Skip to main content

Nucleic Acid Therapeutics

An Introduction

  • Chapter
Book cover Nucleic Acid Therapeutics in Cancer

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The development of simple, reliable tools for modifying gene expression “on demand” would represent a major technical advance for cell biologists. Because much progress has been made in understanding the molecular pathogenesis of many diseases, we may easily hypothesize that these same tools could be of tremendous importance to clinicians as well. For example, many genes responsible for cellular transformation have been identified. If the function of these genes were shown to be either completely or relatively tumor specific, they would become legitimate targets for therapeutic manipulation of their expression. More effective, less toxic cancer treatments could reasonably be expected to result if the strategy were successful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paterson BM, Roberts BE, Kuff EL. Structuralgene identification and mapping by DNA-mRNA hybrid-arrested cell-free translation. Proc Natl Acad Sci USA 1977; 74(10):4370–4374.

    Article  PubMed  CAS  Google Scholar 

  2. Stephenson ML, Zamecnik PC. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci USA 1978; 75(1): 285–288.

    Article  PubMed  CAS  Google Scholar 

  3. Simons RW, Kleckner N. Translational control of IS10 transposition. Cell 1983; 34(2): 683–691.

    Article  PubMed  CAS  Google Scholar 

  4. Izant JG, Weintraub H. Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell 1984; 36(4):1007–1015.

    Article  PubMed  CAS  Google Scholar 

  5. Mizuno T, Chou MY, Inouye M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 1984; 81(7): 1966–1970.

    Article  PubMed  CAS  Google Scholar 

  6. Gewirtz AM, Sokol DL, Ratajczak MZ. Nucleic acid therapeutics: state of the art and future prospects. Blood 1998; 92(3):712–736.

    PubMed  CAS  Google Scholar 

  7. Opalinska JB, Gewirtz AM. Nucleic-acid therapeutics: basic principles and recent applications. Nat Rev Drug Discov 2002; 1(7):503–514.

    Article  PubMed  CAS  Google Scholar 

  8. Melton DW. Gene targeting in the mouse. Bioessays 1994; 16(9):633–638.

    Article  PubMed  CAS  Google Scholar 

  9. Stasiak A. Getting down to the core of homologous recombination [comment]. Science 1996; 272(5263):828–829.

    Article  PubMed  CAS  Google Scholar 

  10. Helene C. Control of oncogene expression by antisense nucleic acids. Eur J Cancer 1994; 30A(11):1721–1726.

    Article  PubMed  CAS  Google Scholar 

  11. Knauert MP, Glazer PM. Triplex forming oligonucleotides: sequence-specific tools for gene targeting. Hum Mol Genet 2001; 10(20):2243–2251.

    Article  PubMed  CAS  Google Scholar 

  12. Sharma HW, Erez JR, Higgins-Sochaski K, Hsiao R, Narayanan R. Transcription factor decoy approach to decipher the role of NF-kappa B in oncogenesis. Anticancer Res 1996; 16(1):61–69.

    PubMed  CAS  Google Scholar 

  13. Kielkopf CL, Baird EE, Dervan PB, Rees DC. Structural basis for G.0 recognition in the DNA minor groove. Nat Struct Biol 1998; 5(2):104–109.

    Article  PubMed  CAS  Google Scholar 

  14. Kielkopf CL, White S, Szewczyk JW, et al. A structural basis for recognition of A.T and T.A base pairs in the minor groove of B-DNA. Science 1998; 282(5386):111–115.

    Article  PubMed  CAS  Google Scholar 

  15. Kielkopf CL, Bremer RE, White S, et al. Structural effects of DNA sequence on T.A recognition by hydroxypyrrole/pyrrole pairs in the minor groove. J Mol Biol 2000; 295(3):557–567.

    Article  PubMed  CAS  Google Scholar 

  16. Goodsell DS. The molecular perspective: DNA. Stem Cells 2000; 18(2):148–149.

    Article  PubMed  CAS  Google Scholar 

  17. Urbach AR, Dervan PB. Toward rules for 1:1 polyamide:DNA recognition. Proc Natl Acad Sci USA 2001; 98(8):4343–4348.

    Article  PubMed  CAS  Google Scholar 

  18. Beelman CA, Parker R. Degradation of mRNA in eukaryotes. Cell 1995; 81(2): 179–183.

    Article  PubMed  CAS  Google Scholar 

  19. Liebhaber SA. mRNA stability and the control of gene expression. Nucleic Acids Symp Ser 1997; 36:29–32.

    PubMed  CAS  Google Scholar 

  20. Baltimore D. Gene therapy. Intracellular immunization [news]. Nature 1988; 335(6189):395–396.

    Article  PubMed  CAS  Google Scholar 

  21. Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Analysis of trans-acting response decoy RNA-mediated inhibition of human immunodeficiency virus type 1 transactivation. J Virol 1991; 65(12):6811–6816.

    PubMed  CAS  Google Scholar 

  22. Bevec D, Volc-Platzer B, Zimmermann K, et al.. Constitutive expression of chimeric neo-Rev response element transcripts suppresses HIV-1 replication in human CD4+ T lymphocytes. Hum Gene Ther 1994; 5(2):193–201.

    Article  PubMed  CAS  Google Scholar 

  23. Weiss IM, Liebhaber, SA. Erythroid cell-specific mRNA stability elements in the alpha 2globin 3’ nontranslated region. Mol Cell Biol 1995; 15(5):2457–2465.

    PubMed  CAS  Google Scholar 

  24. Wang X, Kiledjian M, Weiss IM, Liebhaber SA. Detection and characterization of a 3’ untranslated region ribonucleoprotein complex associated with human alpha-globin mRNA stability [published erratum appears in Mol Cell Biol 1995 Apr;15(4):2331]. Mol Cell Biol 1995; 15(3):1769–1777.

    PubMed  CAS  Google Scholar 

  25. Thisted T, Lyakhov DL, Liebhaber SA. Optimized RNA targets of two closely related triple KH domain proteins, heterogeneous nuclear ribonucleoprotein K and alphaCP-2KL, suggest distinct modes of RNA recognition. PG-17484–96. J Biol Chem 2001; 276(20):17484–17496.

    Article  PubMed  CAS  Google Scholar 

  26. Scanlon KJ, Ohta Y, Ishida H, et al. Oligonucleotide-mediated modulation of mammalian gene expression. Faseb J 1995; 9(13):1288–1296.

    PubMed  CAS  Google Scholar 

  27. Stein CA. How to design an antisense oligodeoxynucleotide experiment: a consensus approach. Antisense Nucleic Acid Drug Dev 1998; 8(2):129–132.

    Article  PubMed  CAS  Google Scholar 

  28. Nishikura K. A Short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst. Cell 2001; 107(4): 415–418.

    Article  PubMed  CAS  Google Scholar 

  29. Sharp PA. RNAi and double-strand RNA. Genes Dev 1999; 13(2):139–141.

    Article  PubMed  CAS  Google Scholar 

  30. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 2001; 293(5531):834–838.

    Article  PubMed  CAS  Google Scholar 

  31. Ketting RF, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 2001; 15(20):2654–2659.

    Article  PubMed  CAS  Google Scholar 

  32. Nicholson RH, Nicholson AW. Molecular characterization of a mouse cDNA encoding Dicer, a ribonuclease III ortholog involved in RNA interference. Mamm Genome 2002; 13(2):67–73.

    Article  PubMed  CAS  Google Scholar 

  33. Hammond SM, Boetther S, Caudy AA, Kobaashi R, Hannon GJ. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 2001; 293(5532):1146–1150.

    Article  PubMed  CAS  Google Scholar 

  34. Williams RW, Rubin GM. ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci USA 2002; 99(10):6889–6894.

    Article  PubMed  CAS  Google Scholar 

  35. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002; 110(5):563–574.

    Article  PubMed  CAS  Google Scholar 

  36. Yang S, Tutton S, Pierce E, Yoon K. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol Cell Biol 2001; 21(22):7807–7816.

    Article  PubMed  CAS  Google Scholar 

  37. Bernstein E, Denli AM, Hannon GJ. The rest is silence. RNA, 2001; 7(11):1509–1521.

    PubMed  CAS  Google Scholar 

  38. Yang D, Lu H, Erickson JW. Evidence that processed small dsRNAs may mediate sequencespecific mRNA degradation during RNAi in Drosophila embryos. Curr Biol 2000; 10(19):1191–200.

    Article  PubMed  CAS  Google Scholar 

  39. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000; 101(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  40. Elbashir SM, Martinez J, Patkaniowska A, Lndeckel W, Tuschl T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J 2001; 20(23):6877–6888.

    Article  PubMed  CAS  Google Scholar 

  41. Hannon GJ. RNA interference. Nature 2002; 418(6894):244–251.

    Article  PubMed  CAS  Google Scholar 

  42. Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 2002; 99(9):6047–6052.

    Article  PubMed  CAS  Google Scholar 

  43. Donze O, Picard DL. RNA interference in mammalian cells using siRNAs synthesized with T7 RNA polymerase. Nucleic Acids Res 2002; 30(10):e46.

    Article  PubMed  Google Scholar 

  44. Sui G, Soohoo C, Affar el B, Gay F, et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 2002; 99(8):5515–5520.

    Article  PubMed  CAS  Google Scholar 

  45. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 2002; 16(8):948–958.

    Article  PubMed  CAS  Google Scholar 

  46. Lassus P, Rodriguez J, Lazebnik Y. Confirming Specificity of RNAi in mammalian cells. Sci STKE 2002; 147:PL13.

    Google Scholar 

  47. Holen T, Amarzguioui M, Wiiger MT, Babaie E, Prydz H. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res 2002; 30(8):1757–1766.

    Article  PubMed  CAS  Google Scholar 

  48. Luger SM, O’Brien SG, Ratajczak J, et al. Oligodeoxynucleotide-mediated inhibition of c-myb gene expression in autografted bone marrow: a pilot study. Blood 2002; 99(4):1150–1158.

    Article  PubMed  CAS  Google Scholar 

  49. Methia N, Louache F, Vainchenker W, Wendling F. Oligodeoxynucleotides antisense to the proto-oncogene c-mpl specifically inhibit in vitro megakaryocytopoiesis. Blood 1993; 82(5):1395–13401.

    PubMed  CAS  Google Scholar 

  50. Webb A, Cunningham D, Cotter F, et al. BCL-2 antisense therapy in patients with nonHodgkin lymphoma. Lancet 1997; 349(9059):1137–1141.

    Article  PubMed  CAS  Google Scholar 

  51. Gewirtz AM, Stein CA, Glazer PM. Facilitating oligonucleotide delivery: helping antisense deliver on its promise. Proc Natl Acad Sci USA 1996; 93(8):3161–3163.

    Article  PubMed  CAS  Google Scholar 

  52. Stein CA, Does antisense exist? Nat Med 1995; 1(11):1119–1121.

    Article  PubMed  CAS  Google Scholar 

  53. Wagner RW, Flanagan WM. Antisense technology and prospects for therapy of viral infections and cancer. Mol Med Today 1997; 3(1):31–38.

    Article  PubMed  CAS  Google Scholar 

  54. Baskerville S, Ellington AD. RNA structure. Describing the elephant. Curr Biol 1995; 5(2):120–123.

    Article  PubMed  CAS  Google Scholar 

  55. Sokol DL, Zhang X, Lu P. Gewirtz AM. Real time detection of DNA. RNA hybridization in living cells. Proc Natl Acad Sci USA, 1998; 95(20):11538–11543.

    Article  PubMed  CAS  Google Scholar 

  56. Yakubov LA, Deeva EA, Zarytova VF, et al. Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc Natl Acad Sci USA 1989; 86(17):6454–6458.

    Article  PubMed  CAS  Google Scholar 

  57. Beltinger C, et al. Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J Clin Invest 1995; 95(4):1814–1823.

    Article  PubMed  CAS  Google Scholar 

  58. Arima H, Aramaki Y, Tsuchiya S. Effects of oligodeoxynucleotides on the physicochemical characteristics and cellular uptake of liposomes. J Pharm Sci 1997; 86(4): 438–442.

    Article  PubMed  CAS  Google Scholar 

  59. Laktionov PP, Dazard JE, Vives E, et al. Characterisation of membrane oligonucleotidebinding proteins and oligonucleotide uptake in keratinocytes. Nucleic Acids Res 1999; 27(11):2315–2324.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gewirtz, A.M. (2004). Nucleic Acid Therapeutics. In: Gewirtz, A.M. (eds) Nucleic Acid Therapeutics in Cancer. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59259-777-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59259-777-2_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4684-9858-5

  • Online ISBN: 978-1-59259-777-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics