Advertisement

Trace Elements/Minerals and Immunity

Chapter

Keywords

Zinc Deficiency Iodine Deficiency Iron Supplementation Acute Phase Response Essential Trace Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Food and Nutrition Board, Institute of Medicine. (1997) Dietary Reference Intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academy, Washington, DC.Google Scholar
  2. 2.
    Food and Nutrition Board, Institute of Medicine. (2001) Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy, Washington, DC.Google Scholar
  3. 3.
    World Health Organization. (1996) Trace elements in human nutrition and health. WHO, Geneva, p. 343.Google Scholar
  4. 4.
    Shrivastava, R., Upreti, R.K., Seth, P.K., and Chaturvedi, U.C. (2002) Effects of chromium on the immune system. FEMS Immunol. Med. Microbiol. 34, 1–7.Google Scholar
  5. 5.
    Sosroseno, W. (2003) Effect of sodium fluoride on the murine splenic immune response to Porphyromonas gingivalis in vitro. Immunopharmacol. Immunotoxicol. 25, 123–127.Google Scholar
  6. 6.
    Keen, C.L., Clegg, M.S., Hanna, L.A., et al. (2003) The plausibility of micronutrient deficiencies being a significant contributing factor to the occurrence of pregnancy complications. J. Nutr. 133, 1597S-1605S.Google Scholar
  7. 7.
    Keen, C.L. (1996) Teratogenic effects of essential trace metals: Deficiencies and excesses, in Toxicology of metals. (Chang LW, Magos L, Suzuki T, eds.) CRC, New York, pp. 977–1001.Google Scholar
  8. 8.
    Danzeisen, R., Fosset, C., Chariana, Z., Page, K., David, S., and McArdle, H.J. (2002) Placental ceruloplasmin homolog is regulated by iron and copper and is implicated in iron metabolism. Am. J. Physiol. Cell. Physiol. 282, C472-C478.Google Scholar
  9. 9.
    Arthur, J.R., McKenzie, R.C., and Beckett, G.J. (2003) Selenium in the immune system. J. Nutr. 133, 1457S-1459S.Google Scholar
  10. 10.
    Soliman, H.M., Mercan, D., Lobo, S.S., Melot, C., and Vincent, J.L. (2003) Development of ionized hypomagnesemia is associated with higher mortality rates. Crit. Care Med. 31, 1082–1087.Google Scholar
  11. 11.
    Ruz, M. and Solomons, N.W. (1990) Mineral excretion during acute, dehydrating diarrhea treated with oral rehydration therapy. Pediatr. Res. 27, 170–175.Google Scholar
  12. 12.
    Walter, R.M., Uriu-Hare, J.Y., Olin, K.L., et al. (1991) Copper, zinc, manganese, and magnesium status and complications of diabetes mellitus. Diabetes Care 14, 1050–1056.Google Scholar
  13. 13.
    Kupka, R. and Fawzi, W. (2002) Zinc nutrition and HIV infection. Nutr. Rev. 60, 69–79.Google Scholar
  14. 14.
    Percival, S.S. (1998) Copper and immunity. Am. J. Clin. Nutr. 67, 1064S-1068S.Google Scholar
  15. 15.
    Kelley, D.S., Daudu, P.A., Taylor, P.C., Mackey, B.E., and Turnlund, J.R. (1995) Effects of low-copper diets on human immune response. Am. J. Clin. Nutr. 62, 412–416.Google Scholar
  16. 16.
    Prohaska, J.R. and Lukasewycz, O.A. (1989) Copper deficiency during perinatal development: effects on the immune response of mice. J. Nutr. 119, 922–931.Google Scholar
  17. 17.
    Hopkins, R.G. and Failla, M.L. (1995) Chronic intake of a marginally low copper diet impairs in vitro activities of lymphocytes and neutrophils from male rats despite minimal impact on conventional indicators of copper status. J. Nutr. 125, 2658–2668.Google Scholar
  18. 18.
    Hopkins, R.G. and Failla, M.L. (1999) Transcriptional regulation of interleukin2 gene expression is impaired by copper deficiency in Jurkat human T lymphocytes. J. Nutr. 129, 596–601.Google Scholar
  19. 19.
    Cerone, S.I., Sansinanea, A.S., Streitenberger, S.A., Garcia, M.C., and Auza, N.J. (1998) The effect of copper deficiency on the peripheral blood cells of cattle. Vet. Res. Commun. 22, 47–57.Google Scholar
  20. 20.
    Spears, J.W. (2000) Micronutrients and immune function in cattle. Proc. Nutr. Soc. 59, 587–594.Google Scholar
  21. 21.
    Nakagawa, S., Fukata, Y., Nagata, H., Miyake, M., and Hama, T. (1993) The decreased immune responses in macular mouse, a model of Menkes’ kinky hair disease. Res. Commun. Chem. Pathol. Pharmacol. 79, 61–73.Google Scholar
  22. 22.
    Failla, M.L., Babu, U., and Seidel, K.E. (1988) Use of immunoresponsiveness to demonstrate that the dietary requirement for copper in young rats is greater with dietary fructose than dietary starch. J. Nutr. 118, 487–496.Google Scholar
  23. 23.
    Pocino, M., Baute, L., and Malave, I. (1991) Influence of the oral administration of excess copper on the immune response. Fundam. Appl. Toxicol. 16, 249–256.Google Scholar
  24. 24.
    Massie, H.R., Ofosu-Appiah, W., and Aiello, V.R. (1993) Elevated serum copper is associated with reduced immune response in aging mice. Gerontology 39, 136–145.Google Scholar
  25. 25.
    Weetman, A.P., McGregor, A.M., Campbell, H., Lazarus, J.H., Ibbertson, H.K., and Hall, R. (1983) Iodide enhances IgG synthesis by human peripheral blood lymphocytes in vitro. Acta. Endocrinol. (Copenh.) 103, 210–215.Google Scholar
  26. 26.
    Venturi, S., Donati, F.M., Venturi, A., Venturi, M., Grossi, L., and Guidi, A. (2000) Role of iodine in evolution and carcinogenesis of thyroid, breast and stomach. Adv. Clin. Path. 4, 11–17.Google Scholar
  27. 27.
    Marani, L. and Venturi, S. (1986) [Iodine and delayed immunity]. Minerva. Med. 77, 805–809.Google Scholar
  28. 28.
    DeLong, G.R., Leslie, P.W., Wang, S.H., et al. (1997) Effect on infant mortality of iodination of irrigation water in a severely iodine-deficient area of China. Lancet 350, 771–773.Google Scholar
  29. 29.
    Wenzel, B.E., Chow, A., Baur, R., Schleusener, H., and Wall, J.R. (1998) Natural killer cell activity in patients with Graves’ disease and Hashimoto’s thyroiditis. Thyroid 8, 1019–1022.Google Scholar
  30. 30.
    Dai, Y.D., Rao, V.P., and Carayanniotis, G. (2002) Enhanced iodination of thyroglobulin facilitates processing and presentation of a cryptic pathogenic peptide. J. Immunol. 168, 5907–5911.Google Scholar
  31. 31.
    Pedersen, I.B., Knudsen, N., Jorgensen, T., Perrild, H., Ovesen, L., and Laurberg, P. (2003) Thyroid peroxidase and thyroglobulin autoantibodies in a large survey of populations with mild and moderate iodine deficiency. Clin. Endocrinol. (Oxf.) 58, 36–42.Google Scholar
  32. 32.
    Loviselli, A., Velluzzi, F., Mossa, P., et al. (2001) The Sardinian Autoimmunity Study: 3. Studies on circulating antithyroid antibodies in Sardinian schoolchildren: relationship to goiter prevalence and thyroid function. Thyroid 11, 849–857.Google Scholar
  33. 33.
    Stoltzfus, R.J. Iron-deficiency anemia: reexamining the nature and magnitude of the public health problem. Summary: implications for research and programs. J. Nutr. 131, 697S-700S; discussion 700S–701S.Google Scholar
  34. 34.
    Failla, M.L. (2003) Trace elements and host defense: recent advances and continuing challenges. J. Nutr. 133, 1443S-1447S.Google Scholar
  35. 35.
    Gera, T. and Sachdev, H.P. (2002) Effect of iron supplementation on incidence of infectious illness in children: systematic review. Br. Med. J. 325, 1142.Google Scholar
  36. 36.
    de Silva, A., Atukorala, S., Weerasinghe, I., and Ahluwalia, N. (2003) Iron supplementation improves iron status and reduces morbidity in children with or without upper respiratory tract infections: a randomized controlled study in Colombo, Sri Lanka. Am. J. Clin. Nutr. 77, 234–241.Google Scholar
  37. 37.
    Nussenblatt, V. and Semba, R.D. (2002) Micronutrient malnutrition and the pathogenesis of malarial anemia. Acta. Trop. 82, 321–337.Google Scholar
  38. 38.
    Afacan, Y.E., Hasan, M.S., and Omene, J.A. (2002) Iron deficiency anemia in HIV infection: immunologic and virologic response. J. Natl. Med. Assoc. 94, 73–77.Google Scholar
  39. 39.
    Gordeuk, V.R., Delanghe, J.R., Langlois, M.R., and Boelaert, J.R. (2001) Iron status and the outcome of HIV infection: an overview. J. Clin. Virol. 20, 111–115.Google Scholar
  40. 40.
    Totin, D., Ndugwa, C., Mmiro, F., Perry, R.T., Jackson, J.B., Semba, R.D. (2002) Iron deficiency anemia is highly prevalent among human immunodeficiency virus-infected and uninfected infants in Uganda. J. Nutr. 132, 423–429.Google Scholar
  41. 41.
    Verhoef, H., West, C.E., Ndeto, P., Burema, J., Beguin, Y., Kok, F.J. (2001) Serum transferrin receptor concentration indicates increased erythropoiesis in Kenyan children with asymptomatic malaria. Am. J. Clin. Nutr. 74, 767–775.Google Scholar
  42. 42.
    Hambidge M. (2003) Biomarkers of trace mineral intake and status. J. Nutr. 133 Suppl 3, 948S-955S.Google Scholar
  43. 43.
    Malpuech-Brugere, C., Nowacki, W., Gueux, E., et al. (1999) Accelerated thymus involution in magnesium-deficient rats is related to enhanced apoptosis and sensitivity to oxidative stress. Br. J. Nutr. 81, 405–411.Google Scholar
  44. 44.
    Ashkenazy, Y., Moshonov, S., Fischer, G., et al. (1990) Magnesium-deficient diet aggravates anaphylactic shock and promotes cardiac myolysis in guinea pigs. Magnes. Trace Elem. 9, 283–288.Google Scholar
  45. 45.
    Malpuech-Brugere, C., Rock, E., Astier, C., Nowacki, W., Mazur, A., and Rayssiguier, Y. (1998) Exacerbated immune stress response during experimental magnesium deficiency results from abnormal cell calcium homeostasis. Life Sci. 63, 1815–1822.Google Scholar
  46. 46.
    Malpuech-Brugere, C., Nowacki, W., Daveau, M., et al. (2000) Inflammatory response following acute magnesium deficiency in the rat. Biochim. Biophys. Acta. 1501, 91–98.Google Scholar
  47. 47.
    Bussiere, F.I., Mazur, A., Fauquert, J.L., Labbe, A., Rayssiguier, Y., and Tridon, A. (2002) High magnesium concentration in vitro decreases human leukocyte activation. Magnes. Res. 15, 43–48.Google Scholar
  48. 48.
    Salem, M., Kasinski, N., Munoz, R., and Chernow, B. (1995) Progressive magnesium deficiency increases mortality from endotoxin challenge: protective effects of acute magnesium replacement therapy. Crit. Care Med. 23, 108–118.Google Scholar
  49. 49.
    Weglicki, W.B., Dickens, B.F., Wagner, T.L., Chmielinska, J.J., and Phillips, T.M. (1996) Immunoregulation by neuropeptides in magnesium deficiency: exvivo effect of enhanced substance P production on circulating T lymphocytes from magnesium-deficient mice. Magnes. Res. 9, 3–11.Google Scholar
  50. 50.
    Bussiere, F.I., Gueux, E., Rock, E., et al. (2002) Increased phagocytosis and production of reactive oxygen species by neutrophils during magnesium deficiency in rats and inhibition by high magnesium concentration. Br. J. Nutr. 87, 107–113.Google Scholar
  51. 51.
    Kramer, J.H., Mak, I.T., Phillips, T.M., and Weglicki, W.B. (2003) Dietary magnesium intake influences circulating pro-inflammatory neuropeptide levels and loss of myocardial tolerance to postischemic stress. Exp. Biol. Med. (Maywood) 228, 665–673.Google Scholar
  52. 52.
    Petrault, I., Zimowska, W., Mathieu, J., et al. (2002) Changes in gene expression in rat thymocytes identified by cDNA array support the occurrence of oxidative stress in early magnesium deficiency. Biochim. Biophys. Acta. 1586, 92–98.Google Scholar
  53. 53.
    Bussiere, FI., Gueux, E., Rock, E., Mazur, A., and Rayssiguier, Y. (2002) Protective effect of calcium deficiency on the inflammatory response in magnesiumdeficient rats. Eur. J. Nutr. 41, 197–202.Google Scholar
  54. 54.
    Vormann, J., Michalski, L., and Gunther, T. (1996) Cellular and humoral immunity in rats after gestational zinc or magnesium deficiency. J. Nutr. Biochem. 7, 327–332.Google Scholar
  55. 55.
    Turner, R.E., Langkamp-Henken, B., Littell, R.C., Lukowski, M.J., and Suarez, M.F. (2003) Comparing nutrient intake from food to the estimated average requirements shows middle- to upper-income pregnant women lack iron and possibly magnesium. J. Am. Diet. Assoc. 103, 461–466.Google Scholar
  56. 56.
    Suitor, C.W. and Gleason, P.M. (2002) Using Dietary Reference Intake-based methods to estimate the prevalence of inadequate nutrient intake among schoolaged children. J. Am. Diet. Assoc. 102, 530–536.Google Scholar
  57. 57.
    Britton, J., Pavord, I., Richards, K., et al. (1994) Dietary magnesium, lung function, wheezing, and airway hyperreactivity in a random adult population sample. Lancet 344, 357–362.Google Scholar
  58. 58.
    Bessmertny, O., DiGregorio, R.V., Cohen, H., et al. (2002) A randomized clinical trial of nebulized magnesium sulfate in addition to albuterol in the treatment of acute mild-to-moderate asthma exacerbations in adults. Ann. Emerg. Med. 39, 585–591.Google Scholar
  59. 59.
    Porter, R.S., Nester, Braitman, L.E., Geary, U., and Dalsey, W.C. (2001) Intravenous magnesium is ineffective in adult asthma, a randomized trial. Eur. J. Emerg. Med. 8, 9–15.Google Scholar
  60. 60.
    Doelman, C.J. and Bast, A. (1990) Oxygen radicals in lung pathology. Free Radic. Biol. Med. 9, 381–400.Google Scholar
  61. 61.
    Keen, C.L., Ensunsa, J.L., and Clegg, M.S. (2000) Manganese metabolism in animals and humans including the toxicity of manganese. Met. Ions. Biol. Syst. 37, 89–121.Google Scholar
  62. 62.
    Friedman, B.J., Freeland-Graves, J.H., Bales, C.W., et al. (1987) Manganese balance and clinical observations in young men fed a manganese-deficient diet. J. Nutr. 117, 133–143.Google Scholar
  63. 63.
    Davis, C.D. and Greger, J.L. (1992) Longitudinal changes of manganese-dependent superoxide dismutase and other indexes of manganese and iron status in women. Am. J. Clin. Nutr. 55, 747–752.Google Scholar
  64. 64.
    Davis, C.D., Malecki, E.A., and Greger, J.L. (1992) Interactions among dietary manganese, heme iron, and nonheme iron in women. Am. J. Clin. Nutt. 56, 926–932.Google Scholar
  65. 65.
    Spillmann, C., Osorio, D., and Waugh, R. (2002) Integrin activation by divalent ions affects neutrophil homotypic adhesion. Ann. Biomed. Eng. 30, 1002–1011.Google Scholar
  66. 66.
    Edwards, A.S. and Newton, A.C. (1997) Regulation of protein kinase C betall by its C2 domain. Biochemistry 36, 15615–15623.Google Scholar
  67. 67.
    Xu, X. and Hakansson, L. (2002) Degranulation of primary and secondary granules in adherent human neutrophils. Scand. J. Immunol. 55, 178–188.Google Scholar
  68. 68.
    Kalb, A.J., Habash, J., Hunter, N.S., Price, H.J., Raftery, J., and Helliwell, J.R. (2000) Manganese(II) in concanavalin A and other lectin proteins. Met. Ions. Biol. Syst. 37, 279–304.Google Scholar
  69. 69.
    Keen, C., Lonnerdal, B., and Hurley, L.S. (1984) Manganese, in Biochemistry of the essential ultratrace elements. (Frieden E, ed.) Plenum, New York, pp. 89–132.Google Scholar
  70. 70.
    Epperly, M.W., Guo, H.L., Jefferson, M., et al. (2003) Cell phenotype specific kinetics of expression of intratracheally injected manganese superoxide dismutase-plasmid/liposomes (MnSOD-PL) during lung radioprotective gene therapy. Gene Ther. 10, 163–171.Google Scholar
  71. 71.
    Bertera, S., Crawford, M.L., Alexander, A.M., et al. (2003) Gene transfer of manganese superoxide dismutase extends islet graft function in a mouse model of autoimmune diabetes. Diabetes 52, 387–393.Google Scholar
  72. 72.
    Zhang, Y.C., Pileggi, A., Agarwal, A., et al. (2003) Adeno-associated virusmediated IL-10 gene therapy inhibits diabetes recurrence in syngeneic islet cell transplantation of NOD mice. Diabetes 52, 708–716.Google Scholar
  73. 73.
    Srisuchart, B., Taylor, M.J., and Sharma, RP. (1987) Alteration of humoral and cellular immunity in manganese chloride-treated mice. J. Toxicol. Environ. Health 22, 91–99.Google Scholar
  74. 74.
    Takagi, Y., Okada, A., Sando, K., Wasa, M., Yoshida, H., and Hirabuki, N. (2002) Evaluation of indexes of in vivo manganese status and the optimal intravenous dose for adult patients undergoing home parenteral nutrition. Am. J. Clin. Nutr. 75, 112–118.Google Scholar
  75. 75.
    Kryukov, G.V. and Gladyshev, V.N. (2002) Mammalian selenoprotein gene signature: identification and functional analysis of selenoprotein genes using bioinformatics methods. Methods Enzymol. 347, 84–100.Google Scholar
  76. 76.
    Lescure, A., Gautheret, D., and Krol, A. (2002) Novel selenoproteins identified from genomic sequence data. Methods Enzymol. 347, 57–70.Google Scholar
  77. 77.
    Arthur, J.R. (2000) The glutathione peroxidases. Cell. Mol. Liife Sci. 57, 1825–1835.Google Scholar
  78. 78.
    Imai, H. and Nakagawa, Y. (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free. Radical. Biol. Med. 34, 145–169.Google Scholar
  79. 79.
    Brigelius-Flohe, R., Banning, A., and Schnurr, K. (2003) Selenium-dependent enzymes in endothelial cell function. Antioxidants Redox Signaling 5, 205–215.Google Scholar
  80. 80.
    Beck, M.A., Levander, O.A., and Handy, J. (2003) Selenium deficiency and viral infection. J. Nutr. 133, 1463S-1467S.Google Scholar
  81. 81.
    Prabhu, K.S., Zamamiri-Davis, F., Stewart, J.B., Thompson, J.T., Sordillo, L.M., and Reddy, C.C. (2002) Selenium deficiency increases the expression of inducible nitric oxide synthase in RAW 264.7 macrophages: role of nuclear factorkappa B in up-regulation. Biochem. J. 366, 203–209.Google Scholar
  82. 82.
    Gartner, R., Gasnier, B.C., Dietrich, J.W., Krebs, B., Angstwurm, M.W. (2002) Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J. Clin. Endocrinol. Metab. 87, 1687–1691.Google Scholar
  83. 83.
    Baum, M.K., Miguez-Burbano, M.J., Campa, A., and Shor-Posner, G. (2000) Selenium and interleukins in persons infected with human immunodeficiency virus type 1. J. Infect. Dis. 182 Suppl 1, S69-S73.Google Scholar
  84. 84.
    Peretz, A., Neve, J., Desmedt, J., Duchateau, J., Dramaix, M., and Famaey, J.P. Lymphocyte response is enhanced by supplementation of elderly subjects with selenium-enriched yeast. Am. J. Clin. Nutr. 53, 1323–1328.Google Scholar
  85. 85.
    Bonomini, M., Forster, S., De Risio, F., et al. (1995) Effects of selenium supplementation on immune parameters in chronic uraemic patients on haemodialysis. Nephrol. Dial. Transplant. 10, 1654–1661.Google Scholar
  86. 86.
    Popova, N.V. (2002) Perinatal selenium exposure decreases spontaneous liver tumorogenesis in CBA mice. Cancer. Lett. 179, 39–42.Google Scholar
  87. 87.
    Jackson, M.J., Broome, C.S., and McArdle, F. (2003) Marginal dietary selenium intakes in the UK: are there functional consequences? J. Nutr. 133, 1557S-1559S.Google Scholar
  88. 88.
    Duffield-Lillico, A.J., Dalkin, B.L., Reid, ME., et al. (2003) Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: an analysis of the complete treatment period of the Nutritional Prevention of Cancer Trial. Br. J. Urol. Int. 91, 608–612.Google Scholar
  89. 89.
    Reid, M.E., Duffield-Lillico, A.J., Garland, L., Turnbull, B.W., Clark, L.C., and Marshall, J.R. (2002) Selenium supplementation and lung cancer incidence: an update of the nutritional prevention of cancer trial. Cancer. Epidemiol. Biomarkers. Prey. 11, 1285–1291.Google Scholar
  90. 90.
    Maehira, F., Luyo, G.A., Miyagi, I., et al. (2002) Alterations of serum selenium concentrations in the acute phase of pathological conditions. Clin. Chim. Acta. 316, 137–146.Google Scholar
  91. 91.
    Food and Nutrition Board, Institute of Medicine. (2000) Selenium. Dietary Reference Intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academy, Washington, DC, pp. 284–324.Google Scholar
  92. 92.
    Zago, M.P. and Oteiza, P.I. (2001) The antioxidant properties of zinc: interactions with iron and antioxidants. Free. Radic. Biol. Med. 31, 266–274.Google Scholar
  93. 93.
    Maret, W. (2003) Cellular zinc and redox states converge in the metallothionein/ thionein pair. J. Nutr. 133, 1460S-1462S.Google Scholar
  94. 94.
    Cousins, R.J., Blanchard, R.K., Moore, J.B., et al. (2003) Regulation of zinc metabolism and genomic outcomes. J. Nutr. 133, 1521S-1526S.Google Scholar
  95. 95.
    Keen, C.L. and Gershwin, M.E. (1990) Zinc deficiency and immune function. Annu. Rev. Nutr. 10, 415–431.Google Scholar
  96. 96.
    Fraker, P.J., King, L.E., Laakko, T., and Vollmer, T.L. (2000) The dynamic link between the integrity of the immune system and zinc status. J. Nutr. 130, 1399S-1406S.Google Scholar
  97. 97.
    Cui, L., Blanchard, R.K., and Cousins, R.J. (2003) The permissive effect of zinc deficiency on uroguanylin and inducible nitric oxide synthase gene upregulation in rat intestine induced by interleukin 1 alpha is rapidly reversed by zinc repletion. J. Nutr. 133, 51–56.Google Scholar
  98. 98.
    Dardenne, M. Zinc and immune function. (2002) Eur. J. Clin. Nutr. 56 Suppl 3, S20–S23.Google Scholar
  99. 99.
    King, L.E., Osati-Ashtiani, F., and Fraker, P.J. (2002) Apoptosis plays a distinct role in the loss of precursor lymphocytes during zinc deficiency in mice. J. Nutr. 132, 974–979.Google Scholar
  100. 100.
    Prasad, A.S. (2000) Effects of zinc deficiency on Thl and Th2 cytokine shifts. J. Infect. Dis. 182 Suppl 1, S62—S68.Google Scholar
  101. 101.
    Pinna, K., Kelley, D.S., Taylor, P.C., and King, J.C. (2002) Immune functions are maintained in healthy men with low zinc intake. J. Nutr. 132, 2033–2036.Google Scholar
  102. 102.
    Ibs, K.H. and Rink, L. (2003) Zinc-altered immune function. J. Nutr. 133, 1452S-1456S.Google Scholar
  103. 103.
    Osendarp, S.J., West, C.E., and Black, R.E. (2003) The need for maternal zinc supplementation in developing countries: an unresolved issue. J. Nutr. 133, 817S-827S.Google Scholar
  104. 104.
    Cuevas, L.E., Almeida, L.M., Mazunder, P., et al. (2002) Effect of zinc on the tuberculin response of children exposed to adults with smear-positive tuberculosis. Ann. Trop. Paediatr. 22, 313–319.Google Scholar
  105. 105.
    Shankar, A.H., Genton, B., Baisor, M., et al. (2000) The influence of zinc supplementation on morbidity due to Plasmodium falciparum: a randomized trial in preschool children in Papua New Guinea. Am. J. Trop. Med. Hyg. 62, 663–669.Google Scholar
  106. 106.
    Dreyfuss, M.L. and Fawzi, W.W. (2002) Micronutrients and vertical transmission of HIV-1. Am. J. Clin. Nutr. 75, 959–970.Google Scholar
  107. 107.
    Siberry, G., Ruff, A., and Black, R. (2002) Zinc and immunodeficiency virus infection. Nutr. Res. 22, 527–538.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

There are no affiliations available

Personalised recommendations