 1989. Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J. Urol. 1:71–74.

    Article  Google Scholar 

  11. Catalona WJ, Smith DS, Ratliff TL, et al. 1991.Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N. Engl. J. Med. 324:1156–1161.

    Article  PubMed  CAS  Google Scholar 

  12. Prostate cancer vaccine-Northwest Biotherapeutics: CaPVax, DC1/HRPC, DCVax-Prostate. BioDrugs 3:226–227.

    Google Scholar 

  13. Colberg JW, Smith DS, Catalona WJ. 1993. Prevalence and pathological extent of prostate cancer in men with prostate specific antigen levels of 2.9 to 4.0 ng./mL. J. Urol. 3:507–509.

    Google Scholar 

  14. Catalona WJ, Richie JP, Ahmann FR, et al. 1994. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J. Urol. 5:1283–1290.

    Google Scholar 

  15. Holmberg L, Bill-Axelson A, Helgesen F, et al. 2002. A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. N. Engl. J. Med. 347(11):781–789.

    Article  PubMed  Google Scholar 

  16. Soergel TM, Koch MO, Foster RS, et al. 2001.Accuracy of predicting long-term prostate specific antigen outcome based on early prostate specific antigen recurrence results after radical prostatectomy. J. Urol. 6:2198–2201.

    Google Scholar 

  17. Small EJ and Roach M III. 2002. Prostate-specific antigen in prostate cancer: a case study in the development of a tumor marker to monitor recurrence and assess response. Semin. Oncol. 3:264–273.

    Article  CAS  Google Scholar 

  18. Partin AW, Pound CR, Clemens JQ, Epstein JI, Walsh PC. 1993. Serum PSA after anatomic radical prostatectomy. The Johns Hopkins experience after 10 years. Urol. Clin. North. Am. 4:713–725.

    Google Scholar 

  19. Walsh PC. 2002. Surgery and the reduction of mortality from prostate cancer. N. Engl. J. Med. 11:839–840.

    Article  Google Scholar 

  20. Candas B, Cusan L, Gomez JL, et al. 2000. Evaluation of prostatic specific antigen and digital rectal examination as screening tests for prostate cancer. Prostate 45:19–35.

    Article  PubMed  CAS  Google Scholar 

  21. Grumet SC and Bruner DW. 2000. The identification and screening of men at high risk for developing prostate cancer. Urol. Nurs. 20:15–24. 22. Moul JW. 2000. Prostate specific antigen only progression of prostate cancer. J. Urol. 6:1632–1642.

    Google Scholar 

  22. Dattoli M, Wallner K, True L, et al. 1999. Prognostic role of serum prostatic acid phosphatase for 103Pd-based radiation for prostatic carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 4:853–856.

    Article  Google Scholar 

  23. Moul JW, Connelly RR, Perahia B, McLeod DG. 1998. The contemporary value of pretreatment prostatic acid phosphatase to predict pathological stage and recurrence in radical prostatectomy cases. J. Urol. 3:935–940.

    Google Scholar 

  24. Bunting PS. 1999. Is there still a role for prostatic acid phosphatase? CSCC Position Statement. Canadian Society of Clinical Chemists. Clin. Biochem. 8:591–594.

    Article  Google Scholar 

  25. Inoue Y, Takaue Y, Takei M, et al. 2001. Induction of tumor specific cytotoxic T lymphocytes in prostate cancer using prostatic acid phosphatase derived HLA-A2402 binding peptide. J. Urol. 4:1508–1513.

    Google Scholar 

  26. McNeel DG, Nguyen LD, Disis ML. 2001. Identification of T helper epitopes from prostatic acid phosphatase. Cancer Res. 13:5161–5167.

    Google Scholar 

  27. Peshwa MV, Shi JD, Ruegg C, Laus R, van Schooten WC. 1998. Induction of prostate tumorspecific CD8+ cytotoxic T-lymphocytes in vitro using antigen-presenting cells pulsed with prostatic acid Phosphatase peptide. 2:129–138.

    Google Scholar 

  28. Nakamura RM. 1998. Current status and future directions in standardization of prostate-specific antigen immunoassay. Urology 51:83–88.

    Article  PubMed  CAS  Google Scholar 

  29. Semjonow A, Brandt B, Oberpenning F, Hertle L. 1995. Different determination methods make interpretation of prostate-specific antigen more difficult. Urologe A 4:303–315.

    Google Scholar 

  30. Partin AW, Mangold LA, Lamm DM, Walsh PC, Epstein JI, Pearson JD. 2001. Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology 6:843–848.

    Article  Google Scholar 

  31. Stamey TA, Johnstone IM, McNeal JE, Lu AY, Yemoto CM. 2002. Preoperative serum prostate specific antigen levels between 2 and 22 ng./mL. correlate poorly with post-radical prostatectomy cancer morphology: prostate specific antigen cure rates appear constant between 2 and 9 ng./mL. J. Urol. 1:103–111.

    Google Scholar 

  32. Moul JW, Connelly RR, Lubeck DP, et al. 2001. Predicting risk of prostate specific antigen recurrence after radical prostatectomy with the Center for Prostate Disease Research and Cancer of the Prostate Strategic Urologic Research Endeavor databases. J. Urol. 4:1322–1327.

    Google Scholar 

  33. D’Amico A, Moul JW, Kattan MW. 1999. Emerging prognostic factors for outcome prediction in clinically localized prostate cancer: prostate-specific antigen level, race, molecular markers, and neural networks, in: Comprehensive Textbook of Genitourinary Oncology,Vogelzang N, Scardino P, Shipley W, Coffey D, and Miles BJ, eds., Lippincott Williams and Wilkins: Philadelphia, pp. 680–700.

    Google Scholar 

  34. Stephan C, Jung K, Diamandis EP, Rittenhouse HG, Lein M, Loening SA. 2002. Prostate-specific antigen, its molecular forms, and other kallikrein markers for detection of prostate cancer. Urology 1:2–8.

    Article  Google Scholar 

  35. Chodak GW, Thisted RA, Gerber GS, et al. 1994. Results of conservative management of clinically localized prostate cancer. N. Engl. J. Med. 4:242–248.

    Article  Google Scholar 

  36. Ellis WJ, Vessella RL, Corey E, et al. 1998. The value of a reverse transcriptase polymerase chain reaction assay in preoperative staging and followup of patients with prostate cancer. J. Urol. 4:1134–1138.

    Google Scholar 

  37. Pelkey TJ, Frierson HF Jr, Bruns DE. 1996. Molecular and immunological detection of circulating tumor cells and micrometastases from solid tumors. Clin. Chem. 9:1369–1381.

    Google Scholar 

  38. Vessella RL, Lange PH, Blumenstein BA, et al. 1998. Multicenter RT-PCR-PSA clinical trial for pre-operative staging of prostate cancer. J. Urol. 159:292.

    Google Scholar 

  39. Rittenhouse HG, Finlay JA, Mikolajczyk SD, Partin AW. 1998. Human kallikrein 2 (hK2) and prostate-specific antigen (PSA): Two closely related, but distinct, kallikreins in the prostate. Crit. Rev. Clin. Lab. Sci. 35:275–368.

    Article  PubMed  CAS  Google Scholar 

  40. Haese A, Becker C, Diamandis EP, Lilja H. 2002. Adenocarcinoma of the prostate, in: Tumor Markers Physiology, Pathobiology, Technology and Clinical Applications, Diamandis EP, Fritsche HA, Lilja H, Chan DW, and Schartz M eds., AACC Press: Washington DC, pp. 193–237.

    Google Scholar 

  41. Stenman UH, Leinonen J, Zhang WM, Finne P. 1999. Prostate-specific antigen. Semin. Cancer Biol. 2:83–93.

    Article  Google Scholar 

  42. Catalona WJ, Southwick PC, Slawin KM, et al. 2000. Comparison of percent free PSA, PSA density, and age-specific PSA cutoffs for prostate cancer detection and staging. Urology 56: 255–60.

    Article  PubMed  CAS  Google Scholar 

  43. Catalona WJ, Smith DS, Wolfert RL, et al. 1995. Evaluation of percentage of free serum prostate-specific antigen to improve specificity of prostate cancer screening. JAMA 15:1214–1220.

    Article  Google Scholar 

  44. Catalona WJ, Partin AW, Slawin KM, et al. 1998. Use of the percentage of free prostate-specific antigen to enhance differentiation of prostate cancer from benign prostatic disease: a prospective multicenter clinical trial. JAMA 19:1542–1547.

    Article  Google Scholar 

  45. Kroll M. 2002. Prostate Cancer Free PSA Adds Value to PSA Testing. Clin. Lab. News Apr:10–11.

    Google Scholar 

  46. Chen Z, Chen H, Stamey TA. 1997. Prostate specific antigen in benign prostatic hyperplasia: purification and characterization. J. Urol. 157:2166–2170.

    Article  PubMed  CAS  Google Scholar 

  47. Papadopoulos I, Sivridis E, Giatromanolaki A, Koukourakis MI. 2001. Tumor angiogenesis is associated with MUC1 overexpression and loss of prostate-specific antigen expression in prostate cancer. Clin. Cancer Res. 6:1533–1538.

    Google Scholar 

  48. The Gail Group. 2001. Endocare Expands Agreement to Distribute 15-minute PSA Test to Urologists. Cancer Weekly 38.54.

    Google Scholar 

  49. Myrtle JF, Klimley PG, Ivor LP, Bruni JF. 1987. Clinical utility of prostate specific antigen (PSA) in the management of prostate cancer. Adv. Cancer Diag.

    Google Scholar 

  50. Dalkin BL, Ahmann FR, Kopp JB. 1993. Prostate specific antigen levels in men older than 50 years without clinical evidence of prostatic carcinoma. J. Urol. 6:1837–1839.

    Google Scholar 

  51. Catalona WJ, Smith DS, Ornstein DK. 1997. Prostate cancer detection in men with serum PSA concentrations of 2.6 to 4.0 ng/mL and benign prostate examination. Enhancement of specificity with free PSA measurements. JAMA 18:1452–1455.

    Article  Google Scholar 

  52. Catalona WJ, Partin AW, Finlay JA, et al. 1999. Percentage of Free Prostate-Specific Antigen to Identify Men with High Risk for Prostate Cancer When PSA Levels are 2.51–4 ng/mL and Digital Rectal Examination is Not Suspicious for Prostate Cancer: an Alternative Model. Urology 54:220–224.

    Article  PubMed  CAS  Google Scholar 

  53. Amling CL, Bergstralh EJ, Blute ML, Slezak JM, Zincke H. 2001. Defining prostate specific antigen progression after radical prostatectomy: what is the most appropriate cut point? J. Urol. 4:1146–1151.

    Google Scholar 

  54. Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. 1999. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 17:1591–1597.

    Article  Google Scholar 

  55. McConnell JD. 2002. Epidemiology, Etiology, Pathophysiology, and Diagnosis of Benign Prostatic Hyperplasia. Campbells Urology. Philadelphia: W.B. Saunders Co., pp. 1429–1452.

    Google Scholar 

  56. Roehrborn CG, Boyle P, Gould AL, Waldstreicher J. 1999. Serum prostate-specific antigen as a predictor of prostate volume in men with benign prostatic hyperplasia. Urology 3:581–589. 58. Roehrborn CG, Oesterling JE, Olson PJ, Padley RJ. 1997. Serial prostate-specific antigen measurements in men with clinically benign prostatic hyperplasia during a 12-month placebo-controlled study with terazosin. HYCAT Investigator Group. Hytrin Community Assessment Trial. Urology 4:556–561.

    Google Scholar 

  57. Andriole GL, Guess HA, Epstein JI, et al. 1998. Treatment with finasteride preserves usefulness of prostate-specific antigen in the detection of prostate cancer: results of a randomized, double-blind, placebo-controlled clinical trial. PLESS Study Group. Proscar Long-term Efficacy and Safety Study. Urol. 2:195–201.

    Article  Google Scholar 

  58. Brawer MK, Lin DW, Williford WO, Jones K, Lepor H. 1999. Effect of finasteride and/or terazosin on serum PSA: results of VA Cooperative Study #359. Prostate 4:234–239.

    Article  Google Scholar 

  59. Espana F, Martinez M, Royo M, et al. 2002. Changes in molecular forms of prostate-specific antigen during treatment with finasteride. BJU Int. 90:672–677.

    Article  PubMed  CAS  Google Scholar 

  60. Thompson IM, Goodman PJ, Tangen CM, et al. 2003. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 3:215–224.

    Article  Google Scholar 

  61. Fair WR, Fleshner NE, Heston W. 1997. Cancer of the prostate: a nutritional disease? Urology 6:840–848.

    Article  Google Scholar 

  62. Thomson JO, Dzubak P, Hajduch M. 2002. Prostate cancer and the food supplement, PC-SPES. Minireview. Neoplasma 2:69–74.

    Google Scholar 

  63. Cohen LA. 2002. Nutrition and prostate cancer: a review. Ann. NY Acad. Sci. 963:148–155.

    Article  PubMed  CAS  Google Scholar 

  64. Marks LS, Hess DL, Dorey FJ, Luz MM, Cruz Santos PB, Tyler VE. 2001. Tissue effects of saw palmetto and finasteride: use of biopsy cores for in situ quantification of prostatic androgens. Urology 5:999–1005.

    Article  Google Scholar 

  65. Marks LS and Tyler VE. 1999. Saw Palmetto Extract: Newest (and oldest) Treatment Alternative for Men with Symptomatic Benign Prostatic Hyperplasia. Urology 53:457–461.

    Article  PubMed  CAS  Google Scholar 

  66. Marks LS, DiPaola R, Nelson P, et al. 2002. PC-SPES: Herbak Formulation for Prostate Cancer. Urol. 60:369–377.

    Article  PubMed  Google Scholar 

  67. McGuire MS and Fair WR. 1997. Prostate Cancer and Diet: Investgations, Interventions, and Future Considerations. Mol. Urol. 1:3–9.

    CAS  Google Scholar 

  68. Willis M and Wians FJ. 2003. The role of nutrition in preventing prostate cancer: a review of the proposed mechanism of action of various dietary substances. Clin. Chim. Acta. 1–2:57–83.

    Article  CAS  Google Scholar 

  69. Chen L, Stacewicz-Sapuntzakis M, Duncan C, et al. 2001. Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention. J. Nat. Cancer Instit. 24:1872–1879.

    Article  Google Scholar 

  70. Rubin MA, Zhou M, Dhanasekaran SM, et al. 2002. alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 13:1662–1670.

    Article  Google Scholar 

  71. Corey E, Quinn JE, Bladou F, et al. 2002. Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 1:20–33.

    Article  Google Scholar 

  72. Lange PH and Vessella RL. 1998. Mechanisms, hypotheses and questions regarding prostate cancer micrometastases to bone. Cancer Metastasis Rev. 4:331–336.

    Google Scholar 

  73. Oremek GM, Kramer W, Seiffert UB, Jonas D. 1997. Diagnostic value of skeletal AP and PSA with respect to skeletal scintigram in patients with prostatic disease. Anticancer Res. 4B:3035–3036.

    Google Scholar 

  74. Brown JM, Corey E, Lee ZD, et. al. 2001. Osteoprotegerin and rank ligand expression in prostate cancer. Urology 4:611–616.

    Article  Google Scholar 

  75. Elgamal AA, Holmes EH, Su SL, et. al. 2000. Prostate-specific membrane antigen (PSMA): current benefits and future value. Semin. Surg. Oncol. 18:10–16.

    Article  PubMed  CAS  Google Scholar 

  76. Sokoloff RL, Norton KC, Gasior CL, Marker KM, Grauer LS. 2000. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine. Prostate 2:150–157.

    Article  Google Scholar 

  77. Xiao Z, Adam BL, Cazares LH, et al. 2001. Quantitation of serum prostate-specific membrane antigen by a novel protein biochip immunoassay discriminates benign from malignant prostate disease. Cancer Res. 16:6029–6033.

    Google Scholar 

  78. Andersen TI, Paus E, Nesland JM, McKenzie SJ, Borresen AL. 1995. Detection of c-erbB-2 related protein in sera from breast cancer patients. Relationship to ERBB2 gene amplification and c-erbB-2 protein overexpression in tumour. Acta. Oncol. 4:499–504.

    Article  Google Scholar 

  79. O’Brien TJ, Beard JB, Underwood LJ, Dennis RA, Santin AD, York L. 2001. The CA125 Gene: An Extracellular Superstructure Dominated by Repeat Sequences. Tumor Biol. 22:348–366.

    Article  Google Scholar 

  80. Mikolajczyk SD, Marks LS, Partin AW, Rittenhouse HG. 2002. Free prostate-specific antigen in serum is becoming more complex. Urology 6:797–802.

    Article  Google Scholar 

  81. Mikolajczyk SD, Millar LS, Wang TJ, et al. 2000. “BPSA,„ a specific molecular form of free prostate-specific antigen, is found predominantly in the transition zone of patients with nodular benign prostatic hyperplasia. Urology 1:41–45.

    Article  Google Scholar 

  82. Apple FS. 1999. Tissue specificity of cardiac troponin I, cardiac troponin T and creatine kinaseMB. Clin. Chim. Acta. 2:151–159.

    Article  Google Scholar 

  83. Collinson PO, Boa FG, and Gaze DC. 2001. Measurement of cardiac troponins. Ann. Clin. Biochem. 38:423–449.

    Article  PubMed  CAS  Google Scholar 

  84. Mainet GD, Sorell GL, Torres MB. 2000. The cardiac troponin I: Gold biochemical standard of myocardial damage La troponina i cardiaca: Marcador bioquimico de eleccion del dano miocardico. BIOTECNOL APL 2:77–84.

    Google Scholar 

  85. Bozeman CB, Carver BS, EasthamJA, Venable DD. 2002. Treatment of chronic prostatitis lowers serum prostate specific antigen. J. Urol. 4:1723–1726.

    Google Scholar 

  86. Oremek GM and Seiffert UB. 1996. Physical activity releases prostate-specific antigen (PSA) from the prostate gland into blood and increases serum PSA concentrations. Clin. Chem. 5:691–695.

    Google Scholar 

  87. Price CP, Allard J, Davies G, et al. 2001. Pre- and post-analytical factors that may influence use of serum prostate specific antigen and its isoforms in a screening programme for prostate cancer. Ann. Clin. Biochem. 38:188–216.

    Article  PubMed  CAS  Google Scholar 

  88. Stamey TA, Warrington JA, Caldwell MC, et al. 2001. Molecular genetic profiling of Gleason grade 4/5 prostate cancers compared to benign prostatic hyperplasia. J. Urol. 6:2171–2177.

    Google Scholar 

  89. Magee JA, Araki T, Patil S, et al. 2001. Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res. 15:5692–5696.

    Google Scholar 

  90. Jenkins RB, Qian J, Lieber MM, Bostwick DG. 1997. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 3:524–531.

    Google Scholar 

  91. Hooper JD, Clements JA, Quigley JP, Antalis, T.M. 2001. Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J. Biol. Chem. 2:857–860.

    Article  Google Scholar 

  92. Isaacs W and Kainu T. 2001. Oncogenes and tumor suppressor genes in prostate cancer. Epidemiol. Rev. 1:36–41.

    Article  Google Scholar 

  93. Liu A., Nelson PS, van den EG, Hood L. 2002. Human prostate epithelial cell-type cDNA libraries and prostate expression patterns. Prostate 2:92–103.

    Article  Google Scholar 

  94. Li PE and Nelson PS. 2001. Prostate cancer genomics. Curr. Urol. Rep. 1:70–78.

    Article  Google Scholar 

  95. Platz EA, Krithivas K, Kantoff PW, Stampfer MJ, Giovannucci E. 2002. ATAAA repeat upstream of glutathione S-transferase P1 and prostate cancer risk. Urology 1:159–164.

    Article  Google Scholar 

  96. Nelson KA and Witte JS. 2002. Androgen receptor CAG repeats and prostate cancer. Am. J. Epidemiol. 10:883–890.

    Article  Google Scholar 

  97. Isaacs W and Coffey DS. 2002. Molecular Genetics of Prostate Cancer. In Comprehensive Textbook of Genitourinary Oncology. Vogelzang N, Scardino P, Shipley W, and Coffey D, eds. Philadelphia: Lippincott Williams and Wilkins, pp. 545–552.

    Google Scholar 

  98. Thompson T, Timme T, Bangma C, et al. 2002. Molecular Biology of Prostate Cancer. In Comprehensive Textbook of Genitourinary Oncology. Vogelzang N, Scardino P, Shipley W, Coffey D, eds. Philadelphia: Lippincottm Williams and Wilkins, pp. 553–564.

    Google Scholar 

  99. David A, Mabjeesh N, Azar I, et. al. 2002. Unusual alternative splicing within the human kallikrein genes KLK2 and KLK3 gives rise to novel prostate-specific proteins. J. Biol. Chem.,084–18,090.

    Google Scholar 

  100. Stapleton AM, Timme TL, Gousse AE, et. al. 1997. Primary human prostate cancer cells harboring p53 mutations are clonally expanded in metastases. Clin. Cancer Res. 8:1389–1397.

    Google Scholar 

  101. Aihara M, Scardino PT, Truong LD, et al. 1995. The frequency of apoptosis correlates with the prognosis of Gleason Grade 3 adenocarcinoma of the prostate. Cancer 2:522–529.

    Article  Google Scholar 

  102. Furuya Y, Krajewski S, Epstein JI, Reed JC, Isaacs JT. 1996. Expression of bc1–2 and the progression of human and rodent prostatic cancers. Clin. Cancer Res. 2:389–398.

    PubMed  CAS  Google Scholar 

  103. Carpten J, Nupponen N, Isaacs S, et al. 2002. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat. Genet. 2:181–184.

    Article  CAS  Google Scholar 

  104. Anderson N. andAnderson NG. 2002. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 11:845–867.

    Google Scholar 

  105. Rittenhouse HG, Petruska JC, Hirata AA. 1984. Detection of Carcinoembryonic Antigen in Cancer Serum by Two-Dimensional Gel Electrophoresis. In: Proceedings of the Thirty-First Collequium. Bruges, GE, ed., New York: Pergamon Press, pp. 937–940.

    Google Scholar 

  106. Hu W, Verschraegen CF, Wu W, et al. 2002. Differential protein profile analysis of sera from normal donors and ovarian cancer patients by proteomics. Proc. Amer. Assoc. Cancer Res. Annual Meeting 43:37.

    Google Scholar 

  107. Rai AJ, Zhang Z, Rosenzweig J, et al. 2002. Proteomic approaches to tumor marker discovery. Arch. Pathol. Lab. Med. 12:1518–1526.

    Google Scholar 

  108. Chance J. 2001. Blood testing. choosing the right specimen. clinical laboratory news 7:18–20.

    Google Scholar 

  109. Moreno JG, O’Hara SM, Gross S, et al. 2001. Changes in circulating carcinoma cells in patients with metastatic prostate cancer correlate with disease status. Urology 3:386–392.

    Article  Google Scholar 

  110. Paweletz CP, Liotta LA, Petricoin EF III. 2001. New technologies for biomarker analysis of prostate cancer progression: Laser capture microdissection and tissue proteomics. Urology 4:160–163.

    Article  Google Scholar 

  111. Rubin MA. 2001. Use of laser capture microdissection, cDNA microarrays, and tissue microarrays in advancing our understanding of prostate cancer. J. Pathol. 1:80–86.

    Article  Google Scholar 

  112. Dhanasekaran SM, Barrette TR, Ghosh D, et al. 2001. Delineation of prognostic biomarkers in prostate cancer. Nature 6849:822–826.

    Article  Google Scholar 

  113. Lee C, Keefer M, Zhao ZW, et al. 1989. Demonstration of the role of prostate-specific antigen in semen liquefaction by two-dimensional electrophoresis. J. Androl. 6:432–438.

    Google Scholar 

  114. Suh CI, Shanafelt T, May DJ, et al. 2000. Comparison of telomerase activity and GSTP1 promoter methylation in ejaculate as potential screening tests for prostate cancer. Mol. Cell. Probes 4:211–217.

    Article  CAS  Google Scholar 

  115. Halling KC, King W, Sokolova IA, et al. 2000. A comparison of cytology and fluorescence in situ hybridization for the detection of urothelial carcinoma. J. Urol. 5:1768–1775.

    Google Scholar 

  116. Bull JH, Ellison G, Patel A, et al. 2001. Identification of potential diagnostic markers of prostate cancer and prostatic intraepithelial neoplasia using cDNA microarray. Br. J. Cancer 11:1512–1519.

    Article  Google Scholar 

  117. Chaib H, Cockrell EK, Rubin MA, Macoska JA. 2001. Profiling and verification of gene expression patterns in normal and malignant human prostate tissues by cDNA microarray analysis. Neoplasia 1:43–52.

    Article  CAS  Google Scholar 

  118. Ernst T, Hergenhahn M, Kenzelmann M, et al. 2002. Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am. J. Pathol. 6:2169–2180.

    Article  Google Scholar 

  119. Luo J, Duggan DJ, Chen Y, et al. 2001. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 12:4683–4688.

    Google Scholar 

  120. Welsh JB, Sapinoso LM, Su Al, et al. 2001. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 16:5974–5978.

    Google Scholar 

  121. Leytus SP, Loeb KR, Hagen FS, Kurachi K, Davie EW. 1988. A novel trypsin-like serine protease (hepsin) with a putative transmembrane domain expressed by human liver and hepatoma cells. Biochemistry 3:1067–1074.

    Article  Google Scholar 

  122. Tsuji A, Torres-Rosado A, Arai T, et al. 1991. Hepsin, a cell membrane-associated protease. Characterization, tissue distribution, and gene localization. J. Biol. Chem. 25:16948–16953.

    Google Scholar 

  123. Stephan C, Yousef GM, Scorilas A, et al. 2003. Quantitative analysis of kallikrein 15 gene expression in prostate tissue. J. Urol. 1:361–364.

    Google Scholar 

  124. Kufer P, Zippelius A, Lutterbuse R, et al. 2002. Heterogeneous expression of MAGE-A genes in occult disseminated tumor cells: a novel multimarker reverse transcription-polymerase chain reaction for diagnosis of micrometastatic disease. Cancer Res. 1:251–261.

    Google Scholar 

  125. Latil A, Vidaud D, Valeri A, et al. 2000. htert expression correlates with MYC over-expression in human prostate cancer. Int. J. Cancer 2:172–176.

    Google Scholar 

  126. Meid FH, Gygi CM, Leisinger HJ, Bosman FT, Benhattar, J. 2001. The use of telomerase activity for the detection of prostatic cancer cells after prostatic massage. J. Urol. 5:1802–1805.

    Google Scholar 

  127. Paradis V, Dargere D, Laurendeau I, et al. 1999. Expression of the RNA component of human telomerase (hTR) in prostate cancer, prostatic intraepithelial neoplasia, and normal prostate tissue. J. Pathol. 2:213–218.

    Article  Google Scholar 

  128. Liu BC, LaRose I, Weinstein LJ, et al. 2001. Expression of telomerase subunits in normal and neoplastic prostate epithelial cells isolated by laser capture microdissection. Cancer 7: 1943–1948.

    Article  Google Scholar 

  129. Bussemakers MJ, van Bokhoven A, Verhaegh, GW. et al. 1999. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 23:5975–5979.

    Google Scholar 

  130. Srikantan V, Zou Z, Petrovics G, et al. 2000. PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc. Natl. Acad. Sci. USA 22:12216–12221.

    Article  Google Scholar 

  131. de Kok JB, Verhaegh GW, Roelofs RW, et al. 2002. DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res. 9:2695–2698.

    Google Scholar 

  132. Saad F, Aprikian AG, Dessureault J, et al. 2003. Multicenter Study of the UPM3 Test, a New Molecular Urine Assay to Detect Prostate Cancer. J. Urol. 169:121–469.

    Google Scholar 

  133. Su SL, Boynton AL, Holmes EH, Elgamal AA, Murphy GP. 2000. Detection of extraprostatic prostate cells utilizing reverse transcription-polymerase chain reaction. Semin. Surg. Oncol. 1:17–28.

    Article  Google Scholar 

  134. Thomas J, Gupta M, Grasso Y, et al. 2002. Preoperative combined nested reverse transcriptase polymerase chain reaction for prostate-specific antigen and prostate-specific membrane antigen does not correlate with pathologic stage or biochemical failure in patients with localized prostate cancer undergoing radical prostatectomy. J. Clin. Oncol. 15:3213–3218.

    Article  CAS  Google Scholar 

  135. Shariat SF, Gottenger E, Nguyen C, et al. 2002. Preoperative blood reverse transcriptase-PCR assays for prostate- specific antigen and human glandular kallikrein for prediction of prostate cancer progression after radical prostatectomy. Cancer Res. 20:5974–5979.

    Google Scholar 

  136. Varambally S, Dhanasekaran SM, Zhou M, et al. 2002. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419:624–629.

    Article  PubMed  CAS  Google Scholar 

  137. Rosen EM, Fan S, and Goldberg ID. 2001. BRCA1 and prostate cancer. Cancer Invest. 4:396–412.

    Article  Google Scholar 

  138. Sinclair CS, Berry R, Schaid D, Thibodeau SN, Couch FJ. 2000. BRCA1 and BRCA2 have a limited role in familial prostate cancer. Cancer Res. 5:1371–1375.

    Google Scholar 

  139. Uchida T, Wang C, Sato T, et al. 1999. BRCA1 gene mutation and loss of heterozygosity on chromosome 17q21 in primary prostate cancer. Int. J. Cancer 1:19–23.

    Article  Google Scholar 

  140. Williams BJ, Jones E, Zhu XL, et al. 1996. Evidence for a tumor suppressor gene distal to BRCA1 in prostate cancer. J. Urol. 2:720–725.

    Google Scholar 

  141. Goessl C, Mueller M, Heicappell R, et al. 2001. DNA-based detection of prostate cancer in urine after prostatic massage. Urology 3:335–338.

    Article  Google Scholar 

  142. Kito H, Suzuki H, Ichikawa T, et al. 2001. Hypermethylation of the CD44 gene is associated with progression and metastasis of human prostate cancer. Prostate 2:110–115.

    Article  Google Scholar 

  143. Lou W, Krill D, Dhir R, et al. 1999. Methylation of the CD44 metastasis suppressor gene in human prostate cancer. Cancer Res. 10:2329–2331.

    Google Scholar 

  144. Mouraviev V, Li L, Tahir SA, et al. 2002. The role of caveolin-1 in androgen insensitive prostate cancer. J. Urol. 168:1589–1596.

    Article  PubMed  CAS  Google Scholar 

  145. Cui J, Rohr LR, Swanson G, Speights VO, Maxwell T, Brothman AR. 2001. Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate 3:249–256.

    Article  Google Scholar 

  146. Verkaik NS, van Steenbrugge GJ, van Weerden WM, Bussemakers MJ, van der Kwast TH. 2000. Silencing of CD44 expression in prostate cancer by hypermethylation of the CD44 promoter region. Lab. Invest. 8:1291–1298.

    Article  Google Scholar 

  147. Vis AN, Oomen M, Schroder FH, van der Kwast TH. 2001. Feasibility of assessment of promoter methylation of the CD44 gene in serum of prostate cancer patients. Mol. Urol. 4:199–203.

    Article  Google Scholar 

  148. Bock CH, Cunningham JM, McDonnell SK, et al. 2001. Analysis of the prostate cancer-susceptibility locus HPC20 in 172 families affected by prostate cancer. Am. J. Hum. Genet. 3:795–801.

    Article  Google Scholar 

  149. Goode EL, Stanford JL, Peters MA, et al. 2001. Clinical characteristics of prostate cancer in an analysis of linkage to four putative susceptibility loci. Clin. Cancer Res. 9:2739–2749.

    Google Scholar 

  150. Nwosu V, Carpten J, Trent JM, Sheridan R. 2001. Heterogeneity of genetic alterations in prostate cancer: evidence of the complex nature of the disease. Hum. Mol. Genet. 20:2313–2318.

    Article  Google Scholar 

  151. Simard J, Dumont M, Soucy P, and Labrie F. 2002. Perspective: prostate cancer susceptibility genes. Endocrinology 6:2029–2040.

    Article  Google Scholar 

  152. Stephan DA, Howell GR, Teslovich TM, et al. 2002. Physical and transcript map of the hereditary prostate cancer region at xq27. Genomics 1:41–50.

    Article  CAS  Google Scholar 

  153. Suarez BK, Gerhard DS, Lin J, et al. 2001. Polymorphisms in the prostate cancer susceptibility gene HPC2/ELAC2 in multiplex families and healthy controls. Cancer Res. 13:4982–4984.

    Google Scholar 

  154. Xu J, Zheng SL, Chang B, et al. 2001. Linkage of prostate cancer susceptibility loci to chromosome 1. Hum. Genet. 4:335–345.

    Article  Google Scholar 

  155. Bousema JT, Bussemakers MJ, van Houwelingen KP, et al. 2000. Polymorphisms in the vitamin D receptor gene and the androgen receptor gene and the risk of benign prostatic hyperplasia. Eur. Urol. 2:234–238.

    Article  Google Scholar 

  156. Chang BL, Zheng SL, Hawkins GA, et al. 2002. Polymorphic GGC repeats in the androgen receptor gene are associated with hereditary and sporadic prostate cancer risk. Hum. Genet. 2:122–129.

    Article  CAS  Google Scholar 

  157. Hsing AW, Chen C, Chokkalingam AP, et al. 2001. Polymorphic markers in the srd5a2 gene and prostate cancer risk: a population-based case-control study. Cancer Epidemiol. Biomark. Prey. 10:1077–1082.

    CAS  Google Scholar 

  158. Latil AG, Azzouzi R, Cancel GS, et al. 2001. Prostate carcinoma risk and allelic variants of genes involved in androgen biosynthesis and metabolism pathways. Cancer 5:1130–1137.

    Google Scholar 

  159. Nam RK, Zhang WW, Trachtenberg J, et al. 2003. Single nucleotide polymorphism of the human kallikrein-2 gene highly correlates with serum human kallikrein-2 levels and in combination enhances prostate cancer detection. J. Clin. Oncol. 12:2312–2319.

    Article  CAS  Google Scholar 

  160. Robert M, Gibbs BF, Jacobson E, Gagnon C. 1997. Characterization of prostate-specific antigen proteolytic activity on its major physiological substrate, the sperm motility inhibitor precursor/semenogelin I. Biochem. 36:3811–3819.

    Article  CAS  Google Scholar 

  161. Lilja H. 1985. A Kallikrein-like serine protease in prostatic fluid cleaves the predominant seminal vesicle protein. J. Clin. Invest. 76:1899–1903.

    Article  PubMed  CAS  Google Scholar 

  162. Balk SP, Ko YJ, Bubley GJ. 2003. Biology of prostate-specific antigen. J. Clin. Oncol. 2:383–391.

    Article  CAS  Google Scholar 

  163. Oesterling JE. 1991. Prostate-specific antigen: a critical assessment of the most useful tumor marker for adenocarcinoma of the prostate. J. Urol. 145:907–923.

    PubMed  CAS  Google Scholar 

  164. Labrie F, Dupont A, Suburu R, et al. 1992. Serum prostate specific antigen as pre-screening test for prostate cancer. J. Urol. 147:846–851.

    Google Scholar 

  165. Lilja H, Christensson A, Dahlen U, et al. 1991. prostate-specific antigen in serum occurs predominantly in complex with alpha-l-antichymotrypsin. Clin. Chem. 9:1618–1625.

    Google Scholar 

  166. Stenman UH, Leinonen J, Alfthan H, Rannikko S, Tuhkanen K, Alfthan O. 1991. A complex between prostate specific antigen and al -antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer Res. 51:222–226.

    PubMed  CAS  Google Scholar 

  167. Woodrum DL, Brawer MK, Partin AW, Catalona WJ, Southwick PC. 1998. Interpretation of free prostate specific antigen clinical research studies for the detection of prostate cancer. J. Urol. 1:5–12.

    Article  Google Scholar 

  168. Okihara K, Cheli CD, Partin AW, et al. 2002. Comparative analysis of complexed prostate specific antigen, free prostate specific antigen and their ratio in detecting prostate cancer. J. Urol. 5:2017–2023.

    Google Scholar 

  169. Peter J, Unverzagt C, Hoesel W. 2000. Analysis of free prostate-specific antigen (PSA) after chemical release from the complex with alpha(1)-antichymotrypsin (PSA-ACT). Clin. Chem. 4:474–482.

    Google Scholar 

  170. Bjork T, Bjartell A, Abrahamsson PA, Hulkko S, di Sant’Agnese A, Lilja, H. 1994. Alphalantichymotrypsin production in PSA-producing cells is common in prostate cancer but rare in benign prostatic hyperplasia. Urology 43:427–434.

    Article  PubMed  CAS  Google Scholar 

  171. Jung K, Brux B, Lein M, et al. 2000. Molecular forms of prostate-specific antigen in malignant and benign prostatic tissue: biochemical and diagnostic implications. Clin. Chem. 1:47–54.

    Google Scholar 

  172. Mikolajczyk SD, Grauer LS, Millar LS, et al. 1997. A precursor form of PSA (pPSA) is a component of the free PSA in prostate cancer serum. Urology 50:710–714.

    Article  PubMed  CAS  Google Scholar 

  173. Mikolajczyk SD, Marker KM, Millar LS, et al. 2001. A truncated precursor form of prostatespecific antigen is a more specific serum marker of prostate cancer. Cancer Res. 18:6958–6963.

    Google Scholar 

  174. Mikolajczyk SD and Rittenhouse HG. 2003. Pro PSA: a more cancer specific form of prostate specific antigen for the early detection of prostate cancer. Keio J. Med. 2:86–91.

    Google Scholar 

  175. Noldus J, Chen Z, Stamey T. 1997. Isolation and characterization of free form prostate specific antigen (f-PSA) in sera of men with prostate cancer. J. Urol. 158:1606–1609.

    Article  PubMed  CAS  Google Scholar 

  176. Hilz H, Noldus J, Hammerer P, Buck F, Luck M, Huland, H. 1999. Molecular heterogeneity of free PSA in sera of patients with benign and malignant prostate tumors. Eur. Urol. 4:286–292.

    Article  Google Scholar 

  177. Mikolajczyk SD, Millar LS, Wang TJ, et al. 2000. A precursor form of prostate-specific antigen is more highly elevated in prostate cancer compared with benign transition zone prostate tissue. Cancer Res. 3:756–759.

    Google Scholar 

  178. Peter J, Unverzagt C, Krogh TN, Vorm O, Hoesel W. 2001. Identification of precursor forms of prostate-specific antigen in serum of prostate cancer patients by immunosorption and mass spectrometry. Cancer Res. 61:957–962.

    PubMed  CAS  Google Scholar 

  179. Niemela P, Lovgren J, Karp M, Lilja H, Pettersson K. 2002. Sensitive and specific enzymatic assay for the determination of precursor forms of prostate-specific antigen after an activation step. Clin. Chem. 8:1257–1264.

    Google Scholar 

  180. Kumar A, Mikolajczyk SD, Goel AS, Millar LS, Saedi MS. 1997. Expression of pro form of Prostate-specific antigen by mammalian cells and its conversion to mature, active form by human kallikrein 2. Cancer Res. 57:3111–3114.

    PubMed  CAS  Google Scholar 

  181. Khan AR and James MNG. 1998. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Prot. Sci. 7:815–836.

    Article  CAS  Google Scholar 

  182. Zhang WM, Leinonen J, Kalkkinen N, Dowell B, Stenman UH. 1995. Purification and characterization of different molecular forms of prostate-specific antigen in human seminal fluid. Clin. Chem. 41:1567–1573.

    PubMed  CAS  Google Scholar 

  183. Kumar A, Mikolajczyk S, Hill TM, Millar L, Saedi MS. 2000. Different proportions of various prostate-specific antigen (PSA) and human kallikrein 2 (hK2) forms are present in noninduced and androgen-induced LNCaP cells. Prostate 3:248–254.

    Article  Google Scholar 

  184. Nurmikko P, Vaisanen V, Piironen T, Lindgren S, Lilja H, Pettersson K. 2000. Production and characterization of novel anti-prostate-specific antigen (PSA) monoclonal antibodies that do not detect internally cleaved Lys145-Lys146 inactive PSA. Clin. Chem. 10:1610–1618.

    Google Scholar 

  185. Darson MF, Parcelli A, Roche P, et al. 1997. Human Glandular Kallikrein 2 (hK2) expression in prostatic intraepithelial neoplasia and adenocarcinoma: a novel prostate cancer marker. Urology 6:857–862.

    Article  Google Scholar 

  186. Frenette G, Tremblay RR, Lazure C, Dube JY. 1997. Prostatic kallikrein hK2, but not prostatespecific antigen (hK3), activates single-chain urokinase-type plasminogen activator. Int. J. Cancer 5:897–899.

    Article  Google Scholar 

  187. Mikolajczyk SD, Millar LS, Kumar A, Saedi MS. 1999. Prostatic human kallikrein 2 inactivates and complexes with plasminogen activator. Int. J. Cancer 81:438–442.

    Article  PubMed  CAS  Google Scholar 

  188. Mikolajczyk SD, Millar LS, Marker KM, et al. 1999. Identification of a novel complex between human kallikrein 2 and protease inhibitor-6 in prostate cancer tissue. Cancer Res. 16:3927–3930.

    Google Scholar 

  189. Black MH, Magklara A, Obiezu CV, Melegos DN, Diamandis EP. 1999. Development of an ultrasensitive immunoassay for human glandular kallikrein (hK2) with no cross reactivity from prostate specific antigen (PSA). Clin. Chem. 6:790–799.

    Google Scholar 

  190. Becker C, Piironen T, Kiviniemi J, Lilja H, Pettersson K. 2000. Sensitive and specific immunodetection of human glandular kallikrein 2 in serum. Clin. Chem. 2:198–206.

    Google Scholar 

  191. Saedi MS, Zhu Z, Marker K, et al. 2001. Human kallikrein 2 (hK2), but not prostate-specific antigen (PSA), rapidly complexes with protease inhibitor 6 (PI-6) released from prostate carcinoma cells. Int. J. Cancer 4:558–563.

    Article  Google Scholar 

  192. Finlay JA, Day JR, Evans CL, et al. 2001. Development of a dual monoclonal antibody immunoassay for total human kallikrein 2. Clin. Chem. 7:1218–1224.

    Google Scholar 

  193. Becker C, Piironen T, Pettersson K, et al. 2000. Discrimination of men with prostate cancer from those with benign disease by measurements of human glandular kallikrein 2 (HK2) in serum. J. Urol. 1:311–316.

    Google Scholar 

  194. Klee GG, Goodmanson MK, Jacobsen SJ, et al. 1999. A highly sensitive automated chemiluminometric assay for measuring free human glandular kallikrein (hK2). Clin. Chem. 6:800–806.

    Google Scholar 

  195. Partin AW, Catalona WJ, Finlay JA, et al. 1999. Use of human glandular kallikrein 2 for the detection of prostate cancer: preliminary analysis. Urology 5:839–845.

    Article  Google Scholar 

  196. Kwiatkowski MK, Recker F, Piironen T, et al. 1998. In prostatism patients the ratio of human glandular kallikrein to free PSA improves the discrimination between prostate cancer and benign hyperplasia within the diagnostic “gray zone” of total PSA 4 to 10 ng/mL. Urology 3:360–365.

    Article  Google Scholar 

  197. Haese A, Graefen M, Steuber T, et al. 2001. Human glandular kallikrein 2 levels in serum for discrimination of pathologically organ-confined from locally-advanced prostate cancer in total PSA-levels below 10 ng/mL. Prostate 2:101–109.

    Article  Google Scholar 

  198. Clements J. 1989. The glandular kallikrein family of enzymes: tissue specific expression and hormonal regulation. Endocrine Rev. 10:393–419.

    Article  CAS  Google Scholar 

  199. Clements J, Hooper J, Dong Y, Harvey T. 2001. The expanded human kallikrein (KLK) gene family: genomic organisation, tissue-specific expression and potential functions. Biol. Chem. 1:5–14.

    Google Scholar 

  200. Yousef GM and Diamandis EP. 2001. The new human tissue kallikrein gene family: structure, function, and association to disease. Endocr. Rev. 2:184–204.

    Article  Google Scholar 

  201. Takayama TK, McMullen BA, Nelson PS, Matsumura M, Fujikawa K. 2001. Characterization of hK4 (prostase), a prostate-specific serine protease: activation of the precursor of prostate specific antigen (pro- PSA) and single-chain urokinase-type plasminogen activator and degradation of prostatic acid phosphatase. Biochemistry 50:15341–15348.

    Article  CAS  Google Scholar 

  202. Tasch J, Gong M, Sadelain M, Heston WD. 2001. A unique folate hydrolase, prostate-specific membrane antigen (PSMA): a target for immunotherapy? Crit. Rev. Immunol. 21:249–261.

    CAS  Google Scholar 

  203. Freeman LM, Krynyckyi BR, Li Y, et al. 2002. The role of 111In Capromab Pendetide (ProstaScintR) immunoscintigraphy in the management of prostate cancer. Q. J. Nucl. Med. 2: 131–137.

    Google Scholar 

  204. Mabjeesh NJ, Zhong H, Simons JW. 2002. Gene therapy of prostate cancer: current and future directions. Endocr. Relat. Cancer 2:115–139.

    Article  Google Scholar 

  205. Gong MC, Chang SS, Watt F, et al. 2000. Overview of evolving strategies incorporating prostate-specific membrane antigen as target for therapy. Mol. Urol. 3:217–222.

    Google Scholar 

  206. Chang SS, Reuter VE, Heston WD, Gaudin, P.B. 2001. Metastatic renal cell carcinoma neovasculature expresses prostate-specific membrane antigen. Urol. 4:801–805.

    Article  Google Scholar 

  207. Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. 1999. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 13:3192–3198.

    Google Scholar 

  208. Barton J, Blackledge G, Wakeling A. 2001. Growth factors and their receptors: new targets for prostate cancer therapy. Urology 58:114–122.

    Article  PubMed  CAS  Google Scholar 

  209. Bergan RC, Waggle DH, Carter SK, Horak I, Slichenmyer W, Meyers M. 2001. Tyrosine kinase inhibitors and signal transduction modulators: Rationale and current status as chemopreventive agents for prostate cancer. Urology 57:77–80.

    Article  PubMed  CAS  Google Scholar 

  210. Fossa A, Lilleby W, Fossa SD, Gaudernack, G, Torlakovic G, Berner A. 2002. Independent prognostic significance of HER-2 oncoprotein expression in pN0 prostate cancer undergoing curative radiotherapy. Int. J. Cancer. 1:100–105.

    Article  CAS  Google Scholar 

  211. James ND, Atherton J, Jones J, Howie AJ, Tchekmedyian S, Curnow RT. 2001. A phase II study of the bispecific antibody MDX-H210 (anti-HER2 x CD64) with GM-CSF in HER2+ advanced prostate cancer. Br. J. Cancer. 2:152–156.

    Article  Google Scholar 

  212. Reese DM, Small EJ, Magrane G, Waldman FM, Chew K, Sudilovsky D. 2001. HER2 protein expression and gene amplification in androgen-independent prostate cancer. Am. J. Clin. Pathol. 2:234–239.

    Google Scholar 

  213. Shi Y, Brands FH, Chatterjee S, et al. 2001. Her-2/neu expression in prostate cancer: high level of expression associated with exposure to hormone therapy and androgen independent disease. J. Urol. 4:1514–1519.

    Google Scholar 

  214. Osman I, Scher HI, Drobnjak M, et al. 2001. HER-2/neu (p185neu) protein expression in the natural or treated history of prostate cancer. Clin. Cancer Res. 9:2643–2647.

    Google Scholar 

  215. Savinainen KJ, Saramaki OR, Linja MJ, et al. 2002. Expression and gene copy number analysis of ERBB2 oncogene in prostate cancer. Am. J. Pathol. 160(1):339–345.

    Article  PubMed  CAS  Google Scholar 

  216. Liu HL, Gandour-Edwards, R, Lara, PN Jr, de Vere WR, LaSalle JM. 2001. Detection of low level HER-2/neu gene amplification in prostate cancer by fluorescence in situ hybridization. Cancer J. 5:395–403.

    Google Scholar 

  217. Kim NW and Hruszkewycz AM. 2001. Telomerase activity modulation in the prevention of prostate cancer. Urology 57:148–153.

    Article  PubMed  CAS  Google Scholar 

  218. Elayadi AN, Demieville A, Wancewicz EV, Monia BP, Corey DR. 2001. Inhibition of telomerase by 2-O-(2-methoxyethyl) RNA oligomers: effect of length, phosphorothioate substitution and time inside cells. Nucleic Acids Res. 8:1683–1689.

    Article  Google Scholar 

  219. Schroers R, Huang XF, Hammer J, Zhang J, Chen SY. 2002. Identification of HLA DR7restricted epitopes from human telomerase reverse transcriptase recognized by CD4+ T-helper cells. Cancer Res. 9:2600–2605.

    Google Scholar 

  220. Heiser A, Maurice MA, Yancey DR, et al. 2001. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J. Immunol. 5:2953–2960.

    Google Scholar 

  221. Straub B, Muller M, Krause H, et al. 2002. Molecular staging of pelvic surgical margins after radical prostatectomy: Comparison of RT-PCR for prostate-specific antigen and telomerase activity. Oncol. Rep. 3:545–549.

    Google Scholar 

  222. Ruijter E, Montironi R, van de KC, Schalken J. 2001. Molecular changes associated with prostate cancer development. Anal. Quant. Cytol. Histol. 1:67–88.

    Google Scholar 

  223. Sakr WA and Partin AW. 2001. Histological markers of risk and the role of high-grade prostatic intraepithelial neoplasia. Urol. 57:115–120.

    Article  PubMed  CAS  Google Scholar 

  224. Lianidou E. 2002. Telomerase. In Tumor Markers Physiology, Pathobiology, Technology and Clinical Applications. Diamandis EP, Fritsche HA, Lilja H, Chan DW, and Schartz M, eds. Washington: AACC, pp. 509–511.

    Google Scholar 

  225. Andersen MH and Thor, S. 2002. Survivin-a universal tumor antigen. Histol. Histopathol. 2:669–675.

    Google Scholar 

  226. Altieri DC. 2001. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol. Med. 12:542–547.

    Google Scholar 

  227. LaCasse EC, Baird S, Korneluk RG, MacKenzie AE. 1998. The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 25:3247–3259.

    Google Scholar 

  228. Ambrosini G, Adida C, Altieri DC. 1997. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med. 8:917–921.

    Article  Google Scholar 

  229. Xing N, Qian J, Bostwick D, Bergstralh E, Young CY. 2001. Neuroendocrine cells in human prostate over-express the anti-apoptosis protein survivin. Prostate 1:7–15.

    Article  Google Scholar 

  230. Djavan B, Waldert M, Seitz C, Marberge, R. M. 2001. Insulin-like growth factors and prostate cancer. World J. Urol. 4:225–233.

    Google Scholar 

  231. Chan JM, Stampfer MJ, Giovannucci E, et al. 1998. Plasma insulin-like growth factor-I and prostate cancer risk: A prospective study. Science 279:563–565. 234. Shi R, Berkel HJ, Yu H. 2001. Insulin-like growth factor-I and prostate cancer: a meta-analysis. Br. J. Cancer. 7:991–996.

    Google Scholar 

  232. Chan JM, Stampfer MJ, Ma J, et al. . Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J. Natl. Cancer Inst.14:1099–1106. 236. Koistinen H, Paju A, Koistinen R, et alProstate-specific antigen and other prostate-derived proteases cleave IGFBP-3, but prostate cancer is not associated with proteolytically cleaved circulating IGFBP-3. Prostate 2:112–118.

    Google Scholar 

  233. Ismail AH, Pollak M, Behlouli H, Tanguay S, Begin LR, Aprikian AG. 2002. Insulin-like growth factor-1 and insulin-like growth factor binding protein-3 for prostate cancer detection in patients undergoing prostate biopsy. J. Urol. 6:2426–2430.

    Google Scholar 

  234. Shariat SF, Lamb DJ, Kattan MW, et al. 2002. Association of preoperative plasma levels of insulin-like growth factor I and insulin-like growth factor binding proteins-2 and -3 with prostate cancer invasion, progression, and metastasis. J. Clin. Oncol. 3:833–841.

    Article  Google Scholar 

  235. Lehrer S, Diamond EJ, Droller MJ, Stone NN, Stock RG. 2002. Re: Insulin-like growth factorI (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J. Natl. Cancer Inst. 24:1893–1894.

    Article  Google Scholar 

  236. Latif Z, McMillan DC, Wallace AM, et al. 2002. The relationship of circulating insulin-like growth factor 1, its binding protein-3, prostate-specific antigen and C-reactive protein with disease stage in prostate cancer. BJU Int. 4:396–399.

    Article  Google Scholar 

  237. Coussens LM, Fingleton B, Matrisian LM. 2002. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 5564:2387–2392.

    Article  Google Scholar 

  238. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE. 2001. Immunocytochemical detection of matrix metalloproteinase expression in prostate cancer. In Vivo 15(1):65–70.

    PubMed  CAS  Google Scholar 

  239. Wood M, Fudge K, Mohler JL, et al. 1997. In situ hybridization studies of metalloproteinases 2 and 9 and TIMP-1 and TIMP-2 expression in human prostate cancer. Clin Exp Metastasis 3:246–258.

    Article  Google Scholar 

  240. Jung K, Nowak L, Lein M, Priem F, Schnorr D, Loening SA. 1997. Matrix metalloproteinases 1 and 3, tissue inhibitor of metalloproteinase-1 and the complex of metalloproteinase- 1/tissue inhibitor in plasma of patients with prostate cancer. Int. J. Cancer 2:220–223.

    Article  Google Scholar 

  241. Sheng S. 2001. The urokinase-type plasminogen activator system in prostate cancer metastasis. Cancer Metastasis Rev. 3–4:287–296.

    Article  Google Scholar 

  242. Gavrilov D, Kenzior O, Evans M, Calaluce R, and Folk WR. 2001. Expression of urokinase plasminogen activator and receptor in conjunction with the ets family and AP-1 complex transcription factors in high grade prostate cancers. Eur. J. Cancer 8:1033–1040.

    Article  Google Scholar 

  243. Helenius MA, Saramaki OR, Linja MJ, Tammela TL, Visakorpi T. 2001. Amplification of urokinase gene in prostate cancer. Cancer Res. 14:5340–5344.

    Google Scholar 

  244. Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, Kamidono S. 1999. Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate 2:123–129.

    Article  Google Scholar 

  245. Cheung J, Graves C, Robertson J. 2002. Autoantibodies as circulating cancer markers. In Tumor Markers Physiology, Pathobiology, Technology and Clinical Applications. Diamandis EP, Fritsche HA, Lilja H, Chan DW, and Schartz M, eds. Washington: AACC, pp. 123–131.

    Google Scholar 

  246. Sanda MG, Smith DC, Charles LG, et al. 1999. Recombinant Vaccinia-PSA (Prostvac) can Induce a Prostate-Specific Immune Response in Androgen-Modulated Human Prostate Cancer. Urology 53:260–266.

    Article  PubMed  CAS  Google Scholar 

  247. Eder JP, Kantoff PW, Roper K, et al. 2000. A phase I trial of a recominant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin. Cancer Res. 6:1632–1638.

    PubMed  CAS  Google Scholar 

  248. Tahir SA, Yang G, Ebara S, et al. 2001. Secreted caveolin-1 stimulates cell survival/clonal growth and contributes to metastasis in androgen-insensitive prostate cancer. Cancer Res. 10:3882–3885.

    Google Scholar 

  249. Abrahamsson PA. 1999. Neuroendocrine differentiation in prostatic carcinoma. Prostate 2: 135–148.

    Article  Google Scholar 

  250. Rini BI and Small EJ. 2001. Immunotherapy for prostate cancer. Curr. Oncol. Rep. 5:418–423.

    Article  Google Scholar 

  251. Satthaporn S and Eremin 0. 2001. Dendritic cells (II): Role and therapeutic implications in cancer. J. R. Coll.Surg. Edinb. 46(3):159–167.

    PubMed  CAS  Google Scholar 

  252. Eaton JD, Perry MJ, Nicholson S, et al. 2002. Allogeneic whole-cell vaccine: a phase I/II study in men with hormone- refractory prostate cancer. BJU Int. 1:19–26.

    Article  Google Scholar 

  253. Heiser A, Coleman D, Dannull J, et al. 2002. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest. 3:409–417.

    Google Scholar 

  254. Hampl J and Kuus-Reichel K. 2002. Measurement of Tumor-Specific T Cells with MHC Tetramer Technology. In Tumor Markers Physiology, Pathobiology, Technology and Clinical Applications. Diamandis EP, Fritsche HA, Lilja H, Chan DW, and Schartz M, eds. Washington: AACC, pp. 457–460.

    Google Scholar 

  255. Vonderheide RH, Domchek SM, Hahn WC, et al. 2001. Vaccination of cancer patients against telomerase: A phase I study using peptide-pulsed dendritic cells. Blood 98:508a.

    Google Scholar 

  256. Moul JW, Lewis DJ, Ross AA, Kahn DG, Ho CK, McLeod DG. 1994. Immunohistologic detection of prostate cancer pelvic lymph node micrometastases: correlation to preoperative serum prostate-specific antigen. Urology 1:68–73.

    Article  Google Scholar 

  257. Vagunda V, Landys K, Kankkunen JP, et al. 2001. Bone marrow micrometastases in patients with stage I-II localised prostate cancer. Eur. J. Cancer 15:1847–1852.

    Article  Google Scholar 

  258. Halabi S, Small EJ, Hayes DF, Vogelzang NJ, Kantoff PW. 2003. Prognostic significance of reverse transcriptase polymerase chain reaction for prostate-specific antigen in metastatic prostate cancer: a nested study within CALGB 9583. J. Clin. Oncol. 3:490–495.

    Article  CAS  Google Scholar 

  259. Bigler SA, Deering RE, Brawer MK. 1993. Comparison of microscopic vascularity in benign and malignant prostate tissue. Hum. Pathol. 2:220–226.

    Article  Google Scholar 

  260. Wikstrom P, Lissbrant IF, Stattin P, Egevad L, Bergh A. 2002. Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate 4:268–275.

    Article  CAS  Google Scholar 

  261. Mehta R, Kyshtoobayeva A, Kurosaki T, et al. 2001. Independent association of angiogenesis index with outcome in prostate cancer. Clin. Cancer Res. 1:81–88.

    Google Scholar 

  262. Kwak C, Jin RJ, Lee C, Park MS, Lee SE. 2002. Thrombospondin-1, vascular endothelial growth factor expression and their relationship with p53 status in prostate cancer and benign prostatic hyperplasia. BJU Int. 3:303–309.

    Article  Google Scholar 

  263. Grossfeld GD, Carroll PR, Lindeman N, et al. 2002. Thrombospondin-1 expression in patients with pathologic stage T3 prostate cancer undergoing radical prostatectomy: association with p53 alterations, tumor angiogenesis, and tumor progression. Urology 1:97–102.

    Article  Google Scholar 

  264. Cvetkovic D, Movsas B, Dicker AP, et al. 2001. Increased hypoxia correlates with increased expression of the angiogenesis marker vascular endothelial growth factor in human prostate cancer. Urology 4:821–825.

    Article  Google Scholar 

  265. Bok RA, Halabi S, Fei DT, et al. 2001. Vascular endothelial growth factor and basic fibroblast growth factor urine levels as predictors of outcome in hormone-refractory prostate cancer patients: a cancer and leukemia group B study. Cancer Res. 61(6):2533–2536.

    PubMed  CAS  Google Scholar 

  266. West AF, O’Donnell M, Charlton RG, Neal, DE, Leung HY. 2001. Correlation of vascular endothelial growth factor expression with fibroblast growth factor-8 expression and clinicopathologic parameters in human prostate cancer. Br. J. Cancer 4:576–583.

    Article  Google Scholar 

  267. Uotila P, Valve E, Martikainen P, Nevalainen M, Nurmi M, Harkonen P. 2001. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol. Res. 1:23–28.

    Google Scholar 

  268. Lokeshwar VB, Rubinowicz D, Schroeder GL, et al. 2001. Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J. Biol. Chem.,922–11,932.

    Google Scholar 

  269. Kenyon GL, DeMarini DM, Fuchs E, et al. 2002. Defining the Mandate of Proteomics in the Post-Genomics Era: Workshop Report: National Academy of Sciences, Washington, D.C., USA. http://www.nap.edu/catalog/10209.html. Mol. Cell. Proteomics 10:763–780.

    Google Scholar 

  270. Srinivas PR, Verma M, Zhao Y, Srivastava S. 2002. Proteomics for cancer biomarker discovery. Clin. Chem. 8:1160–1169.

    Google Scholar 

  271. Chapdelaine P, Paradis G, Tremblay R, and Dube J. 1988. High level of expression in the prostate of a human glandular kallikrein mRNA related to prostate-specific antigen. FEBS Lett. 236:205–208.

    Article  PubMed  CAS  Google Scholar 

  272. Adam BL, Vlahou A, Semmes OJ, Wright GL Jr. 2001. Proteomic approaches to biomarker discovery in prostate and bladder cancers. Proteomics 10:1264–1270.

    Article  Google Scholar 

  273. Adam BL, Qu Y, Davis JW, et al. 2002. Serum protein fingerprinting coupled with a patternmatching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res. 13:3609–3614.

    Google Scholar 

  274. O’dowd GJ, Miller MC, Orozco R, Veltri RW. 2000. Analysis of repeated biopsy results within 1 year after a noncancer diagnosis. Urology 4:553–559.

    Article  Google Scholar 

  275. Stephan C, Cammann H, Semjonow A, et al. 2002. Multicenter evaluation of an artificial neural network to increase the prostate cancer detection rate and reduce unnecessary biopsies. Clin. Chem. 8:1279–1287.

    Google Scholar 

  276. Horninger W, Bartsch G, Snow, PB, Brandt JM, Partin AW. 2001. The problem of cutoff levels in a screened population: appropriateness of informing screenees about their risk of having prostate carcinoma. Cancer 8:1667–1672.

    Article  Google Scholar 

  277. Borque A, Sanz G, Allepuz C, Plaza L, Gil P, Rioja LA. 2001. The use of neural networks and logistic regression analysis for predicting pathological stage in men undergoing radical prostatectomy: a population based study. J. Urol. 5:1672–1678.

    Google Scholar 

  278. Djavan B, Remzi M, Zlotta A, Seitz C, Snow P, Marberger M. 2002. Novel artificial neural network for early detection of prostate cancer. J. Clin. Oncol. 4:921–929.

    Article  Google Scholar 

  279. Zhang Z. 2002. Combining Multiple Biomarkers in Clinical Diagnostics: A review of methods and issues, in: Tumor Markers Physiology, Pathobiology, Technology and Clinical Applications, Diamandis EP, Fritsche HA, Lilja H, Chan DW, Schartz M, eds., AACC Press: Washington, pp. 133–139.

    Google Scholar 

  280. McEleny K, Watson R, Fitzpatrick J. 2001. Defining a role for the inhibitors of apoptosis proteins in prostate cancer. Prostate Cancer Prostatic Dis. 4:28–32.

    Article  PubMed  CAS  Google Scholar 

  281. Damianaki A, Bakogeorgou E, Kampa M, et al. 2000. Potent inhibitory action of red wine polyphenols on human breast cancer cells. J. Cell. Biochem. 3:429–441.

    Article  Google Scholar 

  282. Berruti A, Dogliotti L, Tucci M, Tarabuzzi R, Fontana D, Angeli A. 2001. Metabolic bone disease induced by prostate cancer: rationale for the use of bisphosphonates. J. Urol. 6: 2023–2031.

    Google Scholar 

  283. Goluboff ET. 2001. Exisulind, a selective apoptotic antineoplastic drug. Expert Opin. Investig. Drugs 10:1875–1882.

    Article  CAS  Google Scholar 

  284. Hsu AL, Ching,TT, Wang DS, Song X, Rangnekar VM, Chen CS. 2000. The cyclooxygenase2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bc1–2. J. Biol. Chem. 15:11397–11403.

    Article  Google Scholar 

  285. Debes J and Tindall D. 2002. The role of androgens and the androgen receptor in prostate cancer. Cancer Lett. 1–2:1.

    Article  Google Scholar 

  286. Small EJ, Prins G, Taplin M. 2000. The androgen receptor and the physiology and endocrinology of the prostate, in: Comprehensive Textbook of Genitourinary Oncology. Vogelzang NJ, Scardino PT, Shipley W, and Coffey DS, eds., Lippincott Williams and Wilkins: Philadelphia, pp. 565–586.

    Google Scholar 

  287. Roehrborn C, Boyle P, Nickel J, Hoefner K, Andriole G. 2002. Efficacy and safety of a dual inhibitor of 5-alpha-reductase types 1 and 2 (dutasteride) in men with benign prostatic hyperplasia. Urology 3:434.

    Article  Google Scholar 

  288. Burger MJ, Tebay MA, and Keith PA, et al. 2002. Expression analysis of delta-catenin and prostate-specific membrane antigen: their potential as diagnostic markers for prostate cancer. Int. J. Cancer. 2:228–237.

    Article  CAS  Google Scholar 

  289. Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C. 1997. Antonarakis, S.E. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3. Genomics 3:309–320.

    Google Scholar 

  290. Diamandis EP, Okui A, Mitsui S, et al. 2002. Human kallikrein 11: a new biomarker of prostate and ovarian carcinoma. Cancer Res. 1:295–300.

    Google Scholar 

  291. Sinha AA, Quast BJ, Wilson MJ, et al. 2001. Ratio of cathepsin B to stefin A identifies heterogeneity within Gleason histologic scores for human prostate cancer. Prostate 4:274–284.

    Article  Google Scholar 

  292. Al Maghrabi J, Vorobyova L, Chapman W, Jewett M, Zielenska M, Squire JA. 2001. p53 Alteration and chromosomal instability in prostatic high-grade intraepithelial neoplasia and concurrent carcinoma: analysis by immunohistochemistry, interphase in situ hybridization, and sequencing of laser-captured microdissected specimens. Mod. Pathol. 12:1252–1262.

    Google Scholar 

  293. Qian J, Hirasawa K, Bostwick DG, et al. 2002. Loss of p53 and c-myc overrepresentation in stage T(2–3)N(1–3)M(0) prostate cancer are potential markers for cancer progression. Mod. Pathol. 1:35–44.

    Article  Google Scholar 

  294. Finasteride Male Pattern Hair Loss Study Group. 2002. Long-term (5-year) multinational experience with finasteride 1 mg in the treatment of men with androgenetic alopecia. Eur. J. Dermatol. 1:38–49.

    Google Scholar 

  295. Pannek J, Marks LS, Pearson JD, et al. 1998. Influence of finasteride on free and total serum prostate specific antigen levels in men with benign prostatic hyperplasia. J. Urol. 159:449–453.

    Article  PubMed  CAS  Google Scholar 

  296. Preuss HG, Marcusen C, Regan, J, Klimberg IW, Welebir TA, Jones WA. 2001. Randomized trial of a combination of natural products (cernitin, saw palmetto, B-sitosterol, vitamin E) on symptoms of benign prostatic hyperplasia (BPH). Int. Urol. Nephrol. 2:217–225.

    Article  Google Scholar 

  297. Ryan CW, Stadler WM, Vogelzang NJ. 2001. Docetaxel and exisulind in hormone-refractory prostate cancer. Semin. Oncol. 28:56–61.

    Article  PubMed  CAS  Google Scholar 

  298. Chetcuti A, Margan S, Mann S, et al. 2001. Identification of differentially expressed genes in organ-confined prostate cancer by gene expression array. Prostate. 2:132–140.

    Article  Google Scholar 

  299. Bostwick DG, Qian J, Pacelli A, et al. 2002. Neuroendocrine expression in node positive prostate cancer: correlation with systemic progression and patient survival. J. Urol. 3:1204–1211.

    Google Scholar 

  300. Hansson J, Bjartell A, Gadaleanu V, Dizeyi N, Abrahamsson PA. 2002. Expression of somatostatin receptor subtypes 2 and 4 in human benign prostatic hyperplasia and prostatic cancer. Prostate 1:50–59.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Finlay, J.A., Mikolajczyk, S.D., Pribyl, T.M., Wallace, R.B., Rittenhouse, H.G. (2004). Prostate Cancer Markers. In: Nakamura, R.M., Grody, W.W., Wu, J.T., Nagle, R.B. (eds) Cancer Diagnostics. Contemporary Cancer Research. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-791-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-791-8_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61737-399-2

  • Online ISBN: 978-1-59259-791-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics